Metric engineering of supramolecular borromean rings \dagger

Rosalba Liantonio, ${ }^{a}$ Pierangelo Metrangolo, ${ }^{* a}$ Franck Meyer, ${ }^{a}$ Tullio Pilati, ${ }^{b}$ Walter Navarrini ${ }^{a}$ and Giuseppe Resnati* ${ }^{\alpha}$
${ }^{a}$ NFMLab - DCMIC "G. Natta", Via L. Mancinelli 7, 20131 Milan and Polo di Como, Via Castelnuovo 7, 22100 Como, Polytechnic of Milan, Italy.
Fax: +39 022399 3080; Tel: +39 022399 3032; (G. R.), 3041 (P. M.);
E-mails: pierangelo.metrangolo@polimi.it; giuseppe.resnati@polimi.it;
Web-site: http://nfmlab.chem.polimi.it
${ }^{b}$ C.N.R.-Institute of Molecular Sciences and Technologies; University of Milan; Via C. Golgi 19; 20133 Milan, Italy.

Electronic Supplementary Information

Experimental Methods

General. IR spectra were recorded with a Perkin-Elmer 2000 FT-IR spectrophotometer. Melting points were established with a Reichert instrument. Commercially available chemicals were used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker ADV 500 spectrometer at $25{ }^{\circ} \mathrm{C}$. TMS and CFCl_{3} were used as internal standards. Chemicals were purchased from Sigma-Aldrich and Apollo Scientific.

X-ray diffraction analysis. X-ray structures at room temperature were determined using a Bruker P4 diffractometer.X-ray structures at low temperature were determined using a Bruker SMART-APEX CCDC area detector diffractometer, equipped with a Bruker KRIOFLEX low temperature devices able to work until 90 K with a thermal stability of $\pm 0.5 \mathrm{~K}$.

General procedure for the synthesis of the complexes 7 and 9: Complexes 7 and $\mathbf{9}$ were obtained by dissolving, in a vial of clear borosilicate glass and at room temperature, the three starting materials 1, $\mathbf{2}$ and $\mathbf{3}$ or $\mathbf{5}$ in a 1:1:1.5 ratio, respectively. Ethanol was used as solvent. The open vial was closed in a cylindrical wide-mouth bottle containing vaseline oil. The solvent was allowed to diffuse at low temperature for $\mathbf{3}$ and at room temperature for 5. After a period ranging from three to five days colorless crystals were isolated.

7: Mp (ethanol) 127-130 ${ }^{\circ} \mathrm{C}$ (dec.); FT IR ($\mathbf{K B r} / \mathrm{v} / \mathbf{c m}^{-1}$, selected bands): 2974(m), 280(m), 1487(w), 1447(w), 1364(m), 1355(m), 1301(m), 1135(s), 1105(vs), 1087(vs), 706(s), 691(s). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 0,046 \mathrm{M}\right): \delta 2.58(\mathrm{t}, 12 \mathrm{H}), 3,57(\mathrm{t}, 12 \mathrm{H}), 3,64(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 0,069 \mathrm{M}\right): \delta$ -53. 65 ($\mathrm{s}, 4 \mathrm{~F}$).

9: Mp (ethanol) $107-110{ }^{\circ} \mathrm{C}$ (dec.); FT IR ($\mathbf{K B r} / \mathrm{v} / \mathbf{c m}^{-1}$, selected bands): 2969(m), 2890(s), 2830(m), 1485 (w), 1448(m), 1364(s), 1209(vs), 1146(vs), 1106(vs), 1085(vs), 947(s), 832(w), 586(m). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 0.028 \mathrm{M}$): $\delta 2.58(\mathrm{t}, 12 \mathrm{H}), 3,57(\mathrm{t}, 12 \mathrm{H}), 3,64(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 0.041 M): $\delta-61.37$ (br s, 4F), $-114,25$ (br s, 4F), $-121,98$ (br s, 4F).

Figure S1: Complex 7: Projection along the c axis (A) and along the b axis (B) of one fluorinated weave showing how it shapes up as an "eggs tray" where supercationic "eggs", namely K.2.2.2. $\subset \mathrm{K}^{+}$ions, are accommodated (only two supercationic "eggs" are represented here). Supercations K.2.2.2. $\subset \mathrm{K}^{+}$are represented only by K^{+}. The height of the tray corresponds to the fluorous layer thickness, namely to the separation between the two triangles defined by the alternating I^{-}(see text, Fig. 1). This height is 9.638 Å. Colours are as follows: K^{+}blue, I- light brown, I violet, F green, C gray.

Figure S2: Complex 8: Projection along the c axis (A) and along the b axis (B) of one fluorinated weave. The close similarity with the packing of 7 is apparent. The (6,3) network forms an "eggs tray" where supercationic "eggs", namely K.2.2.2. $\subset \mathrm{K}^{+}$ions, are accommodated (only two supercationic "eggs" are represented here). Supercations K.2.2.2. $\subset \mathrm{K}^{+}$are represented only by K^{+}. The starting module $\mathbf{4}$ being longer than $\mathbf{3}$, the height of the tray (corresponding to the fluorous layer thickness, namely to the separation between the two triangles defined by the alternating I^{-}, see text, Fig. 1), is $10.207 \AA$, namely greater than in 7. Colours are as in Figure 1S.

Figure S3: Complex 9: Projection along the c axis (A) and along the b axis (B) of one fluorinated weave. The similarity of this packing with $\mathbf{7}$ and $\mathbf{8}$ is apparent. The three interpenetrated $(6,3)$ networks of a fluorinated layer form an "eggs tray" where K.2.2.2. $\subset \mathrm{K}^{+}$ions are accommodated (only two supercationic "eggs" are represented here). Supercations K.2.2.2. \subset K^{+}are represented only by K^{+}. The starting module 5 being longer than $\mathbf{4}$ and 3 , the height of the tray (corresponding to the fluorous layer thickness, namely to the separation between the two triangles defined by the alternating I^{-}, see text, Fig. 1), is $12.384 \AA$, namely greater than in $\mathbf{8}$ and 7 . Colours are as in Figure S1.

Figure S4: Complex 10: Projection along the c axis (A) and along the b axis (B) of one fluorinated weave. The close similarity with 7,8 and even more with $\mathbf{9}$ is apparent. The three interpenetrated $(6,3)$ networks of a fluorinated layer form an "eggs tray" where K.2.2.2. $\subset \mathrm{K}^{+}$ions are accommodated (only two supercationic "eggs" are represented here). Supercations K.2.2.2. $\subset \mathrm{K}^{+}$are represented only by K^{+}. The starting module $\mathbf{6}$ being the longest among the studied diiodoPFAs 3-6, the height of the tray (corresponding to the fluorous layer thickness, namely to the separation between the two triangles defined by the alternating I^{-}, see text, Fig. 1), is $15.529 \AA$, namely the greatest in series. Colours are as in Figure S1.

Figure S5: Complex 7: The supercation $\mathrm{K} .2 .2 .2 . \subset \mathrm{K}^{+}$, here represented only by K^{+}, and its surrounding poliiodide anion. The fluorine atoms are omitted and only one of the two disordered models of $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{I}_{2}$ molecules are shown. The six iodide anions around the cation are the vertices of a trigonal prism having basal edge and height of 11.748 and $4.534 \AA$, respectively (this height correspond to the thicknesses of the cation layers). The anions form a vessel closed at the bottom by another iodide anion. A) Side view; B) View from the top (along the c^{*} axis); C) View from the bottom. Colours as in Figure 1S.

Figure S6: Compound 8: The supercation $\mathrm{K} .2 .2 .2 . \subset \mathrm{K}^{+}$(represented only by K^{+}) and its surrounding poliiodide anion. A) Side view; B) View from the top (along the c^{*} axis); C) View from the bottom. The six iodide ions around the cation are the vertices of a deformed trigonal prism having basal edge and height of 11.740-11.775 and $4.702 \AA$, respectively (this height correspond to the thicknesses of the cation layers). As in 7, the anions form partially opened vessels.

Figure S7: Compound 9: The supercation K.2.2.2. $\subset \mathrm{K}^{+}$(represented only by K^{+}) and its surrounding poliiodide anion. A) Side view; B) View from the top. The six iodide anions around the cation are the vertices of a trigonal prism having basal edge and height of 11.861 and $4.935 \AA$, respectively (this height correspond to the thicknesses of the cation layers). In this structure the anionic capsule is formed by two equivalent holes, each one defined by $\mathrm{C}_{6} \mathrm{~F}_{12} \mathrm{I}_{2}$ molecules of three different, not linked each other, poliiodide networks. The particularly close structural similarity of compounds $\mathbf{9}$ and $\mathbf{1 0}$ is confirmed by the fact that they crystallize in the same space group ($\mathrm{P}-3$) with a variation of the c axis dependent of the diiodoperfluorocabon chain length (17.719 and $20.294 \AA$ for 9 and 10, respectively).

Figure S8: Compound 10: The supercation $\mathrm{K} .2 .2 .2 . \subset \mathrm{K}^{+}$(represented only by K^{+}) and its surrounding poliiodide anion. A) Side view; B) View from the top. The six iodide anions around the cation are the vertices of a trigonal prism having basal edge and height of 11.828 and $4.136 \AA$, respectively (this height correspond to the thicknesses of the cation layers). The anionic shell is similar to 9 , but here the two valves are closer.

