Supporting Information for:

Fluorous-tagged indolylboron for the diversity-oriented synthesis of biologicallyattractive bisindole derivatives

Experimental Section

General Comments. Toluene, benzene and dioxane were distilled from sodium benzophenone ketyl. DMF was distilled from CaH₂. CH₂Cl₂ was distilled from P₂O₅. MeOH was distilled from magnesium methoxide. Other dry solvents and reagents were purchased from commercial sources and used without further purification. Perfluorinated silica gel (Fluoro*Flash*[®] Fluorous SPE Cartridges) was purchased from FLUOROUS Technologies Incorporated.

Sulfononyl chloride 1b. A mixture of PhI (3.95 ml, 35.3 mmol), $C_8F_{17}I$ (9.5 ml, 35.5 mmol) and Cu powder (10.2 g, 160.5 mmol) in DMSO (50ml) was stirred for 22 h at 120 °C. The mixture was filtered by Celite[®] and washed with Et₂O and H₂O. The aqueous layer was extracted with Et₂O (1×15 ml). The organic layer was washed with H₂O and brine, and the organic layer was dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by short-path silica gel column chromatography with hexane to afford 17.30 g (98%) of perfluorooctylbenzene.

CISO₃H (30 ml) was added to perfluorooctylbenzene (15.30 g, 30.8 mmol) at rt. The mixture was stirred for 2.5 h at 120 °C, and cooled to rt. The mixture was pippeted cautiously onto ice. The aqueous layer was extracted with AcOEt (3×10 ml). The organic layer was washed with saturated NaHCO₃ and brine, and the organic layer was dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by silica gel column chromatography with hexane/AcOEt (85:15)-(60:40) to afford 15.8 g (87%) of **1b** as a solid; ¹H NMR (CDCl₃, 500 MHz) δ 8.29 (1H, d, *J* = 8.0 Hz), 8.27 (1H, s), 7.99 (1H, d, *J* = 8.0 Hz), 7.84 (1H, t, *J* = 8.0 Hz); IR (neat) 1380, 1241, 1198, 1146, 1171, 1086 cm⁻¹; EIMS *m/z* (rel intensity) 558 (M⁺-Cl, 100%)

Sulfonate 2b. Et₃N (1.1 ml, 7.8 mmol) was added to a stirred solution of **1b** (2.90 g, 4.88 mmol), 4-iodophenol (1.33 g, 6.03 mmol), DMAP (122.3 mg, 1.00 mmol) and CH₂Cl₂ (30ml) at 0 °C. The mixture was stirred for 12 h at rt, and the reaction was monitored by silica gel TLC. The mixture was quenched with H₂O and evaporated. The mixture was purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel to afford 3.30 g (87%) of **2b** as a solid; ¹H NMR (CDCl₃, 500 MHz) δ 8.07 (1H, d, *J* = 8.0 Hz), 8.04 (1H, s), 7.91 (1H, d, *J* = 8.0 Hz), 7.74 (1H, t, *J* = 8.0 Hz), 7.62 (2H, d, *J* = 9.0 Hz), 6.73 (2H, d, *J* = 9.0 Hz); IR (neat) 1559, 1507, 1380, 1198, 1152 cm⁻¹; EIMS m/z (rel intensity) 778 (M⁺, 100%), 219 (79); HRMS calcd. for C₂₀H₈O₃F₁₇SI 777.8967, found 777.8981.

Sulfonyl chloride 1a. Starting with PhI and C₄F₉I and following the procedure for the preparation of **1b** gave **1a** (2 steps 27%) as an oil; ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (1H, d, *J* = 8.0 Hz), 8.28 (1H, s), 8.01 (1H, d, *J* = 8.0 Hz), 7.87 (1H, t, *J* = 8.0 Hz); EIMS *m/z* (rel intensity) 394 (M⁺, 10%), 359 (100).

Sulfonate 2a. Starting with **1a** and following the procedure for the preparation of **2b** gave **2a** (85%) as an oil; ¹H NMR (CDCl₃, 400 MHz) δ 8.06 (1H, d, *J* = 8.0 Hz), 8.02 (1H, d, *J* = 8.0 Hz), 7.91 (1H, d, *J* = 8.0 Hz), 7.74 (1H, t, *J* = 8.0 Hz), 7.62 (2H, d, *J* = 9.0 Hz), 6.72 (2H, d, *J* = 9.0 Hz); EIMS *m*/*z* (rel intensity) 578 (M⁺, 100%); HRMS calcd. for C₁₆H₈O₃F₉SI 577.9095, found 577.9091.

Sulfonyl chloride 1c. Starting with 1,3-diiodobenzene and $C_8F_{17}I$ and following the procedure for the preparation of **1b** gave crude **1c** as a solid (chlorosulfonylation condition: MW irradiation, 300 W, 120 °C, 10 min). Further purification was not performed, because the title compound was decomposed by silica gel column chromatography.

Sulfonate 2c. Starting with **1c** and following the procedure for the preparation of **2b** gave **2c** (3 steps 44%) as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.24 (2H, s), 8.08 (1H, s), 7.64 (2H, d, *J* = 9.0 Hz), 6.72 (2H, d, *J* = 9.0 Hz); EIMS *m/z* (rel intensity) 1195 (M⁺, 25%), 219 (100); HRMS calcd. for C₂₈H₇O₃F₃₄SI 1195.8618, found 1195.8610.

Boronate 3. A mixture of indole (2.34 g, 20.0 mmol) and KOH (4.30 g, 76.6 mmol) in DMF (30 ml) was stirred for 10 min. Then the DMF (20 ml) solution of iodine (5.26 g, 20.7 mmol) was added, and the mixture was stirred for 30 min. The mixture was poured into the solution (H₂O 400 ml, 25% aqueous NH₃ 8 ml, Na₂S₂O₅ 400 mg), and the precipitation was filtrated with H₂O. The precipitation was dissolved with CHCl₃, and the organic layer was washed with brine and dried over MgSO₄. The evaporation of the organic phase gave 3-iodoindole.

Et₃N (3.2 ml, 22.8 mmol) was added to a stirred solution of 3-iodoindole, **1b** (8.91g, 15.0 mmol), DMAP (366.3 mg, 3.00 mmol) and CH₂Cl₂ (50 ml) at 0 °C. The mixture was stirred for 12 h at rt, and the reaction was monitored by silica gel TLC. The mixture was quenched with H₂O and evaporated. The mixture was purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel to afford 10.54 g (88%) of 3-iodoindole protected by BsRf₈ as a solid; ¹H NMR (CDCl₃, 400 MHz)

δ 8.14 (1H, s), 8.04 (1H, d, J = 8.0 Hz), 7.94 (1H, d, J = 8.0 Hz), 7.77 (1H, d, J = 8.0 Hz), 7.68 (1H, s), 7.62 (1H, t, J = 8.0 Hz), 7.32-7.41 (3H, m), 1.26 (12H, s); IR (neat) 1383, 1198, 1144, 1117 cm⁻¹; EIMS *m/z* (rel intensity) 801 (M⁺, 92%), 242 (100); HRMS calcd. for C₂₂H₉NO₂F₁₇SI 801.9127, found 801.9136.

In a sealed tube, Et₃N (0.45 ml, 3.2 mmol) and pinacolborane (0.22 ml, 1.5 mmol) were added into a mixture of 3iodoindole protected by BsRf₈ (801.0 mg, 1.00 mmol), PdCl₂dppf complex with dichloromethane (1:1) (24.5 mg 0.03 mmol), and dioxane (5 ml), and the mixture was heated at 80 °C for 4 h. The evaporation of the mixture gave the crude product. The crude product was purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel, and the product was recrystallized with hexane/Et₂O to afford 704.8 mg (88%) of **3** as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.18 (1H, S), 8.05 (1H, d, *J* = 8.0 Hz), 7.97 (1H, s), 7.93 (2H, t, *J* = 8.0 Hz), 7.74 (1H, d, *J* = 8.0 Hz), 7.60 (1H, t, *J* = 8.0 Hz), 7.26-7.33 (2H, m); IR (neat) 1391, 1198, 1146, 1129 cm⁻¹; EIMS *m/z* (rel intensity) 801 (M⁺, 100%); HRMS calcd. for C₂₈H₂₁NO₄F₁₇SB 801.1013, found 801.1035.

Dibromobenzoquinone 4. AcCl (1.2 ml, 16.8 mmol) was added to a mixture of 2,5-dihydroxybenzoquinone (7.00 g, 50 mmol) and MeOH (150 ml). the mixture was stirred for 24 h at 80 °C. The precipitation was filtration and washed with cold MeOH. The precipitation was dried *in vacuo* to afford 6.81 g (81%) of 2,5-dimetoxybenzoquinone.

NBS (7.20 g, 40.4 mmol) was slowly added to the mixture of 2,5-dimetoxybenzoquinone (3.36 g, 20.0 mmol) and DMF (100 ml). The mixture was stirred for 15 h at rt. H₂O was added to the reaction mixture, the aqueous layer was extracted with AcOEt (3×10 ml). The organic layer was washed with H₂O (two times) and brine (two times), and dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by silica gel column chromatography with hexane/CHCl₃ (50:50)-(0:100) to afford 5.36 g (82%) of 4 as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 4.25 (6H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 174.51, 156.21, 114.80, 62.21; IR (neat) 1648, 1559, 1331, 1204, 1150 cm⁻¹; EIMS *m/z* (rel intensity) 324/326/328 (M⁺, 33%, M⁺², 62%, M⁺⁴, 35%), 297 (100); HRMS calcd. for C₈H₆O₄Br₂ 323.8633, found 323.8633.

Monoindolylbenzoquinone 5. In a sealed tube, A mixture of **3** (641.1 mg, 0.800 mmol), **4** (1.00 g, 3.08 mmol), Tl₂CO₃ (1.121 g, 2.39 mmol), Pd(PPh₃)₄ (91.1 mg, 0.0788 mmol) in benzene (7 ml) was heated at 80 °C for 24 h. The mixture was filtered by Celite[®] and evaporated. The crude product was purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel to afford 736.1 mg (quant.) of **5** as a solid; ¹H NMR (CDCl₃, 500 MHz) δ 8.08 (1H, s), 8.04 (1H, d, *J* = 8.0 Hz), 7.88 (1H, d, *J* = 8.0 Hz), 7.65 (1H, d, *J* = 8.0 Hz), 7.52 (t, *J* = 8.0 Hz), 7.23 (1H, t, *J* = 8.0 Hz), 7.21 (1H, d, *J* = 8.0 Hz), 7.14 (1H, t, *J* = 8.0 Hz), 4.06 (3H, s), 3.75 (3H, s); ¹³C NMR (CDCl₃, 125 MHz) δ 179. 86, 176.48, 156.90, 155.16, 138.85, 134.29, 132.13, 130.46, 130.22, 130.14, 129.73, 128.05, 125.43, 125.19, 123.94, 121.50, 118.39, 115.11, 113.35, 112.10, 61.81, 61.29, the other C of perfluoroalkyl chain were not assigned.; IR (neat) 1671, 1654, 1385, 1342, 1200, 1179, 1131 cm⁻¹; EIMS *m/z* (rel intensity) 921 (M⁺², 100%), 919 (M⁺, 85%), HRMS calcd. for C₃₀H₁₅NO₆BrF₁₇S 918.9532, found 918.9527.

Boronate 6. This was synthesized according to the reported procedure^{1). 1}H NMR (CDCl₃, 400 MHz) δ 7.96-8.00 (1H, m), 7.59 (1H, s), 7.40-7.43 (1H, m), 7.06-7.08 (2H, m), 1.65 (3H, sept, J = 7.6 Hz), 1.28 (12H, s), 1.05 (18H, d, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 141.73, 141.07, 135.03, 122.28, 121.41, 120.33, 113.63, 82.63 (2C), 25.01 (4C), 18.18 (6C), 12.79 (3C); IR (neat) 1534, 1449, 1387, 1136 cm⁻¹; EIMS *m/z* (rel intensity) 399 (M⁺, 100%); HRMS calcd. for C₂₃H₃₈NO₂SiB 399.2765, found 399.2757.

Bisindolylbenzoquinone 7. In a sealed tube, A mixture of **5** (274.3 mg, 0.298 mmol), **6** (359.0 mg, 0.898 mmol), Tl_2CO_3 (420.9 mg, 0.898 mmol), $Pd(PPh_3)_4$ (34.4 mg, 0.0298 mmol) in benzene (5 ml) was heated at 80 °C for 24 h. The mixture was filtered by Celite[®] and washed with AcOEt. The evaporation of the organic phase gave the crude product. The mixture of the above crude product, CsF (221.2 mg, 1.456 mmol), THF (5 ml), MeOH (5 ml) was stirred for 30 min at rt. The mixture was quenched with saturated NH₄Cl and evaporated. The mixture was purified by F-SPE (80% MeOH/H₂O – AcOEt) using perfluorinated silica gel to afford 250.1 mg (2 steps 88%) of **7** as a solid; ¹H NMR (CDCl₃, 500 MHz) δ 8.53 (1H, s), 8.22 (1H, s), 8.14 (1H, d, *J* = 8.0 Hz), 8.04-8.06 (1H, m), 8.00 (1H, d, *J* = 8.0 Hz), 7.87 (1H, s), 7.75 (1H, d, *J* = 8.0 Hz), 7.62 (1H, d, *J* = 2.0 Hz), 7.61 (1H, t, *J* = 8.0 Hz), 7.53 (1H, d, *J* = 8.0 Hz), 7.35-7.43 (3H, m), 7.27 (1H, t, *J* = 8.0 Hz), 7.23 (1H, t, *J* = 8.0 Hz), 3.83 (3H, s), 3.75 (3H, s); IR (neat) 1382, 1200, 1175, 1144, 1115 cm⁻¹; EIMS *m/z* (rel intensity) 956 (M⁺, 100%), HRMS calcd. for C₃₈H₂₁N₂O₆F₁₇S 956.0849, found 956.0864.

Cleaved bisindolylbenzoquinone 8. MeI (0.020 ml, 0.320 mmol) was added to the mixture of 7 (31.4 mg, 0.0328 mmol), Cs_2CO_3 (48.7 mg, 0.150 mmol) and DMF (1 ml). The mixture was stirred for 1.5 h at rt. The mixture was quenched with saturated NH₄Cl and evaporated. The mixture was purified by F-SPE (80% MeOH/H₂O – AcOEt) using perfluorinated silica

gel to afford alkylated product 30.5 mg (96%) as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.22 (1H, s), 8.16 (1H, d, *J* = 8.0 Hz), 8.00 (1H, d, *J* = 8.0 Hz), 7.86 (1H, s), 7.78 (1H, d, *J* = 8.0 Hz), 7.66 (1H, t, *J* = 8.0 Hz), 7.55 (1H, d, *J* = 8.0 Hz), 7.50 (1H, s), 7.42 (1H, d, *J* = 8.0 Hz), 7.27-7.39 (4H, m), 7.19 (1H, t, *J* = 8.0 Hz), 3.90 (3H, s), 3.85 (3H, s), 3.78 (3H, s); EIMS *m/z* (rel intensity) 970 (M⁺, 100%); HRMS calcd. for C₃₉H₂₃N₂O₆F₁₇S 970.1005, found 970.1021.

The mixture of above product (8.4 mg, 0.00865 mmol), Mg (2.0 mg, 0.0823 mmol), NH₄Cl (4.7 mg, 0.0879 mmol), MeOH (1 ml), and THF (1 ml) was stirred for 2 h at rt. The mixture was quenched with saturated NH₄Cl, and the aqueous layer was extracted with AcOEt (3×5 ml). The organic layer was washed with brine, and dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by silica gel column chromatography with AcOEt/CHCl₃ (10:90) to afford 3.4 mg (95%) of **8** as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.56 (1H, s), 7.60-7.61 (2H, m), 7.58 (1H, s), 7.51 (1H, s), 7.42 (1H, d, *J* = 8.0 Hz), 7.37 (1H, d, *J* = 8.0 Hz), 7.27 (1H, dt, *J* = 1.0, 8.0 Hz), 7.24 (1H, dt, *J* = 1.0, 8.0 Hz), 7.18 (2H, t, *J* = 8.0 Hz), 3.89 (3H, s), 3.77 (6H, s); EIMS m/z (rel intensity) 412 (M+, 100%); HRMS calcd. for C₂₅H₂₀N₂O₄ 412.1423, found 412.1411.

BisindolyImaleimide 9. ¹H NMR (CDCl₃, 500 MHz) δ 8.24 (1H, s), 8.02 (1H, d, J = 8.0 Hz), 7.98 (1H, s), 7.93 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.79 (1H, d, J = 8.0 Hz), 7.62 (1H, t, J = 8.0 Hz), 7.27 (1H, d, J = 8.0 Hz), 7.18 (1H, t, J = 8.0 Hz), 7.03 (1H, t, J = 8.0 Hz), 6.92 (1H, d, J = 8.0 Hz), 6.84 (1H, t, J = 8.0 Hz), 6.71 (1H, d, J = 8.0 Hz), 6.46 (1H, t, J = 8.0 Hz), 4.19 (2H, q, J = 7.0 Hz), 3.18 (3H, s), 1.47 (3H, t, J = 7.0 Hz); EIMS *m/z* (rel intensity) 927 (M⁺, 52%), 369 (100); HRMS calcd. for C₃₇H₂₂N₃O₄F₁₇S 927.1060, found 927.1076.

Monoindolylbenzoquinone 10. ¹H NMR (CDCl₃, 400 MHz) δ 8.21 (1H, s), 8.15 (1H, d, J = 8.0 Hz), 8.00 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.77 (1H, d, J = 8.0 Hz), 7.65 (1H, t, J = 8.0 Hz), 7.41-7.46 (3H, m), 7.33-7.39 (4H, m), 7.23 (1H, t, J = 8.0 Hz), 3.86 (3H, s), 3.81 (3H, s); EIMS *m*/*z* (rel intensity) 917 (M⁺, 76%), 330 (100); HRMS calcd. for C₃₆H₂₀NO₆F₁₇S 917.0740, found 917.0735.

Bisindolylpyrazine 11. ¹H NMR (CDCl₃, 400 MHz) δ 8.75 (1H, dd, J = 1.5, 8.0 Hz), 8.62 (1H, s), 8.44 (1H, s), 8.24 (1H, s), 8.15 (1H, dd, J = 2. 5, 9.0 Hz), 8.07 (1H, d, J = 8.0 Hz), 8.04 (1H, dd, J = 1.5, 8.0 Hz), 7.81 (1H, s), 7.73 (1H, d, J = 8.0 Hz), 7.58 (1H, t, J = 8.0 Hz), 7.30-7.40 (3H, m), 7.06 (1H, dt, J = 2. 5, 9.0 Hz), 4.27 (3H, s), 4.24 (2H, q, J = 7.0 Hz), 1.55 (3H, t, J = 7.0 Hz); EIMS *m*/*z* (rel intensity) 944 (M⁺, 74%), 385 (100); HRMS calcd. for C₃₇H₂₂N₄O₃F₁₈S 944.1125, found 944.1144.

Bisindolylpyrazine 12. ¹H NMR (CDCl₃, 400 MHz) δ 8.74 (1H, d, J = 8.0 Hz), 8.64 (1H, s), 8.44 (1H, s), 8.37 (1H, d, J = 8.0 Hz), 8.24 (1H, s), 8.06 (1H, d, J = 8.0 Hz), 8.03 (1H, dd, J = 1.5, 8.0 Hz), 7.73 (1H, d, J = 8.0 Hz), 7.71 (1H, s), 7.58 (1H, t, J = 8.0 Hz), 7.29-7.39 (5H, m), 7.18-7.20 (2H, m), 6.94 (1H, dd, J = 2.0, 8.0 Hz), 6.78 (1H, d, J = 2.0 Hz), 5.35 (2H, s), 4.31 (3H, s), 3.83 (3H, s); EIMS *m*/*z* (rel intensity) 1018 (M⁺, 80%), 459 (100); HRMS calcd. for C₄₃H₂₇N₄O₄F₁₇S 1018.1482, found 1018.1456.

Monoindolylpyridine 13. ¹H NMR (CDCl₃, 400 MHz) δ 8.44 (1H, d, J = 8.0 Hz), 8.14 (1H, s), 8.06-8.10 (3H, m), 7.89 (1H, d, J = 8.0 Hz), 7.79 (1H, s), 7.68-7.74 (2H, m), 7.63 (1H, d, J = 8.0 Hz), 7.45 (1H, d, J = 8.0 Hz), 7.40 (1H, d, J = 8.0 Hz), 7.25-7.31 (2H, m), 7.11 (2H, d, J = 9.0 Hz), 4.24 (2H, q, J = 7.0 Hz), 1.53 (3H, t, J = 7.0 Hz); EIMS *m/z* (rel intensity) 844 (M⁺, 100%); HRMS calcd. for C₃₅H₂₁N₂O₃F₁₇S 872.1001, found 872.0994.

Bisindolylpyridine 14. ¹H NMR (CDCl₃, 400 MHz) δ 8.44 (1H, d, J = 8.0 Hz), 8.26 (1H, d, J = 8.0 Hz), 8.25 (1H, s), 8.10 (1H, s), 8.08 (1H, d, J = 8.0 Hz), 8.04 (1H, d, J = 8.0 Hz), 7.75 (1H, d, J = 8.0 Hz), 7.72 (1H, d, J = 7.5 Hz), 7.64 (1H, s), 7.60 (1H, t, J = 8.0 Hz), 7.59 (1H, d, J = 8.0 Hz), 7.45 (1H, d, J = 7.5 Hz), 7.33-7.41 (2H, m), 6.89 (1H, dd, J = 2.0, 8.0 Hz), 6.82 (1H, d, J = 2.0 Hz), 3.92 (3H, s), 3.83 (3H, s); EIMS *m/z* (rel intensity) 911 (M⁺, 100%), 352 (44); HRMS calcd. for C₃₇H₂₂N₃O₃F₁₇S 911.1110, found 911.1099.

Biindolylthiophene 15. ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (1H, s), 8.07 (1H, d, J = 8.0 Hz), 8.04 (1H, d, J = 8.0 Hz), 8.01 (1H, d, J = 8.0 Hz), 7.95 (1H, d, J = 8.0 Hz), 7.76 (1H, d, J = 8.0 Hz), 7.76 (1H, s), 7.61 (1H, t, J = 8.0 Hz), 7.33-7.42 (5H, m), 7.22-7.30 (3H, m), 5.99-6.09 (1H, m), 5.27 (1H, dd, J = 1.0. 9.0 Hz), 5.19 (1H, dd, J = 1.0. 17.0 Hz), 4.77 (2H, dt, J = 5.0, 1.0 Hz); EIMS *m*/*z* (rel intensity) 912 (M⁺, 37%), 353 (100); HRMS calcd. for C₃₇H₂₁N₂O₂F₁₇S₂ 912.0773, found 912.0770.

Bisindolylthiophene 16. ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (1H, s), 8.07 (1H, d, *J* = 8.0 Hz), 8.03 (1H, d, *J* = 8.0 Hz), 7.94 (1H, d, *J* = 8.0 Hz), 7.76 (1H, d, *J* = 8.0 Hz), 7.76 (1H, s), 7.60-7.65 (2H, m), 7.35-7.42 (3H, m), 7.33 (1H, d, *J* = 4.0 Hz), 7.25-7.29 (1H, m), 7.22 (1H, d, *J* = 4.0 Hz), 7.02 (1H, dt, *J* = 2.0, 9.0 Hz), 5.97-6.07 (1H, m), 5.27 (1H, dd, *J* = 1.0, 1.0)

10.0 Hz), 5.17 (1H, dd, J = 1.0, 17.0 Hz), 4.75 (2H, dt, J = 5.5, 1.0 Hz); EIMS m/z (rel intensity) 930 (M⁺, 44%), 371 (100); HRMS calcd. for C₃₇H₂₀N₂O₂F₁₈S₂ 930.0679, found 930.0668.

Ester 17. A mixture of Ethyl 4-iodobenzoate (3.30 ml, 19.6 mmol), $C_8F_{17}I$ (5.40 ml, 20.2 mmol) and Cu powder (5.08 g, 80.0 mmol) in DMSO (15ml) was stirred for 24 h at 120 °C. The mixture was filtered by Celite[®] and washed with AcOEt and H₂O. The aqueous layer was extracted with AcOEt (2×15 ml). The organic layer was washed with H₂O (two times) and brine, and the organic layer was dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by short-path column chromatography over silica gel with hexane/CHCl₃ (50:50) to afford 10.5 g (95%) of Ethyl 4-perfluorooctylbenzoate. ¹H NMR (CDCl₃, 400 MHz) δ 8.18 (2H, d, *J* = 8.0 Hz), 7.67 (2H, d, *J* = 8.0 Hz), 4.43 (2H, q, *J* = 7.0 Hz), 1.42 (3H, t, *J* = 7.0 Hz); EIMS *m/z* (rel intensity) 568 (M⁺, 20%); HRMS calcd. for C₁₇H₉O₂F₁₇ 568.0331, found 568.0349.

Bnzylbromide 18. The THF (10 ml) solution of 17 (5.21 g, 9.20 mmol) was slowly added to a solution of LiAlH₄ (570.1 mg, 15.0 mmol) and THF (30 ml) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C, and the reaction was monitored by silica gel TLC. The mixture was quenched with aqueous THF, and 1M HCl was added. The aqueous layer was extracted with AcOEt (3×10 ml). The organic layer was washed with saturated NaHCO₃ and brine and dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by short-path column chromatography over silica gel with hexane/AcOEt (70:30)-(50:50) to afford 4.18 g (87%) of benzyl alcohol; ¹H NMR (CDCl₃, 400 MHz) δ 7.56 (2H, d, *J* = 8.0 Hz), 7.46 (2H, d, *J* = 8.0 Hz), 4.72 (2H, s); EIMS *m/z* (rel intensity) 526 (M⁺, 72%); HRMS calcd. for C₁₅H₇OF₁₇ 526.0225, found 526.0217.

PBr₃ (0.50 ml, 5.26 mmol) was added to the mixture of benzyl alcohol (1.58 g, 3. 00 mmol) and CH₂Cl₂ (10 ml) at 0 °C. The reaction mixture was stirred for 2 h at rt, the mixture was quenched with saturated NaHCO₃ at 0 °C. The aqueous layer was extracted with AcOEt (3×10 ml). The organic layer was washed with brine and dried over MgSO₄. The evaporation of the organic phase gave the crude product, and the crude product was purified by short-path column chromatography over silica gel with hexane/AcOEt (90:10) to afford 948.0 mg (54%) of benzylbromide **18** as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 7.57 (2H, d, *J* = 8.0 Hz), 7.53 (2H, d, *J* = 8.0 Hz), 4.51 (2H, s); EIMS *m/z* (rel intensity) 588 (M⁺, 2%), 509 (100); HRMS calcd. for C₁₅H₆BrF₁₇ 587.9381, found 587.9348.

Monoindolylpyrazine 19. Starting with **3** and dihalo pyrazine²⁾ and following the procedure for the preparation of **5** gave **21.** ¹H NMR (CDCl₃, 500 MHz) δ 8.62 (1H, d, J = 8.0 Hz), 8.45 (1H, s), 8.33 (1H, s), 8.22 (1H, s), 8.07 (1H, t, J = 8.0 Hz), 8.02 (1H, d, J = 8.0 Hz), 7.75 (1H, d, J = 8.0 Hz), 7.59 (1H, t, J = 8.0 Hz), 7.31-7.41 (2H, m), 4.19 (3H, s); ¹³C NMR (CDCl₃, 125 MHz,) δ 156.31, 138.95, 137.32, 136.71, 134.80, 132.63, 132.18, 130.56, 130.15, 130.06, 129.22, 128.42, 125.67 (2C), 124.52, 123.86, 117.18, 113.07, 54.93, the other C of perfluoroalkyl unit were not assigned.; IR (neat) 1526, 1382, 1200, 1152, 1142 cm⁻¹; EIMS *m/z* (rel intensity) 863 (M⁺², 100%), 861 (M⁺, 93%), HRMS calcd. for C₂₇H₁₃N₃O₃BrF₁₇S 860.9590, found 860.9570.

Boronate 20. This compound was synthesized by 3 steps. 1) Iodination of 2-ethoxycarbonylindole; 2) Protection using NaH (60%) and benzylbromide **18** in DMF; 3) Pd catalyzed borylation using HBPin; ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (1H, d, *J* = 8.0 Hz), 7.45 (2H, d, *J* = 8.4 Hz), 7.27-7.30 (2H, m), 7.21 (1H, t, *J* = 8.0 Hz), 7.14 (2H, d, *J* = 8.4 Hz), 5.81 (2H, s), 4.34 (2H, q, *J* = 7.0 Hz), 1.44 (12H, s), 1.31 (3H, t, *J* = 7.0 Hz); EIMS *m*/*z* (rel intensity) 823 (M⁺, 100%); HRMS calcd. for C₃₂H₂₇NO₄F₁₇B 823.1762, found 823.1759.

Double tagged compound 21. In a sealed tube, A mixture of **19** (42.6 mg, 0.0494 mmol), **20** (49.9 mg, 0.0606 mmol), Tl_2CO_3 (46.8 mg, 0.100 mmol), Pd(PPh_3)₄ (5.8 mg, 0.005 mmol) in benzene (2.5 ml) was heated at 80 °C for 24 h. The mixture was filtered by Celite[®] and washed with AcOEt. The evaporation of the organic phase gave the crude product. The crude product was purified by F-SPE (80% MeOH/H₂O-MeCN-THF) using perfluorinated silica gel. The MeCN eluent contained 72.1 mg (98%) of product **21** as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.79 (1H, d, *J* = 8.0 Hz), 8.55 (2H, d, *J* = 3.0 Hz), 8.26 (1H, s), 8.11 (1H, d, *J* = 8.0 Hz), 8.06 (1H, d, *J* = 8.0 Hz), 7.97 (1H, d, *J* = 8.0 Hz), 7.76 (1H, d, *J* = 8.0 Hz), 7.61 (1H, t, *J* = 8.0 Hz), 7.52 (2H, d, *J* = 8.0 Hz), 7.35-7.41 (4H, m), 7.25-7.28 (3H, m), 5.85 (2H, s), 4.23 (3H, s), 4.20 (2H, q, *J* = 7.0 Hz), 1.04 (3H, t, *J* = 7.0 Hz); EIMS *m/z* (rel intensity) 1478 (M⁺, 100%); HRMS calcd. for C₅₃H₂₈N₄O₅F₃₄S 1478.1238, found 1478.1244. The THF eluent contained the trace amount of unreacted **19** and excess **20**.

Product 22. TBAF (30.1 mg, 0.115 mmol) was added to the mixture of **21** (10.0 mg, 0.0067 mmol) and THF (1 ml), and the mixture was stirred for 1 h at rt. The reaction was monitored by TLC and quenched with saturated NH_4Cl . The mixture was evaporated, and purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel. The 80% MeOH/H₂O

eluent contained the hydrolyzed BsRf₈. The AcOEt eluent contained 6.1 mg (98%) of deprotected compound as a solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.85-8.87 (1H, m), 8.53 (1H, s), 8.50 (1H, s), 8.30 (1H, d, *J* = 3.0 Hz), 7.99 (1H, d, *J* = 8.0 Hz), 7.53 (2H, d, *J* = 8.4 Hz), 7.45-7.47 (1H, m), 7.34-7.39 (2H, m), 7.26-7.31 (5H, m), 5.86 (2H, s), 4.21 (2H, q, *J* = 7.0 Hz), 4.18 (3H, s), 1.05 (3H, t, *J* = 7.0 Hz); EIMS *m/z* (rel intensity) 920 (M⁺, 100%); HRMS calcd. for C₃₉H₂₅N₄O₃F₁₇ 920.1655, found 920.1642.

MeI (5 µl, 0.08 mmol) was added to the mixture of the above deprotected product (6.1 mg, 6.6×10^{-3} mmol), Cs₂CO₃ (16.0 mg, 0.049 mmol) and DMF (0.5 ml). The mixture was stirred for 1.5 h at rt. The mixture was quenched with saturated NH₄Cl and the organic solvent was evaporated. The mixture was purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel to afford 6.0 mg (97%) of **22** as a solid; ¹H NMR (CDCl₃, 500 MHz) δ 8.86 (1H, d, *J* = 8.0 Hz), 8.51 (1H, s), 8.14 (1H, s), 8.00 (1H, d, *J* = 8.0 Hz), 7.52 (2H, d, *J* = 8.4 Hz), 7.26-7.40 (8H, m), 5.86 (2H, s), 4.20 (2H, q, *J* = 7.0 Hz), 4.19 (3H, s), 1.04 (3H, t, *J* = 7.0 Hz); EIMS *m/z* (rel intensity) 934 (M⁺, 100%); HRMS calcd. for C₄₀H₂₇N₄O₃F₁₇ 934.1812, found 934.1832.

Product 23. PhCOCl (5 μ l, 0.045 mmol) was added to the mixture of the above deprotected product (13.5 mg, 0.0147 mmol), DMAP (0.4 mg, 0.003 mmol), Et₃N (10 μ l, 0.070 mmol), and CH₂Cl₂ (0.5 ml) at 0 °C. The mixture was stirred for 2 h at rt. The reaction was quenched with H₂O, and the organic solvent was evaporated. The mixture was purified by F-SPE (80% MeOH/H₂O-AcOEt) using perfluorinated silica gel to afford 13.8 mg (92%) of **23** as a solid; ¹H NMR (CDCl₃, 500 MHz) δ 8.42-8.60 (1H, m), 8.57 (1H, s), 8.43-8.45 (1H, s), 8.39 (1H, s), 7.96 (1H, d, *J* = 8.0 Hz), 7.86-7.88 (2H, m), 7.68 (1H, t, *J* = 8.0 Hz), 7.58-7.61 (2H, m), 7.52-7.55 (3H, m), 7.45-7.47 (2H, m), 7.38-7.40 (2H, m), 7.26-7.29 (2H, m), 5.86 (2H, s), 4.21 (2H, q, *J* = 7.0 Hz), 4.05 (3H, s), 1.05 (3H, s); EIMS *m/z* (rel intensity) 1024 (M⁺, 100%); HRMS calcd. for C₄₆H₂₉N₄O₄F₁₇ 1024.1917, found 1024.1924.

References

- 1 (a) Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N. *Tetrahedron Lett.* **2002**, *43*, 5649-5651. (b) Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. *Angew. Chem., Int. Ed.* **2002**, *41*, 3056-3058.
- 2 Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 13179-13184.