Supplementary Information

GaCl₃ Assisted [2+3] Cycloaddition: A Route to Tetrazaphospholes

Peter Mayer, Axel Schulz*, and Alexander Villinger

Experimental Section

General Remarks. Solvents were freshly distilled, dried, and stored under argon. NMR: JEOL Eclipse 400 (¹H, ¹³C chemical shifts refer to $\delta_{TMS} = 0.00$; ³¹P to $\delta_{H3PO4(85\%)} = 0.00$). Raman: Perkin-Elmer Spectrum 2000R NIR FT equipped with a Nd:YAG laser (1064nm). CHN analyses: Analysator Elementar Vario EL. MS: JEOL MStation JMS 700. Melting points are uncorrected (Büchi B540). Aryl-N=P-Cl (aryl = Mes* = 2,4,6-*t*Bu₃C₆H₂),¹ were prepared according to the procedure given in the literature and can be prepared in large quantities.

Synthesis of **3**: A solution of TMS-N₃ (0.115 g, 1.0 mmol) in benzene (10mL) was added dropwise to a stirred solution of Mes*NPCl (0.326 g, 1.0 mmol) in benzene (10mL) at 5 °C. To the red solution, GaCl₃ (0.194 g, 1.1 mmol) in benzene (20 mL) was quickly added via syringe resulting in a colourless solution. Removal of the solvent in vacuo vielded 3 as fine, colourless, needlelike crystals, yield 0.498 g, 0.98 mmol, 98%; mp 145-150 °C (dec.); anal. calcd. % (found): C 42.52 (42.06), H 5.75 (5.35), N 11.02 (10.61); Raman: 2969 (87), 2911 (81), 2788 (14), 2717 (16), 1597 (49), 1466 (52), 1446 (52), 1397 (29), 1366 (30), 1290 (40), 1257 (42), 1201 (45), 1178 (37), 1148 (40), 1044 (27), 989 (23), 924 (33), 822 (64), 778 (28), 755 (29), 693 (69), 651 (26), 573 (38), 476 (34), 414 (46), 402 (46), 362 (100), 287 (41), 265 (50), 254 (51), 202 (41), 145 (25); NMR (CD₂Cl₂): ¹H 1.05 (s, 18H), 1.37 (s, 9H), 7.66 (s, 2H); ¹³C{¹H} 30.9 (s, C9(CH₃)₃), 32.9 (d, ${}^{5}J_{CP} = 3.8$ Hz, C5 (*C*H₃)₃), 35.4 (s, C9), 37.0 (s, C5), 124.8 (s, C3), 127.9 (d, ${}^{2}J_{PC} = 6.9$ Hz, C2), 147.1 (d, ${}^{3}J_{PC} = 3.1$ Hz, C1), 154.6 (s, C4); ${}^{31}P{}^{1}H{}$ 226.7 (s); ${}^{31}P$ MAS NMR (25 °C, $\omega_{rot} = 15$ kHz): δ_{iso} 223 (s); m/z (%): 332 (0.3) [2]⁺, 287 (0.8) [2-NP]⁺, 261 (4.0) [Mes*NH₂]⁺, 259 (4.6) $[Mes^{+}Me]^{+}$, 258 (7.9) $[2-N_{3}P]^{+}$, 246 (11.9) $[Mes^{+}]^{+}$, 245 (7.3) $[Mes^{+}-H]^{+}$, 244 (37.8) $[Mes^{+}-2]^{+}$ H_{1}^{+} , 228 (1.8), 202 (2.1) $[Mes^{*}-C_{3}H_{5}]^{+}$, 188 (4.4) $[Mes^{*}-^{t}Bu]^{+}$, 132 (6.4) $[Mes^{*}-2 H_{1}^{+}]^{+}$, 56 (16.4) [^tBu]⁺, 41 (30.8) [C₃H₅]⁺, 39 (10.4) [C₃H₃]⁺, 36 (4.9) [HC1]⁺, 28 (100) [N₂]⁺. Crystals suitable for x-ray diffraction analysis were obtained by dissolving 3 in a minimum dichloromethane at RT and cooling to -5 °C for 12 h. Details of the X-ray data sets is given in Table S1. (*Note:* The ^tBu groups are strongly disordered).

Crystallographic Details

	3
formula	$N_4P_1Ga_1Cl_3C_{18}H_{29}$
Fw	508.5
crystal system	monoclinic
space group	$P2_1/m$ (No. 11)
a, Å	6.0103(2)
b, Å	14.8760(4)
<i>c</i> , Å	13.4368(4)
α,deg.	90
β ,deg.	92.2260(13)
y,deg.	90
$V_{\rm A} \dot{A}^3$	1200.47(6)
Z	2
$\rho_{\text{calc.}}$ g cm ⁻³	1.407
μ , mm ⁻¹	1.557
$\lambda_{MoKlpha}$, Å	0.71073
<i>Т</i> , К	200
reflns. collected	22291
independent reflns.	2857
obsd. reflns.	2213
R _{int}	0.119
<i>F</i> (000)	888
R_1^{a}	0.048
wR_2^{b}	0.124
GooF	1.09
no. parameters/restraints	150
CCDC #	292917

 Table S1. Crystallographic Data of 3.

^a final R [$I > 2\sigma(I)$], ^b R indices (all data)

Table S2.	Selected bond	distances (Å)
C - C11	2.14((1))	

Ga-Cl1	2.146(1)
Ga-Cl2	2.136(1)
Ga-N1	1.992(4)
P-N1	1.631(4)
P-N4	1.664(3)
N1-N2	1.374(5)
N2-N3	1.286(5)
N3-N4	1.355(5)
N4-C1	1.460(5)
C1-C2	1.404(3)
C2-C3	1.398(4)
C2-C5	1.559(4)
C3-C4	1.385(4)
C4-C9	1.535(6)
C5-C6	1.539(9)

Cl1-Ga-Cl2	114.28(3)
Cl1-Ga-N1	101.9(1)
Cl1-Ga-Cl2	114.28(3)
Cl2-Ga-N1	105.00(6)
Cl2-Ga-Cl2	114.56(6)
Cl2 ⁱ -Ga-N1	105.00(6)
N1-P-N4	88.2(2)
Ga-N1-P	129.7(2)
Ga-N1-N2	116.1(3)
P-N1-N2	114.43(3)
N1-N2-N3	111.8(4)
N2-N3-N4	111.5(3)
P-N4-N3	114.2(3)
P-N4-C1	128.0(3)
N3-N4-C1	117.8(3)
N4-C1-C2	118.06(18)
N4-C1-C2	118.0 (2)
C2-C1-C2 ⁱ	123.9(3)
C1-C2-C3	115.9(3)

 Table S3. Selected bond angles (°)

Comparison between Experiment and Theory (³¹P NMR, Structure, Frequency, Bonding)

Computational Details. Our goal was to compare the structures and energetics of different GaCl₃ adducts and isomers of the tretraazaphosphole. Therefore it was important to carry out the calculations in such a way that the results could be compared reliably with each other. The structural and vibrational data of all monomeric and dimeric species and adducts were calculated by using the hybrid density functional theory (B3LYP) with the program package Gaussian 98.² A 6-31G(d,p) standard basis set was applied for all atoms, except for gallium, for which a multielectron adjusted quasirelativistic effective core potentials (ECP28MWB) of the Stuttgart group with the following electronic configuration Ga: [Ar]d¹⁰ was used.³ For Ga a (5s5p1d)/[3s3p1d] valence basis set (311,311,1) was utilized (d-functions with the coefficient = 0.207). All stationary points were characterized as minima by a frequency analysis. Frequency data can be obtained from Tables S6, and all energy data are given in Tables S5. NMR data were calculated utilizing the GIAO method and are summarized in Table S4.

NBO analyses⁴ and MO analyses were carried out to investigate the bonding in all molecules at the B3LYP level utilizing the optimized B3LYP geometry. The NBO data can be obtained from the authors.

5

Table S4 NMR shifts Computed NMR shifts:

$\delta_{\text{Subst.}} = \sigma_{\text{iso./H3PO4.}} - \sigma_{\text{iso./Subst.}}$ with	$\delta H_3 PO_4 = 328.35 \text{ ppm (B3LYP, GIAO).}^{\circ}$
---	---

Species	$\sigma_{iso} P$	δ P [ppm]	Experimental value in solution [ppm]
2	84.9	243.5	245.1
$3(2+GaCl_3)$	98.9	229.5	228.8 (benzene), 226.7 (CH ₂ Cl ₂)

					CI		
			R*-		 ^{Ga} ;////Cl ^{R*} —	-N P	≈ _N
				\setminus /	CI	\	/
u.]	E(298) [a.u.]	H(298) [a.u.]	G(298) [a.u.]	N		N===	N ⊕∖⊖ "∖\Cl
19180	-1382.813402	-1382.812458	-1382.850241	av_pn4_ga_2			Ga Cl
78776	-1263.254116	-1263.253171	-1263.331055	P	、		ĊI
78154	-1263.253669	-1263.252725	-1263.330363	R*N	Ň	av_pn4	_ga
10550	2646 000220	2646 070275	2646 170205	\backslash			
12550	-2646.080320	-2646.079375	-2646.179385	N===	N O		Ga
10082	-2040.080212	-2040.079207	-2040.1/0014				
78348	-2646 045521	-2646 044576	-2646 146750		Sa N		Ŕ
99019	-2646 066830	-2646 065885	-2646 162705			*F	RN ∕ ♥N
//01/	2010.000050	2010.000000	2010.102703				$\langle \rangle$
				av	pn4 ga b2		N=N
	ΔΕ(298)	ΔH(298)	ΔG(298)	-			
ı.u.]	[a.u.]	[a.u.]	[a.u.]	$\Delta G(298)$ [kcal/mol]		_	av_pn4_ga_3
06522	0.00(514	0.00(515	0.005000	2 225172	*R-	∕ ^P ∕⊕	
06532	0.006514	0.006515	0.005299	3.3251/3	N N	ŇH	
00082	0.000022	0.000023	0.003870	0.00000	\	/	4
10734	0.000000	0.000000	0.000000	0.000000	Ň	—_Ń	av_pn4_ga_4
20063	0.020004	0.020005	0.021979	13 792032	æ		
20003	0.020004	0.020003	0.021979	15.792032			
					CI- O	''''Cl	\sim $<$
21126	-0.019316	-0.020261	-0.003388	-2.126002		CI	Int
21748	-0.019763	-0.020707	-0.004080	-2.560239			
						\mathcal{I}	
					•		N
							N-

Table S5		_			
Thermodynamics					
B3LYP/6-31G(d,p)					
species	E(tot) [a.u.]	E(0) [a.u.]	E(298) [a.u.]	H(298) [a.u.]	G(298) [a.
GaCl3	-1382.822872	-1382.819180	-1382.813402	-1382.812458	-1382.850
pn4	-1263.728230	-1263.278776	-1263.254116	-1263.253171	-1263.331
pn4_b	-1263.728136	-1263.278154	-1263.253669	-1263.252725	-1263.330
pn4_ga	-2646.567612	-2646.112550	-2646.080320	-2646.079375	-2646.179
pn4_ga_b2	-2646.567536	-2646.112400	-2646.080212	-2646.079267	-2646.178
pn4_ga_2	-2646.573808	-2646.119082	-2646.086834	-2646.085890	-2646.184
pn4_ga_3	-2646.532213	-2646.078348	-2646.045521	-2646.044576	-2646.146
pn4_ga_4	-2646.553874	-2646.099019	-2646.066830	-2646.065885	-2646.162

			$\Delta L(290)$	$\Delta II(290)$	$\Delta O(290)$	
Erel (isomers)	$\Delta E(tot) [a.u.]$	$\Delta E(0)$ [a.u.]	[a.u.]	[a.u.]	[a.u.]	$\Delta G(298)$ [kcal/mol]
pn4_ga	0.006196	0.006532	0.006514	0.006515	0.005299	3.325173
pn4_ga_b2	0.006272	0.006682	0.006622	0.006623	0.005870	3.683481
pn4_ga_2	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
pn4_ga_3	0.041596	0.040734	0.041313	0.041314	0.037934	23.803947
pn4_ga_4	0.019934	0.020063	0.020004	0.020005	0.021979	13.792032
$\Delta E(adduct formation)$	-0.022706	-0.021126	-0.019316	-0.020261	-0.003388	-2.126002
	-0.022800	-0.021748	-0.019763	-0.020707	-0.004080	-2.560239

 $\mathbf{R}^* = 2,4,6-tBu_3C_6H_2$

av_pn4_b

Table S6. 1	Frequency Anal	ysis of av	_pn4_	_ga_	2
$(R^* = 2.4.6)$	-tri- <i>tert</i> -butylpl	nenvl):			

_

(, .,		
symmetry	frequency	IR intensity
A	13.1779	0.0151
А	17.7840	17.7840
A	20 2901	0 5031
Δ	29 2732	0.0248
Λ	50.8742	0.6710
л л	55 4777	0.0719
A	55.4777	0.0000
A	61.1984	0.3593
A	65.3323	0.0014
А	86.2991	1.3081
A	88.1741	1.9862
А	112.9581	2.0680
А	116.5806	0.5659
А	119.8694	6.0754
А	133.4686	0.2554
А	135.0440	4.7861
А	146.2520	1.4467
А	155 0832	26 9120
Δ	171 2529	2 4945
Δ	174 0966	36 1546
Λ	105 3677	3 9657
л л	221 6044	0.1097
A	221.0944	0.1067
A	225.8158	0.5430
A	234.9702	1.3058
A	241.7889	2.3175
A	249.3685	0.0977
A	254.9029	4.1826
А	257.5000	10.2516
А	261.2000	0.0763
А	278.0257	0.5061
А	295.0059	0.4814
А	297.8019	1.4920
А	307.2819	1.2978
А	314 8729	2 8061
A	331 7813	0.0652
A	334 7801	26 7889
Δ	337 9698	0.0128
A .	3/3 7603	0.3628
	255 5780	0.3028
	256 5120	0.1910
A	290.1927	0.0373
A	380.1827	0.0769
A	388.3100	61./863
A	392.4013	23.3087
A	399.2414	0.8781
A	403.1103	1.5971
А	408.5914	83.1959
А	424.4780	0.4251
А	430.7796	0.5596
А	476.6326	0.6560
А	484.3474	3.6564
А	498,9448	18.3635
А	523 2971	9 9310
Ā	556 8034	2 1411
Δ	574 8331	0 2517
Λ	587 2/20	6 2650
	J01.J4JY 626 7607	0.2030
Λ Λ	030.7027	0.01/9
A	030.03/4	1.3242
A	662.5492	6./448
A	697.7903	29.1243
А	704.9161	0.0228

av_pn4_ga_2

A	757.7065	0.1320
A	767.6146	5.7282
A	787.8411	6.3192
A	820.4857	32.9128
A	826.0944	5.7343
A	889.2271	7.2242
A	904.9358	6.4788
A	911.9676	1.5070
A	921.1947	0.0872
A	930.1782	2.0594
A	930.8577	0.7125
A	935.4764	2.5273
A	938.9272	0.1163
A	939.1889	2.0786
A	944.2454	1.6565
А	962.5071	0.8674
A	962.6055	0.3313
A	964.6761	0.2308
А	1004.1341	38.2546
A	1025.0549	9.4578
А	1043.4861	0.8058
А	1046.8456	0.8336
A	1048.0833	0.4130
А	1049.1836	1.0528
А	1052.5411	0.5435
А	1053.3479	0.1261
А	1056.8376	0.5034
А	1076.8247	109.6404
A	1153.6004	9.3872
A	1181.0718	0.9012
A	1211.0812	0.2637
A	1226.6879	2.2297
A	1227.0561	1.1986
A	1231.1244	4.7950
A	1232.0944	2.1817
A	1232.4062	1.6061
A	1243.8069	32.4915
A	1263.0306	47.1378
A	1281.4118	3.4817
A	1300.1961	3.4642
A	1305.7881	18.9142
A	1312.9391	7.6748
A	1378.1411	1.1614
A	1409.3701	1.8956
A	1410.0755	2.8541
A	1411.6729	4.9181
A	1412.9575	3.7451
A	1416.4344	11.9773
A	1416.7784	0.8772
A	1444.8193	5.8902
A	1448.3093	3.2958
A	1448.7627	0.2067
A	1458.8828	20.4865
A	1462.1315	21.6000
A	1492.1975	0.5229
A	1492.6248	0.0255
A	1495.0545	0.0131
A	1496.2897	2.9114
A	1497.2543	2.1898
A	1498.4172	0.0114
A	1503.5069	0.0950
A	1504.2342	1.6251

A	1505.7456	1.1435
A	1517.6252	6.7408
A	1519.2056	5.9027
A	1519.4947	0.9323
A	1521.1374	5.1849
A	1524.1480	8.4132
A	1524.7953	7.5234
А	1534.4548	11.8371
A	1543.1756	11.4439
А	1543.7200	4.2812
A	1609.0571	10.8108
А	1644.3172	40.4112
А	3041.7671	22.3596
A	3042.6297	22.1482
A	3045.5781	12.5541
A	3045.9798	34.2781
A	3049.4259	18.1211
A	3052.3118	10.0530
A	3052.7436	12.2792
A	3070.0403	12.4317
A	3070.2368	17.5577
A	3113.0783	0.1952
A	3114.0438	2.4283
A	3115.1318	56.7441
A	3115.5046	17.9102
A	3115.8214	30.6690
A	3120.4737	1.4418
A	3120.5523	0.6003
A	3121.1337	25.5806
A	3121.8826	99.9746
A	3123.8447	40.4370
A	3125.2714	2.3124
A	3125.7978	69.0324
A	3127.3248	10.8221
A	3127.7648	18.2070
A	3135.0823	90.8559
A	3135.4081	3.2936
A	3163.9546	8.7324
A	3164.9532	40.4223
A	3263.8101	5.0376
A	3290.4647	1.0672

References

- (1) (a) G. David, E. Niecke, M. Nieger, M.; V. von der Gönna, W. W. Schoeller, *Chem. Ber.*, 1993, 126, 1513–1517; (b) E. Niecke, M. Nieger, F. Reichert, *Angew. Chem.* 1988, 100, 1781–1782. (c) N. Burford, J. A. C. Clyburne, P. Losier, T. M. Parks, In *Handbuch der Präparativen Anorganischen Chemie*, 4th ed., Engl.; Karsch, H. H. Ed.; Thieme-Verlag: Stuttgart.
- (2) Gaussian 98, Revision A.6, Gaussian Inc.: Pittsburgh PA, 1998.
- (3) (a) A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.*, 1993, 80, 1431; (b) T. Leininger, A. Berning, A. Nicklass, H. Stoll, H. Werner, H.-J. Flad, *Chem. Phys.*, 1997, 217, 19.
- (4) NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold
- (5) C. J. Jameson, A. De Dios, A. K. Jameson, Chem. Phys. Lett., 1990, 176, 575–582.