Supplementary Material (ESI) for Chemical Communications# This journal is (c) The Royal Society of Chemistry 2006

Supporting Information for

A New Cross-linking Route via the Unusual Collision Kinematics of

Hyperthermal Proton in Unsaturated Hydrocarbon: the Case of

Poly(trans-isoprene)

Zhi Zheng,^{ac} Wai Man Kwok^b and Woon Ming Lau^{cd}*

^aInstitute of Surface Micro and Nano Materials, Xuchang University, Xuchang, 461000, China, ^bDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China ^cDepartment of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China. ^dSurface Science Western, The University of Western Ontario, London, Ontario, Canada

*To whom correspondence should be addressed. Fax: 1-519-661-3709; Tel: 1-519-661-2173; E-mail llau22@uwo.ca

Figure S1. Degree of crosslinking of the PtI film, expressed by the insoluble film thickness after the dissolution test of immersing the film in hexane for 5 minutes as a function of ion fluence for the proton-collision-induced method with 10eV H⁺

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006

Methods

Hyperthermal ion bombardment of the dotriacontane film was carried out in a massand-energy-selective low energy ion beam (LEIB) system. Briefly, H^+ projectile ions were produced and extracted from a H₂ plasma in a hot DC filament Colutron ion source. After mass and energy selection, H^+ ions with the desirable kinetic energy were impinged at normal incidence to the sample. The energy spread of the ion beam was about ±0.6 eV. The pressure of sample chamber during ion bombardment was 2×10^{-8} Torr. The beam current was measured with a Faraday cup with a large entrance aperture (3mm diameter) and current density by a Faraday cup with a small entrance aperture. The current density was about 1μ A/cm² for a beam at 10eV, which is equivalent to a projectile arrival rate of 6×10^{12} /cm²s.

The film surface was mainly characterized by an XPS system having a Kratos AXIS-HS spectrometer equipped with a monochromatic Al K_{α} source. The XPS chamber and LEIB system are linked together by ultrahigh vacuum connections so that samples can be analyzed, transferred and bombarded without air-exposure. *Ex-situ* AFM measurements were performed using a Nanoscope III AFM system.