Tuning the properties of cyclen based lanthanide complexes for phosphodiester hydrolysis; the role of basic cofactors

Ann-Marie Fanning, Sally E. Plush and Thorfinnur Gunnlaugsson*

Electronic Supplementary Information (ESI)

Synthesis

[2-(2-Chloro-acetylamino)-ethyl]-carbamic acid *tert*-butyl ester (5)

A solution of chloroacetyl chloride (1.37 g, 12.2 mmol) in CH₂Cl₂ (20 mL) was added dropwise over 1 h to a solution of (2-amino-ethyl)carbamic acid *tert*-butyl ester (1.62 g, 10.2 mmol) and NEt₃ (1.53 g, 15.0 mmol) in CH₂Cl₂ (20 mL) at -20 °C (acetone/ice bath). The resulting brown solution was left to stir at room temperature for 24 h. The inorganic salts that formed were filtered off and the filtrate washed with citric acid (3 x 20 mL) and then with water (2 x 20 mL). The organic layer was extracted and dried over K₂CO₃ and the solvent removed under reduced pressure to give a dark brown solid. Yield (1.82 g, 76%). M.p. 95-98 °C; Calculated for C₉H₁₇ClN₂O₃: C, 45.67; H, 7.24; N, 11.83, Found: C, 45.16; H, 6.86; N, 11.38; Calculated for C₉H₁₇N₂O₃NaCl: [(M+Na)⁺ peak] *m/z* (ES⁺) = 259.0825, Found: 259.0819 (-1.9 ppm); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 7.27 (br s, 1H, NH), 4.91 (br s, 1H, N<u>H</u>BOC), 4.05 (s, 2H, ClCH₂CO), 3.42 (q, *J* = 5.5 Hz, 2H, NHC<u>H₂</u>), 3.34 (q, *J* = 5.0 Hz, 2H, BOCNHC<u>H₂</u>), 1.46 (s, 9H, 3 x CH₃); $\delta_{\rm c}$ (CDCl₃, 100 MHz) 166.3, 156.3, 79.4, 42.0, 40.7, 39.2, 27.8; *m/z* (ES⁺) 259.10 (M+Na)⁺; IR v_{max}(cm⁻¹) 3363, 2984, 1693, 1647, 1528, 1446, 1367, 1278, 1175, 979, 869, 758.

[2-(2-{4,7,10-Tris-[(2-*tert*-butoxycarbonylamino-ethylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclododec-1-yl}-acetylamino)- ethyl]-carbamic acid *tert*-butyl ester (7)

A solution of 4 (0.62 g, 2.5 mmol) in dry MeCN (10 mL) was added to cyclen (0.1 g, 0.6 mmol), Cs_2CO_3 (1.69 g, 5.52 mmol) and KI (0.82 g, 2.5 mmol) in dry MeCN (10 mL). This was then heated at reflux under argon for 3 days. The mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in CHCl₃ and washed with water and saturated KCl solution (3 x 20 mL). The organic layer was dried over K₂CO₃ and the solvent removed under reduced pressure to yield an

orange/brown hygroscopic powder (0.46 g, 87% yield). M.p. 168-171 °C; Calculated for C₄₄C₈₅N₁₂O₁₂.CHCl₃: C, 49.47; H, 7.84; N, 15.38, Found: C, 49.49; H, 7.62; N, 15.10; Calculated for C₄₄C₈₅N₁₂O₁₂: [(M+H)⁺ peak] m/z (ES⁺) = 973.6410, Found: 973.6456 (+4.7 ppm); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 7.73 (br s, 4H, NH), 5.58 (br s, 4H, N<u>H</u>BOC), 3.33 (d, J = 5.0 Hz, 8H, NCH₂CO), 3.21 (d, J = 5.5 Hz, 8H, NHC<u>H</u>₂CH₂), 3.05 (br s, 8H, NCH₂), 2.63 (s, 16H, NC<u>H</u>₂C<u>H</u>₂NH), 1.37 (s, 36H, BOC); $\delta_{\rm c}$ (CDCl₃, 100 MHz) 171.3, 156.1, 78.7, 58.6, 52.8, 40.1, 39.0, 27.9; m/z (ES⁺) 973.64 (M+H)⁺; IR $\nu_{\rm max}$ (cm⁻¹) 3329, 2976, 2820, 17018, 1528, 1366, 1251, 1171, 1001, 780.

Procedure 1; Deprotection of BOC group

The desired ligand was dissolved in EtOH (10 mL) and HCl (3 mL, neat) and left to stir for 1 h. CH_2Cl_2 was added (2 x 20 mL) and then removed under reduced pressure. This was then followed by addition of diethyl ether (2 x 20 mL) followed by subsequent removal under reduced pressure to give a hygroscopic solid. The product was stored in a dessicator.

N-(2-Amino-ethyl)-2-{4,7,10-tris-[(2-amino-ethylcarbamoyl)-methyl-1,4,7,10tetraza-cyclodec-1-yl}-acetamide (1)

Ligand 7 was prepared according to **Procedure 1**, using ligand 7 (0.23 g, 0.24 mmol). A pale yellow hygroscopic solid was obtained (0.13 g, 95% yield). M.p. decomposed above 220 °C; $C_{24}H_{53}N_{12}O_4$: [M+H peak] m/z (ES⁺) = 573.4313, Found: 573.4294 (-1.9 ppm); $\delta_{\rm H}$ (D₂O, 400 MHz) 3.42 (br s, 16H, NCH₂CO, NHC<u>H₂</u>), 3.23 (br s, 8H, NH₂C<u>H₂</u>), 3.05 (br s, 16H, NC<u>H₂</u>CH₂N); $\delta_{\rm c}$ (D₂O, 100 MHz) 170.6, 54.07, 52.23, 38.53, 36.23; m/z (ES⁺) 595.41 (M+Na)⁺, 573.42 (M+H)⁺, 315.24 (M+2H)²⁺; IR $\nu_{\rm max}$ (cm⁻¹) 3390, 2985, 2011, 1671, 1560, 1459, 1390, 1270, 1170, 1089, 1029, 921, 570.

Procedure 2; Synthesis of Lanthanide Complexes Using Lanthanide Triflate Salts

Lanthanide complexes were prepared by heating at reflux, under inert atmosphere, the ligand with 1.1 molar equivalents of the appropriate lanthanide triflate in dry MeOH (10 mL) for 16 h, unless otherwise stated. The complexes were isolated by precipitation in dry ether (100 mL) or CH_2Cl_2 (100 mL) and the precipitates collected by filtration. ¹H

NMR spectra of lanthanide complexes consisted of very broad signals and therefore were not fully characterised *i.e.* it was not possible to determine integration. The same properties prevent ¹³C spectra from being obtained. For ¹H NMR spectra, spectral width was set at 100 ppm (i.e., -100 to 100).

N-(2-Amino-ethyl)-2-{4,7,10-tris-[(2-amino-ethylcarbamoyl)-methyl-1,4,7,10-tetraza-cyclodec-1-yl}-acetamide.La.3CF₃SO₃.2H₂O (La.1)

La.1 was prepared according to **Procedure 2**, using ligand 1 (28 mg, 0.04 mmol) and La(CF₃SO₃)₃ (30 mg, 0.043 mmol). A yellow solid was obtained (41 mg, 88% yield). M.p. 214-218 °C; Calculated for C₂₄H₅₂N₁₂O₇La.CF₃SO₃: [(M+CF₃SO₃)²⁺ peak] m/z (ES⁺) = 860.2818, Found: 860.2802 (-1.9 ppm); $\delta_{\rm H}$ (D₂O, 400 MHz) 3.58, 3.47, 3.26, 3.15, 1.38, 1.18; m/z (ES⁺) 430.14 (M+CF₃SO₃)²⁺; IR v_{max}(cm⁻¹) 3288, 1637, 1571, 1480,1287, 1171, 1091, 1026, 973, 934, 862, 638.

N-(2-Amino-ethyl)-2-{4,7,10-tris-[(2-amino-ethylcarbamoyl)-methyl-1,4,7,10-tetraza-cyclodec-1-yl}-acetamide.Eu.3CF₃SO₃.H₂O (Eu.1)

Eu.1 was prepared according to **Procedure 2**, using **1** (97 mg, 0.17 mmol) and Eu(CF₃SO₃)₃ (111 mg, 0.19 mmol). A yellow solid was obtained (156 mg, 78% yield). M.p. 216-219 °C; Calculated for C₂₄H₅₂N₁₂O₇Eu.CF₃SO₃: [(M+CF₃SO₃)²⁺ peak] m/z = 874.2967, Found: 874.2922 (-5.0 ppm); $\delta_{\rm H}$ (D₂O₁ 400 MHz) 22.91, 3.54, 2.40, 1.03, - 3.76, -9.36, -12.44; m/z 437.14 (M+CF₃SO₃)²⁺, 362.16 (M)²⁺; IR v_{max}(cm⁻¹) 2983, 1625, 1570, 1482, 1368, 1238, 1224, 1162, 1091, 1026, 970, 932, 836, 760.

[4-(2-Chloro-acetylamino)-propyl]-carbamic acid *tert*-butyl ester (5)

A solution of chloroacetyl chloride (1.43 g, 12.72 mmol) in CH_2Cl_2 (20 mL) was added dropwise over 1 h to a solution of (3-amino-propyl)-carbamic acid tert-butyl ester (1.61 g, 10.6 mmol) and NEt₃ (1.61 g, 15.9 mmol) in CH_2Cl_2 (20 mL) at -20 °C (acetone/ice bath). The resulting brown solution was left to stir at room temperature for 24 h. The inorganic salts formed were filtered off and the filtrate washed with citric acid (3 x 20 mL) and then with water (2 x 20 mL). The organic layer was extracted and dried over K₂CO₃ and solvent removed under reduced pressure to give a dark brown solid (1.23 g, 88% yield). M.p. 161-163 °C; Calculated for C₁₀H₁₉ClN₂O₃: C, 47.90; H, 7.64; N, 11.17, Found: C, 47.73; H, 7.43; N, 10.89; Calculated for C₁₀H₁₉N₂O₃NaCl: $[(M+Na)^+ \text{ peak}]$ *m/z* (ES⁺) = 273.0982, Found: 273.0993 (+4.1 ppm); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 7.22 (br s, 1H, NH), 4.94 (br s, 1H, N<u>H</u>BOC), 4.05 (s, 2H, ClCH₂CO), 3.39 (q, *J* = 6.0 Hz, 2H, NHC<u>H</u>₂), 3.17 (q, *J* = 6.0 Hz, 2H, BOCNHC<u>H</u>₂), 1.70 (m, 2H, CH₂C<u>H</u>₂C<u>H</u>₂), 1.44 (s, 9H, 3 x C<u>H</u>₃); $\delta_{\rm c}$ (CDCl₃, 100 MHz) 165.9, 156.1, 78.9, 42.1, 36.6, 36.0, 29.5, 27.9; *m/z* (ES⁺) 273.09 (M+Na)⁺; IR v_{max}(cm⁻¹) 3363, 3327, 2984, 2879, 1677, 1647, 1532, 1437, 1366, 1285, 1167, 1131, 1010, 870, 765, 657.

[4-(-{4,7,10-Tris-[(4-*tert*-butoxycarbonylamino-propylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclododec-1-yl}-acetylamino)- propyl]-carbamic acid *tert*-butyl ester (8)

A solution of **5** (1.38 g, 5.52 mmol) in dry MeCN (10 mL) was added to cyclen (0.22 g, 1.28 mmol), Cs₂CO₃ (1.69 g, 5.52 mmol) and KI (0.92 g, 5.52 mmol) in dry MeCN (20 mL). This was then heated at reflux under argon for 2 days. The mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in CHCl₃ and washed with water and saturated KCl solution (3 x 20 ml). The organic layer was dried over K₂CO₃ and the solvent removed under reduced pressure to yield a light brown hygroscopic powder (1.16 g, 88% yield). M.p. 98-100 °C; Calculated for C₄₈C₉₃N₁₂O₁₂: [(M+H)⁺ peak] *m/z* (ES⁺) = 1029.7036, Found: 1029.7037 (0.1 ppm); $\delta_{\rm H}$ (CDCl₃, 400 MHz) 7.68 (br s, 4H, NH), 5.25 (br s, 4H, N<u>H</u>BOC), 3.30 (q, *J* = 6.0 Hz, 8H, NCH₂CO), 3.15 (d, *J* = 5.5 Hz, 8H, NHCH₂CH₂), 3.07 (br s, 8H, NCH₂), 2.71 (s, 16H, NC<u>H₂CH₂NH), 1.64</u> (d, *J* = 5.5 Hz, 8H, CH₂C<u>H₂CH₂), 1.44</u> (s, 36H, BOC); $\delta_{\rm c}$ (CDCl₃, 100 MHz) 170.8, 156.0, 78.7, 58.6, 54.0, 36.8, 35.4, 29.7, 27.9; *m/z* (ES⁺) 1029.70 (M)⁺; IR v_{max} (cm⁻¹) 3327, 2975, 1688, 1524, 1449, 1365, 1276, 1251, 1170, 1009, 779, 668.

N-(4-Amino-propyl)-2-{4,7,10-tris-[(4-amino-propylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclodec-1-yl}-acetamide (1)

Ligand 1 was prepared according to **Procedure 1**, using ligand 8 (0.227 g, 0.22 mmol). A yellow hygroscopic solid was obtained (0.15 g, 90% yield). M.p. 161-156 °C; $C_{28}H_{60}N_{12}O_4Na$: [M+Na peak] m/z (ES⁺) = 651.4758, Found: 651.4734 (-3.7 ppm); δ_H

 $(D_2O, 400 \text{ MHz})$ 3.23 (br s, 24H, NC<u>H</u>₂CO, NHC<u>H</u>₂, NH₂C<u>H</u>₂), 2.96 (t, *J* = 7.5 Hz, 16H, NC<u>H</u>₂C<u>H</u>₂N), 1.80 (q, *J* = 7.5 Hz, 8H, CH₂C<u>H</u>₂CH₂); δ_c (D₂O, 100 MHz) 54.1, 36.5, 36.3, 35.7, 26.0 *m/z* (ES⁺) 651.47 (M+Na)⁺, 315.24 (M+2H)²⁺; IR v_{max} (cm⁻¹) 3471, 3077, 1677, 1561, 1466, 1389, 1269, 1011.

N-(4-Amino-propyl)-2-{4,7,10-tris-[(4-amino-propylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclodec-1-yl}-acetamide.La.3CF₃SO₃.2H₂O (La.2)

La.2 was prepared according to **Procedure 2**, using ligand **2** (139 mg, 0.179 mmol) and La(CF₃SO₃)₃ (116 mg, 0.197 mmol). An orange/brown solid was obtained (185 mg, 76% yield). M.p. 167-170 °C; Calculated for C₂₈H₆₀N₁₂O₄La.CF₃SO₃: [(M+CF₃SO₃)²⁺ peak] m/z (ES⁺) = 916.3444, Found: 916.3440 (-0.5 ppm); $\delta_{\rm H}$ (D₂O, 400 MHz) 3.45, 3.33, 3.22, 2.94, 1.84; m/z (ES⁺) 458.15 (M+CF₃SO₃)²⁺; IR v_{max}(cm⁻¹) 3394, 3109, 1627, 1459, 1250, 1169, 1030, 610, 519.

N-(4-Amino-propyl)-2-{4,7,10-tris-[(4-amino-propylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclodec-1-yl}-acetamide.Eu.3CF₃SO₃.H₂O (Eu.2)

Eu.2 was prepared according to **Procedure 2**, using ligand **2** (65 mg, 0.084 mmol) and Eu(CF₃SO₃)₃ (55 mg, 0.092 mmol). An orange/brown solid was obtained (95 mg, 82% yield). M.p. decomposed above 160 °C; Calculated for C₂₈H₆₀N₁₂O₄Eu.CF₃SO₃: $[(M+CF_3SO_3)^{2+} \text{ peak}] m/z = 930.3593$, Found: 930.3552 (-4.4 ppm); δ_H (D₂O, 400 MHz) 25.17, 2.91, 2.50, 1.78, 0.77, -2.65, -5.10, -8.46, -10.36, -12.71; m/z 465.17 (M+CF₃SO₃)²⁺, 390.20 (M)²⁺, 260.46 (M)³⁺; IR v_{max}(cm⁻¹) 3421, 1629, 1252, 1170, 1030, 640.

[4-(2-Chloro-acetylamino)-butyl]-carbamic acid *tert*-butyl ester (6)

A solution of chloroacetyl chloride (0.639 g, 5.66 mmol) in CH_2Cl_2 (20 mL) was added dropwise over 1 h to a solution of (4-amino-butyl)-carbamic acid *tert*-butyl ester (0.88 g, 4.7 mmol) and NEt₃ (0.72 g, 7.03 mmol) in CH_2Cl_2 (20 mL) at -20 °C (acetone/ice bath). The resulting brown solution was left to stir at room temperature for 24 h. The inorganic salts formed were filtered off and the filtrate washed with citric acid (3 x 20 mL) and then with water (2 x 20 mL). The organic layer was extracted and dried over K₂CO₃ and solvent removed under reduced pressure. Yield (0.916 g, 74%). M.p. 93-95 °C; Calculated for C₁₁H₂₁ClN₂O₃: C, 49.90; H, 8.00; N, 10.38, Found: C, 49.63; H, 7.46; N, 10.28; $\delta_{\rm H}$ (CDCl₃, 400 MHz) 6.74 (br s, 1H, N<u>H</u>), 4.65 (br s, 1H, N<u>H</u>BOC), 4.05 (s, 2H, ClCH₂CO), 3.34 (dd, J = 7.0 & 6.0 Hz, 2H, CONHC<u>H</u>₂), 3.16 (d, J = 6.0 Hz, 2H, BOCNHC<u>H</u>₂), 1.56 (m, 4H, NHCH₂C<u>H</u>₂C<u>H</u>₂), 1.44 (s, 9H, 3 x CH₃); $\delta_{\rm c}$ (CDCl₃, 100 MHz) 165.9, 156.0, 79.2, 42.6, 39.9, 39.4, 28.3, 27.4, 26.5; *m/z* 287.11 (M+Na)⁺; IR $v_{\rm max}$ (cm⁻¹) 3376, 2979, 1686, 1647, 1546, 1522, 1446, 1367, 1304, 1262, 1172, 1017, 958, 715, 579.

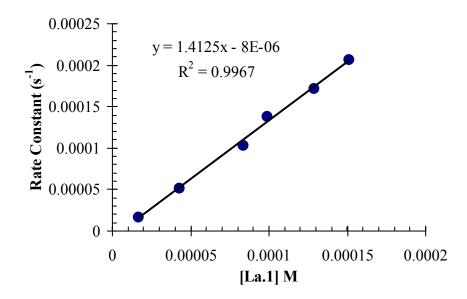
[4-(-{4,7,10-Tris-[(4-*tert*-butoxycarbonylamino-butylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclododec-1-yl}-acetylamino)-butyl]-carbamic acid *tert*-butyl ester (9)

A solution of **6** (0.86 g, 3.34 mmol) in dry MeCN (10 mL) was added to cyclen (0.13 g, 0.74 mmol), Cs₂CO₃ (1.09 g, 3.34 mmol) and KI (0.55 g, 3.34 mmol) in dry MeCN (20 mL). This was then heated at reflux under argon for 5 days. The mixture was filtered through celite and the solvent removed under reduced pressure. The residue was dissolved in CHCl₃ and washed with water and a saturated KCl solution (3 x 20 mL). The organic layer was dried over K₂CO₃ and the solvent removed under reduced pressure to yield a light brown hygroscopic powder (0.752 g, 96% yield). M.p 69-72 °C; Calculated for C₅₂H₁₀₀N₁₂O₁₂.Na.H₂O: C, 55.72; H, 9.35; N, 14.71, Found: C, 55.42; H, 9.14; N, 14.38; $\delta_{\rm H}$ (CDCl₃ 400 MHz) 7.46 (br s, 4H, NH), 5.06 (br s, 4H, N<u>H</u>BOC), 3.26 (d, *J* = 5 Hz, 8H, NHC<u>H₂CH₂N), 1.52 (s, 16H, 2 x NHCH₂C<u>H₂</u>), 1.43 (s, 36H, 3 x CH₃); $\delta_{\rm c}$ (CDCl₃ 100 MHz) 170.4, 155.7, 78.6, 58.4, 52.8, 39.7, 38.4, 28.0, 27.2, 26.6; *m/z* (ES⁺) 1084.32 (M+H)⁺, 543.90 (M+2H)²⁺; IR v_{max} (cm⁻¹) 3322, 2975, 2935, 2866, 1701, 1658, 1529, 1452, 1365, 1274, 1171, 1043, 1005, 865, 736.</u>

N-(4-Amino-butyl)-2-{4,7,10-tris-[(4-amino-butylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclodec-1-yl}-acetamide (3)

Ligand **3** was prepared according to **Procedure 1**, using ligand **9** (0.4 g, 0.37 mmol). A yellow hygroscopic solid was obtained (0.31 g, 97% yield). M.p. decomposed above 150 °C; Calculated for $C_{32}H_{68}N_{12}O_4Na$: [M+Na peak] m/z (ES⁺) = 707.5384, Found:

707.5397 (+1.8 ppm); $\delta_{\rm H}$ (D₂O, 400 MHz) 3.14 (m, 24H, 3 x CH₂, NC<u>H₂</u>CO, NHC<u>H₂</u>, NH₂C<u>H₂</u>), 2.90 (s, 16H, NC<u>H₂CH₂</u>N), 1.57 (m, 8H, CH₂C<u>H₂</u>CH₂), 1.50 (m, 8H, CH₂C<u>H₂</u>CH₂); $\delta_{\rm c}$ (D₂O, 100 MHz) 164.2, 54.4, 49.3, 38.6, 38.2, 21.9, 23.7; *m/z* (ES⁺) 707.54 (M+Na)⁺, 685.63 (M+H)⁺, 343.30 (M+2H)²⁺, 229.20 (M+3H)³⁺; IR v_{max} (cm⁻¹) 3354, 3078, 2934, 1681, 1652, 155, 1466, 1399, 1290, 1164, 1088, 941.


N-(4-Amino-butyl)-2-{4,7,10-tris-[(4-amino-butylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclodec-1-yl}-acetamide.La.3CF₃SO₃.2H₂O (La.3)

La.3 was prepared according to **Procedure 2**, using ligand **9** (94 mg, 0.113 mmol) and La(CF₃SO₃)₃ (73 mg, 0.124 mmol). A light brown solid was obtained (113 mg, 71% yield). M.p. 220-224 °C; Calculated for C₃₂H₆₈N₁₂O₄La.CF₃SO₃: [(M+CF₃SO₃)²⁺ peak] m/z (ES⁺) = 927.4070, Found: 972.4058 (-1.3 ppm); $\delta_{\rm H}$ (D₂O, 400 MHz) 3.23, 2.92, 1.58; m/z (ES⁺) 486.20 (M+CF₃SO₃)²⁺, 274.48 (M)³⁺; IR v_{max}(cm⁻¹) 3329, 1630, 1457, 1247, 1166, 1084, 1029, 640, 517.

N-(4-Amino-butyl)-2-{4,7,10-tris-[(4-amino-butylcarbamoyl)-methyl]-1,4,7,10tetraaza-cyclodec-1-yl}-acetamide.Eu.3CF₃SO₃.H₂O (Eu.3)

Eu.3 was prepared according to **Procedure 2**, using ligand **9** (93 mg, 0.113 mmol) and Eu(CF₃SO₃)₃ (75 mg, 0.124 mmol). An orange/brown solid was obtained (73 mg, 45% yield). M.p. decomposed above 180 °C; Calculated for C₃₂H₆₈N₁₂O₄Eu.CF₃SO₃: $[(M+CF_3SO_3)^{2+} \text{ peak}] m/z (ES^+) = 986.4219$, Found: 986.4192 (-2.7 ppm); δ_H (D₂O, 400 MHz) 26.25, 3.48, 2.92, 1.81, 1.07, -2.35, -5.23, -7.99, -10.89, -12.76; *m/z* (ES⁺) 493.20 (M+CF₃SO₃)²⁺, 418.22 (M)²⁺, 279.16 (M)³⁺; IR v_{max}(cm⁻¹) 3397, 1629, 1465, 1253, 1170, 1083, 1029, 640.

Figure 1. Second order rate constant determination for La.1

Figure 2. Typical titration curve of the protonated ligand 1 against NEt₄OH at 25 °C. [1] = 7.6 x 10^{-4} M, [H⁺] = 7.75 x 10^{-3} M, [NEt₄OH] = 0.104 M, I = 0.10 M (NEt₄ClO₄), total volume = 10 cm³.

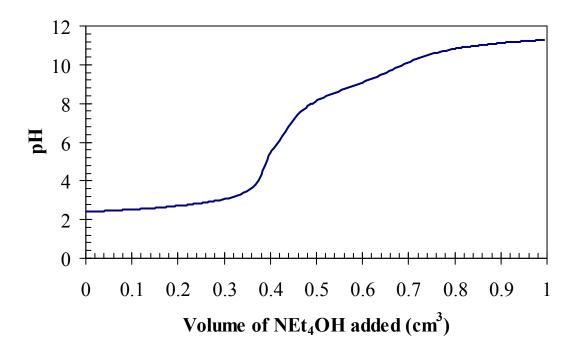


Figure 3. Speciation variation of ligand 135, showing the species present in H₂O at various pH in which $[1]_{total} = 7.2 \times 10^{-3}$ M, $[Eu(III)]_{total} = 7.0 \times 10^{-3}$ M, I = 0.10 M (NEt₄ClO₄) at 25 °C. Speciation is shown relative to the total concentration of ligand 1.

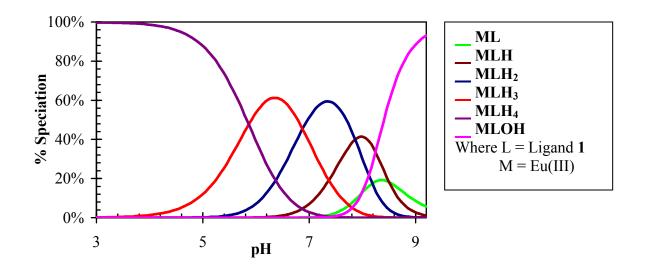
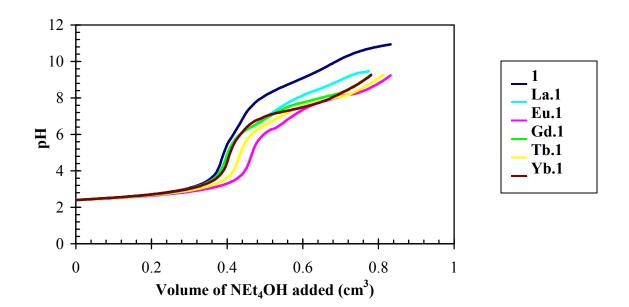



Figure 4. Typical titration curves of the protonated ligand 1 in the absence and presence of La(ClO₄)₃, Eu(ClO₄)₃, Gd(ClO₄)₃, Tb(ClO₄)₃ and Yb(ClO₄)₃ against NEt₄OH at 25 °C. [1]_{total} = 7.6 x 10⁻⁴ M, [La(III)]_{total}, [Eu(III)]_{total}, [Gd(III)]_{total}, [Tb(III)]_{total} or [Yb(III) total = 7.6 x 10⁻⁴ M, [H⁺]_{total} = 7.75 x 10⁻³ M, [NEt₄OH] = 0.104 M, I = 0.10 M (NEt₄ClO₄), total volume = 10 cm³.

