New Directions for the Morita-Baylis-Hillman Reaction; Homologous Aldol Adducts via Epoxide Opening

Marie E. Kraff** and James A. Wright
Department of Chemistry and Biochemistry Florida State University
Tallahassee, Florida, 32306
Fax: 850-644-7409
E-mail: mek@chem.fsu.edu

Experimental Section

All reactions were carried out in oven-dried glassware under a positive pressure of argon. Concentration of solutions was accomplished using a Buchi rotary evaporator with a water aspirator followed by removal of residual solvents on a vacuum line held at $0.1-1$ torr. Unless otherwise noted, all reagents and solvents were used without additional purification.

Analytical thin layer chromatography (TLC) was performed on Merck precoated silica gel $60 \mathrm{~F}_{254}$ glass plates. Visualization on TLC was achieved by use of UV light (254 nm), and exposure to basic potassium permanganate or acidic anisaldehyde solution, followed by heating. Flash column chromatography was carried out using Merck 60, 230-400 mesh ASTM silica gel. When needed, additional purification was achieved through use of a CombiFlash Graduate Medium Pressure LC unit.

Proton nuclear magnetic resonance spectroscopy (${ }^{1} \mathrm{H}$ NMR) was recorded on a Varian Fourier Transform $500(500 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in units, parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform $-d$. The following abbreviations are used to describe peak patterns where appropriate: $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet. Coupling constants, J, are reported in Hertz (Hz).

Carbon-13 nuclear magnetic resonance spectroscopy (${ }^{13} \mathrm{C}$ NMR) was recorded on a Varian Fourier Transform 300 (75 MHz) and was fully decoupled by broad-band decoupling. Chemical shifts are reported in ppm with the centerline of the triplet for chloroform- d set at 77.0 ppm .

Infrared (IR) spectra were recorded as thin films on sodium chloride plates using a Perkin-Elmer FT-IR Paragon 1000 Fourier Transform spectrometer with frequencies given in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.

Mass spectra were obtained on a Jeol model JMS600H mass spectrometer (70 eV).
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
Elemental analyses were performed at Atlantic Microlab Inc. in Norcross, GA.
Compound 7^{1} has been previously reported. All compounds isolated and characterized were colorless oils.

Typical cross-metathesis procedure: To a solution of methyl vinyl ketone ($2.8 \mathrm{~g}, 40$ mmol), 1,2-epoxy-5-hexene ($3.9 \mathrm{~g}, 40 \mathrm{mmol}$) and methylene chloride (120 mL) was added 849 mg of Grubbs 2nd generation catalyst (1 mmol). The reaction mixture was then refluxed under argon for 18 hours. Upon completion of the reaction, the methylene chloride was removed in vacuo and the mixture was passed through a short plug of silica gel with 50% ethyl acetate in hexanes. Subsequent column chromatography using 50% ethyl acetate in hexanes provided a brown oil. A distillation under reduced pressure (0.1 mm Hg) at $150^{\circ} \mathrm{C}$ (bath temperature) afforded $3.25 \mathrm{~g}(58 \%)$ of epoxide $\mathbf{1 0}$ as a colorless oil.

Typical epoxidation procedure: To a solution of nona-3,7-dien-2-one (2.7 g, 19.5 mmol) in methylene chloride (65 mL) was added MCPBA ($4.8 \mathrm{~g}, 19.5 \mathrm{mmol}$). The reaction mixture continued to stir at room temperature for 12 hours. Upon completion of the reaction, the mixture was diluted with methylene chloride, washed with a solution of saturated sodium bisulfite and then with 1 M sodium hydroxide, dried over MgSO_{4}, and filtered through a short pad of Celite. Subsequent purification by column chromatography using 25% ethyl acetate in hexanes provided $2.46 \mathrm{~g}(82 \%)$ of epoxide 4 as a colorless oil.

Typical epoxide-opening procedure: To a solution containing epoxide 20 (100 mg , 0.59 mmol) in 24 mL of tert-butanol was added trimethylphosphine ($0.05 \mathrm{~mL}, 0.59$ $\mathrm{mmol})$. The reaction mixture continued to stir at room temperature under an argon atmosphere for 18 hours. Subsequent removal of a majority of the tert-butanol in vacuo and purification by column chromatography, using 25% ethyl acetate in methylene chloride, yielded 76 mg (76%) of cyclohexenone alcohol 21 as a viscous colorless oil.

Nona-3,7-dien-2-one: 1-triphenyl-phosphoranylidene-2-propanone ($9.7 \mathrm{~g}, 30.5 \mathrm{mmol}$) was added to a solution of 4-hexenal ${ }^{2}(3.0 \mathrm{~g}, 30.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The reaction mixture was refluxed under argon for 16 hours. Upon completion of the reaction, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo. The crude material was washed with pentane and filtered through a short pad of Celite. Purification by column chromatography using 9% ethyl acetate in hexanes afforded $3.16 \mathrm{~g}(75 \%)$ of nona-3,7-dien-2-one as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.79(\mathrm{dt}, J=16.1,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.52(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{ddt}, J=6.6,1.5,7.3$

[^0]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
$\mathrm{Hz}, 2 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.16 \mathrm{ddt}, J=6.6,1.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{dt}, J=5.1,1.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 198.10,147.42,131.16,129.22,125.80,32.09,30.73$, 26.44, 17.52. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3024, 2919, 2854, 1698, 1678, 1627, 1436, 1360, 1253, 968. HRMS (CI+) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}: 139.11230$, Found: 139.11197. Anal. Calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: C, $77.91 ; \mathrm{H}, 10.29$.

Epoxide 4: Epoxide 4 was prepared by the typical epoxidation procedure using nona-3,7-dien-2-one (82% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 6.81$ (dt, $J=16.1,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{dt}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dq}, J=2.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=6.6$, $4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{dddd}, J=13.2,8.8,7.3,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 197.75$, $146.45,131.16,58.19,54.01,30.06,28.46,26.38,17.06$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 2982,2927$, 1697, 1674, 1627, 1434, 1362, 1255, 981. HRMS (CI+) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$: 155.1072, Found: 155.1064. Anal. Calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 70.10; H, 9.15. Found: C, 69.97; H, 9.16 .

1-Phenyl-octa-2,6-dien-1-one ${ }^{3}$: Phenylcarbonylmethylenetriphenylphosphorane ${ }^{4}$ (9.7 g , 30.5 mmol) was added to a solution of 4-hexenal ($5.0 \mathrm{~g}, 50.9 \mathrm{mmol}$) in THF (200 mL). The reaction mixture was refluxed under argon for 16 hours. Upon completion of the reaction, the THF was removed in vacuo. The crude material was washed with pentane and filtered through a short pad of Celite. Purification by column chromatography using 6% ethyl acetate in hexanes afforded $7.3 \mathrm{~g}(72 \%)$ of 1-phenyl-octa-2,6-dien-1-one as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.89-7.94(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H$), 7.52-$ $7.58(\mathrm{~m}, 1 \mathrm{H}$, Aromatic H), 7.43-7.49 (m, 2H, Aromatic H), 7.04 (dt, $J=15.4,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (dt, $J=15.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.55(\mathrm{~m}, 2 \mathrm{H}), 2.38$ (ddd, $J=6.8,1.5,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22(\mathrm{dt}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dd}, J=6.1,1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): ~ \delta 190.12,148.69,137.58,132.18,129.33,128.12,128.09,125.68,32.36,30.79$, 17.51. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3058, 3025, 2917, 2853, 1668, 1651, 1621, 1598, 1579, 1447, 1350, 1284, 1227, 1179, 1019, 1002, 967. HRMS (EI+) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: 200.12012$, Found: 200.11996. Anal. Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 83.96$; $\mathrm{H}, 8.05$. Found: C, 83.84; H, 8.10.

[^1]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006

Epoxide 5: Epoxide 5 was prepared by the typical epoxidation procedure with 1-phenyl-octa-2,6-dien-1-one (78% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 7.91-7.95(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 7.53-7.59 (m, 1H, Aromatic H), 7.44-7.50 (m, 2H, Aromatic H), $7.06(\mathrm{dt}, J$ $=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dq}, J=2.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (ddd, $J=6.6,4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (dddd, $J=13.2,8.8,7.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 189.78$, 147.67, 137.30, 132.22, 128.06, 128.01, 125.81, 58.20, 54.04, 30.16, 28.72, 17.08. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3058,2982,2926,1668,1651,1621,1597,1578,1447,1380,1345,1287$, 1225, 1180, 1020, 983. HRMS (EI+) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: 216.11503, Found: 216.11500. Anal. Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 77.75; H, 7.46. Found: C, 77.51; H, 7.33.

Alcohol 6: (single diastereomer) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta 6.97$ (dd, $J=4.4,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{dq}, J=2.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.48$ (ABdddd, $J_{\mathrm{AB}}=19.8 \mathrm{~Hz}, J=9.5,5.1,2.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (s, 3H), 2.14 (dddd, $J=$ $13.2,9.5,9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (ddt, $J=13.2,9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): ~ \delta 198.95,149.81,145.63,68.98,51.12,32.38,26.91$, 26.08, 18.90. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3418, 3057, 2969, 2929, 2839, 1660, 1651, 1614, 1455, $1428,1372,1290,1205,1128,1077,1056,1000,975$. HRMS (CI+) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$: 155.1072, Found: 155.1066. Anal. Calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 70.10; H, 9.15. Found: C, 70.39; H, 9.12.

Alcohol 9: (single diastereomer) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta 7.73-7.77(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 7.52-7.58 (m, 1H Aromatic H), 7.42-7.48 (m, 2H, Aromatic H), 6.66 (dd, J $=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dq}, J=2.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.67(\mathrm{~m}, 2 \mathrm{H})$, 2.20 (dddd, $J=13.9,9.5,9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddt}, J=13.9,9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.12$ (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 196.07,150.83,144.27,138.70,132.17$, $129.04,128.14,68.72,52.42,32.71,25.59,19.46$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3418,3060,2968$, 1714, 1634, 1574, 1446, 1352, 1289, 1178, 1130, 1077, 1001, 976. HRMS (CI+) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}$: 217.12286, Found: 217.12297. Anal. Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C, $77.75 ; \mathrm{H}$, 7.46. Found: C, 77.55; H, 7.36.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
Epoxide 10: Epoxide 10 was prepared by the typical cross-metathesis procedure using 1,2-epoxy-5-hexene and methyl vinyl ketone (58% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 6.82(\mathrm{dt}, J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dt}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{ddt}, J=7.3,2.9$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=5.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.47(\mathrm{~m}$, 2 H), $2.25(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (dddd, $J=13.2,8.1,6.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 197.52,146.20,131.01,50.73,46.18,30.34,28.24,26.17$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 2994,2925,1697,1674,1627,1431,1362,1255,1201,981$. HRMS (CI+) Calc'd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}: 141.09156$, Found: 141.09158. Anal. Calc'd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54; H, 8.63. Found: C, 68.36; H, 8.75.

Alcohol 11 ${ }^{5}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.89(\mathrm{ddd}, J=5.9,4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dddd, $J=8.1,8.1,5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (ABddd, $J_{\mathrm{AB}}=17.6 \mathrm{~Hz}, J=6.6,2.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49\left(\mathrm{ABm}, J_{\mathrm{AB}}=19.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32$ (partly obscured ABm, $\left.J_{\mathrm{AB}}=19.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (ABddd, $\left.J_{\mathrm{AB}}=17.6 \mathrm{~Hz}, J=6.6,4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.83$ (ddddd, $J=$ $13.2,5.9,5.9,2.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.73(\mathrm{~m}, 1 \mathrm{H})$.

Alcohol 12: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.92(\mathrm{ddd}, J=4.4,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ $\left(\mathrm{ABd}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.53\left(\mathrm{ABd}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.14$ (ddddd, $J=8.0,7.3,5.9,4.4,2.2 \mathrm{~Hz}$), 2.44-2.62 (m, 2H), 2.38 (s, 3H), 2.16 (dddd, $J=$ $13.2,9.5,9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{ddt}, J=13.2,8.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta 199.12,148.98,147.69,66.34,47.28,32.08,27.32,26.98$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$: 3421, 2928, 1703, 1662, 1612, 1430, 1373, 1297, 1256, 1080, 1034. HRMS (CI+) Calc'd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}$: 141.09156, Found: 141.09165. Anal. Calc'd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54 ; H, 8.63. Found: C, 68.36; H, 8.82 .

Epoxide 13: Epoxide $\mathbf{1 3}$ was prepared by the typical cross-metathesis procedure using 1,2-epoxy-5-hexene and 1-phenylbut-2-en-1-one ${ }^{6}$ (55% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.91-7.95(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 7.53-7.59 (m, 1H, Aromatic H), 7.44-7.50 (m, 2 H , Aromatic H), 7.07 (dt, $J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$

[^2]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
(ddt, $J=6.6,2.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.57$ (obscured m, 2 H), 2.53 (obscured dd, $J=4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (dddd, $J=13.9,8.8,6.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.67-1.76 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): δ 190.01, 147.62, 137.42, 132.34, $128.17,128.13,126.02,51.07,46.58,30.70,28.81$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3055,2990,2923$, 1668, 1651, 1621, 1597, 1578, 1447, 1352, 1288, 1224, 1180, 1002, 916. HRMS (CI+) Calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}$: 203.10721, Found: 203.10713. Anal. Calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 77.20; H, 6.98. Found: C, 76.91; H, 6.95.

Alcohol 14: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H$)$, 7.46-7.53 $(\mathrm{m}, 1 \mathrm{H}$, Aromatic H), $7.39-7.44(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 6.58 (ddd, $J=5.6,4.1,1.5 \mathrm{~Hz}$, 1 H), 4.14 (dddd, $J=8.5,8.5,4.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ABddd, $J_{\mathrm{AB}}=15.8 \mathrm{~Hz}, J=4.9,2.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ (ABdddd, $\left.J_{\mathrm{AB}}=19.8 \mathrm{~Hz}, J=8.1,6.1,4.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.29-2.44(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 197.65$, 143.23, 138.32, 135.92, 131.39, 129.04, 127.98, 65.90, 32.77, 29.25, 23.93. IR (NaCl , $\left.\mathrm{cm}^{-1}\right): 3418,3058,2928,1634,1575,1446,1267,1127,1067,1000,958$. HRMS $(\mathrm{FAB}+)$ Calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$: 225.0892, Found: 225.0897. Anal. Calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 77.20; H, 6.98. Found: C, 77.53; H, 6.93.

Alcohol 15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.71-7.76(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H$), 7.52-7.58$ $\left(\mathrm{m}, 1 \mathrm{H}\right.$, Aromatic H), 7.42-7.48 (m, 2H, Aromatic H), 6.63-6.67 (m, 1H), 3.75 (ABd, J_{AB} $=10.7 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70\left(\mathrm{ABd}, J_{\mathrm{AB}}=10.7 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.29-3.38(\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.25$ (dddd, $J=13.2,9.0,9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ (ddt, $J=13.2$, $9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 196.27,150.63,145.83,138.78,132.26$, $129.12,128.22,66.13,48.38,32.55,27.42$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3417,3059,2929,1643$, 1634, 1598, 1576, 1446, 1431, 1351, 1316, 1285, 1179, 1158, 1130, 1075, 1055, 1028, 975. HRMS (CI+) Calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}: 203.10721$, Found: 203.10735. Anal. Calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 77.20; H, 6.98. Found: C, $77.05 ; \mathrm{H}, 6.86$.

2-But-3-enyl-2-methyl-oxirane ${ }^{7}$: This was prepared by the typical epoxidation procedure using 2-methyl-1,5-hexadiene (73% yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$):

[^3]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
$\delta 5.82$ (ddt, $J=16.8,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{ddt}, J=16.8,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=$ $10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62\left(\mathrm{AB}, J_{\mathrm{AB}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.58\left(\mathrm{AB}, J_{\mathrm{AB}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.13-2.20$ (m, 2H), 1.71 (ddd, $J=13.9,8.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=13.9,8.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 137.54,114.35,56.05,53.27,35.58,29.03$, 20.51. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3076, 3040, 2980, 2928, 2858, 1642, 1489, 1450, 1390, 1262, 1108, 1068, 995, 911. HRMS (CI+) Calc'd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}: 113.09665$, Found: 113.09706.

Epoxide 16: Epoxide 16 was prepared by the typical cross-metathesis procedure using 2-but-3-enyl-2-methyl-oxirane and methyl vinyl ketone (62% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 6.79(\mathrm{dt}, J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dt}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63\left(\mathrm{AB}, J_{\mathrm{AB}}=\right.$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60\left(\mathrm{AB}, J_{\mathrm{AB}}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.33(\mathrm{ddt}, J=7.3,1.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 1.75\left(\mathrm{ABt}, J_{\mathrm{AB}}=13.9 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.72\left(\mathrm{ABt}, J_{\mathrm{AB}}=13.9 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 197.08,146.40,130.62,55.28,52.57$, $34.15,27.21,25.92,20.07$. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3039, 2928, 1697, 1674, 1627, 1430, 1391, 1362, 1255, 1190, 981. HRMS (CI+) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$: 155.10721, Found: 155.10757. Anal. Calc'd for ${ }_{9} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 70.10; H, 9.15. Found: C, 69.96 ; H, 9.24.

Alcohol 17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.93(\mathrm{ddd}, J=6.3,3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.40\left(\mathrm{ABm}, J_{\mathrm{AB}}=18.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.24-2.37$ (obscured m, 2H), $2.31(\mathrm{~s}, 3 \mathrm{H})$, 1.72 (dddd, $J=13.2,6.1,4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (ddd, $J=13.2,8.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31$ (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 198.94,139.91,137.42,68.24,37.19,33.78,29.25$, 25.22, 23.93. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3418, 3051, 2966, 2929, 1667, 1651, 1644, 1634, 1428, 1385, 1250, 1204, 1104, 1078, 1022, 959. HRMS (EI+) Calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}: 154.09938$, Found: 154.09941. Anal. Calc'd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 70.10; H, 9.15. Found: C, 69.93; H, 9.05 .

Epoxide 18: Epoxide 18 was prepared by the typical cross-metathesis procedure using 2-but-3-enyl-2-methyl-oxirane and 1-phenylbut-2-en-1-one (48% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.90-7.95(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 7.53-7.59 (m, 1H, Aromatic H), $7.44-7.50(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), $7.05(\mathrm{dt}, J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=15.4,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66\left(\mathrm{AB}, J_{\mathrm{AB}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62\left(\mathrm{AB}, J_{\mathrm{AB}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.40-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 189.95,148.02,137.39$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
132.27, 128.12, 128.08, 125.71, 55.81, 53.20, 34.60, 27.90, 20.52. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$: 3039, 2928, 1668, 1651, 1622, 1598, 1578, 1448, 1390, 1336, 1288, 1222, 1180, 1072, 1002. HRMS (CI +) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}: 217.12286$, Found: 217.12279. Anal. Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 77.75; H, 7.46. Found: C, 77.65; H, 7.48.

Alcohol 19: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H$)$, 7.47-7.52 (m, 1H, Aromatic H), 7.39-7.44 (m, 2H, Aromatic H), 6.59-6.63 (m, 1H), 2.46-2.61 (m, $3 \mathrm{H})$, 2.28-2.37 (m, 1H), 1.73-1.81 (m, 1H), 1.59-1.67 (m, 1H), $1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 197.65,142.78,138.50,136.46,131.42,129.12,128.05,68.42$, $38.17,34.00,29.29,24.06$. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3435, 3057, 2964, 2927, 1637, 1597, 1577, 1446, 1421, 1374, 1277, 1254, 1141, 1107, 1027, 1001, 972. HRMS (CI+) Calc'd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}$: 217.12286, Found: 217.12301. Anal. Calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 77.75 ; \mathrm{H}, 7.46$. Found: C, 77.58; H, 7.32.

Epoxide 20: Epoxide 20 was prepared by the typical cross-metathesis procedure using 2-(1,1-dimethyl-but-3-enyl)-oxirane ${ }^{8}$ and methyl vinyl ketone (64% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.85(\mathrm{dt}, J=16.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}$, $J=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-$ 2.29 (obscured m, 2H), 2.25 (obscured s, 3H), $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 196.92,143.28,132.97,58.12,42.77,42.39,33.46,26.09,22.04$. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): $3053,3002,2965,2932,2876,1697,1673,1627,1473,1430,1405$, 1364, 1255, 1188, 983, 914. HRMS (CI+) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$: 169.12286, Found: 169.12258. Anal. Calc'd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 71.39; H, 9.59. Found: C, $71.24 ; \mathrm{H}, 9.59$.

Alcohol 21: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta 6.80-6.85(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=5.1,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{dm}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.32$ (obscured m, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{dm}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 198.81$, $139.59,136.13,73.03,37.69,33.14,29.54,25.85,25.13,22.54$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3444$, 3050, 2956, 1667, 1651, 1470, 1422, 1392, 1354, 1329, 1255, 1199, 1176, 1133, 1056, 1012, 981. HRMS (CI+) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}: 169.12286$, Found: 169.12257. Anal. Calc'd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 71.39 ; \mathrm{H}, 9.59$. Found: C, $71.42 ; \mathrm{H}, 9.50$.

[^4]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006

Epoxide 22: Epoxide 22 was prepared by the typical cross-metathesis procedure using 2-(1,1-dimethyl-but-3-enyl)-oxirane ${ }^{18}$ and 1-phenylbut-2-en-1-one ${ }^{16}$ (52% yield). ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.91-7.96(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 7.53-7.59 (m, 1H, Aromatic H), $7.44-7.50(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 7.09 (dt, $J=15.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (dt, $J=15.4,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82(\mathrm{dd}, J=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=4.4,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37\left(\mathrm{ABdd}, J_{\mathrm{AB}}=13.9 \mathrm{~Hz}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31\left(\mathrm{ABdd}, J_{\mathrm{AB}}=13.9 \mathrm{~Hz}, J\right.$ $=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 190.15,145.23,137.64$, $132.53,128.42,128.36,58.87,43.72,43.13,34.20,22.91,22.90,22.43$. IR ($\mathrm{NaCl} \mathrm{cm}^{-1}$): 3057, 2965, 2931, 2874, 1668, 1651, 1621, 1598, 1579, 1471, 1448, 1404, 1365, 1348, 1280, 1222, 1180, 1158, 1072, 1011, 983, 914. HRMS (ESI+) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$: 253.12045, Found: 253.12025. Anal. Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 78.23; H, 7.88. Found: C, 78.05; H, 7.92.

Alcohol 23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H$), 7.48-7.56$ $(\mathrm{m}, 1 \mathrm{H}$, Aromatic H), $7.39-7.44(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H), 6.51 (ddd, $J=3.7,2.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70(\mathrm{dd}, J=5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ABdt, $\left.J_{\mathrm{AB}}=18.3 \mathrm{~Hz}, J=2.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.46$ (ABddd, $\left.J_{\mathrm{AB}}=18.3 \mathrm{~Hz}, J=5.9,3.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.29\left(\mathrm{ABdt}, J_{\mathrm{AB}}=19.8 \mathrm{~Hz}, J=2.2,3.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07\left(\mathrm{ABdt}, J_{\mathrm{AB}}=19.8 \mathrm{~Hz}, J=2.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): δ 197.47, 142.56, 138.33, 135.15, 131.39, 129.06, 127.98, $73.072,37.81,33.29,30.44,25.96,22.56$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3458,3058,2957,1633$, 1597, 1577, 1471, 1446, 1422, 1383, 1268, 1200, 1178, 1116, 1057, 982. HRMS (ESI+) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}: 253.12045$, Found: 253.12053. Anal. Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 78.23; H, 7.88. Found: C, 77.95; H, 7.86.

Epoxide 24: Epoxide 24 was prepared by the typical epoxidation procedure with 5,5-dimethyl-octa-3,7-dien-2-one ${ }^{9}$ (70% yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 6.82$ (d, $J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (dddd, $J=6.9,5.1,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $J=5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.66\left(\mathrm{ABd}, J_{\mathrm{AB}}=\right.$ $14.3 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55\left(\mathrm{ABd}, J_{\mathrm{AB}}=14.3 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.18$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 198.76,155.82,127.53,48.99,46.52,44.89$,

[^5]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
36.56, 27.11, 26.71, 26.48. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3045, 2965, 2928, 2874, 1698, 1623, 1469, 1426, 1387, 1363, 1301, 1257, 1182, 1134, 986. HRMS (CI+) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$: 169.1229, Found: 169.1223. Anal. Calc'd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 71.39 ; H, 9.59. Found: C, 71.18; H, 9.66.

Alcohol 25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57\left(\mathrm{ABd}, J_{\mathrm{AB}}=\right.$ $11.0 \mathrm{~Hz}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51\left(\mathrm{ABd}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.17$ (ddddd, $J=$ $8.8,8.8,7.7,3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (s, 3H), 1.98 (dd, $J=13.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34$ (dd, $J=$ $13.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 200.04$, $158.23,144.52,66.66,47.18,44.27,42.36,28.45,27.58,26.94$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3428$, 3038, 2956, 2866, 1651, 1614, 1464, 1362, 1301, 1201, 1132, 1040, 965. HRMS (CI+) Calc'd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$: 169.12286, Found: 169.12279. Anal. Calc'd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 71.39; H, 9.59. Found: C, 71.11; H, 9.45.

4,4-Dimethyl-1-phenyl-hepta-2,6-dien-1-one: Sodium hydride (60% in mineral oil, 800 $\mathrm{mg}, 20 \mathrm{mmol}$) was added to 60 mL of ethanol and stirred at room temperature for 15 minutes. This was followed by the addition of acetophenone ($2.4 \mathrm{~g}, 20 \mathrm{mmol}$) and 2,2-dimethyl-4-pentenal ($2.5 \mathrm{~g}, 20 \mathrm{mmol}$). The reaction mixture then was allowed to stir at room temperature for 5 hours. Upon completion of the aldol reaction, the ethanol was removed in vacuo. The crude mixture was diluted with ethyl acetate, washed with water, dried over MgSO_{4}, and filtered through a short pad of Celite. Purification by column chromatography using 6% ethyl acetate in hexanes provided 3.47 g (81%) of 4,4-dimethyl-1-phenyl-hepta-2,6-dien-1-one as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: δ 7.90-7.95 (m, 2 H , Aromatic H), 7.53-7.59 (m, 1 H , Aromatic H), 7.44-7.50 (m, 2 H , Aromatic H), $7.02(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (ddt, $J=16.7$, $10.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dm}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 191.14,158.00,138.04$, $134.22,132.45,128.43,128.36,122.18,117.73,46.42,37.07,26.13$. IR $\left(\mathrm{NaCl} \mathrm{cm}^{-1}\right)$: 3075, 3004, 2963, 2928, 2871, 1673, 1651, 1620, 1598, 1580, 1464, 1448, 1385, 1365, 1329, 1298, 1283, 1221, 1180, 1090, 1035, 1019, 993, 916. HRMS (EI+) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: 214.13577$, Found: 214.13550. Anal. Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.07 ;$ H, 8.47. Found: C, 83.84; H, 8.60.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006

Epoxide 26: Epoxide 26 was prepared by the typical epoxidation procedure with 4,4-dimethyl-1-phenyl-hepta-2,6-dien-1-one (76% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): δ 7.91-7.96 (m, 2 H , Aromatic H), 7.54-7.60 (m, 1H, Aromatic H), 7.45-7.51 (m, 2H, Aromatic H), 7.07 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (dddd, $J=7.0$, $5.1,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ $\left.\left(\mathrm{ABd}, J_{\mathrm{AB}}=14.3 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.62 \mathrm{ABd}, J_{\mathrm{AB}}=14.3 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.27(\mathrm{~s}$, $3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 190.79,157.08,137.79,132.49$, $128.35,128.33,122.23,48.94,46.40,44.71,36.81,26.87,26.27$. IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3054, 2963, 2927, 2872, 1732, 1670, 1650, 1619, 1597, 1578, 1464, 1447, 1426, 1410, 1386, 1366, 1297, 1223, 1180, 1158, 1132, 1091, 1036, 1019, 991, 953. HRMS (FAB+) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}: 253.12045$, Found: 253.12044. Anal. Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 78.23; H, 7.88. Found: C, 78.27; H, 7.85.

Alcohol 27: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.70-7.75(\mathrm{~m}, 2 \mathrm{H}$, Aromatic H$), 7.53-7.58$ $(\mathrm{m}, 1 \mathrm{H}$, Aromatic H), 7.43-7.48 (m, 2H, Aromatic H), $6.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $\left(\mathrm{ABd}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70\left(\mathrm{ABd}, J_{\mathrm{AB}}=11.0 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=13.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{dd}, J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}$, $3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): ~ \delta 196.48,159.47,142.19,138.62$, $132.07,128.95,128.05,66.95,47.95,44.84,42.09,28.43,27.62$. IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3418$, 3059, 2954, 2863, 1644, 1576, 1446, 1384, 1295, 1212, 1177, 1113, 1044, 1027, 960. HRMS (FAB+) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$: 253.12045, Found: 253.12052. Anal. Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 78.23; H, 7.88. Found: C, 77.98; H, 7.96.

[^0]: ${ }^{1}$ White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 7194.
 ${ }^{2}$ Aebi, J. D.; Deyo, D. T.; Sun, C. Q.; Guillaume, D.; Dunlap, B.; Rich D. H. J. Med. Chem. 1990, 33, 999.

[^1]: ${ }^{3}$ Sasaki, M.; Yudin, A. K. J. Am. Chem. Soc. 2003, 125, 14242.
 ${ }^{4}$ Kuroda, H.; Hanaki, E.; Izawa, H.; Kano, M.; Itahashi, H. Tetrahedron 2004, 60, 1913.

[^2]: ${ }^{5}$ Keay, B. A.; Rajapaksa, D.; Rodrigo, R. Can. J. Chem. 1984, 62, 1093.
 ${ }^{6}$ Pitts, M. R.; Harrison, J. R.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 2001, 955.

[^3]: ${ }^{7}$ Larock, R. C.; Leung, W. Y. J. Org. Chem. 1990, 55, 6244.

[^4]: ${ }^{8}$ Chen, G.; Ma, X. S.; Guan, Z. J. Am. Chem. Soc. 2003, 125, 6697.

[^5]: ${ }^{9}$ Cockerill, S. G.; Kocienski, P.; Treadgold, R. J. Chem. Soc., Perkin Trans. 1 1985, 2101.

