η^1 and η^2 complexes of λ^3 -1,2,4,6-thiatriazinyls with $CpCr(CO)_x$ $\{x=2,3\}$

Chwee Ying Ang,^{*a*} René T. Boeré,^{**b*} Lai Yoong Goh,^{**a*} Lip Lin Koh,^{*a*} Seah Ling Kuan,^{*a*} Geok Kheng Tan^{*a*} and Xin Yu^{*b*}

^a Department of Chemistry, National University of Singapore, Kent Ridge, Singapore. Fax:(+65) 6779-1691;E-mail: chmgohly@nus.edu.sg.

^b Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada. Fax: (+1) 403-329-2057; Tel (+1) 403-329-2045; Email: boere@uleth.ca.

Supplementary material

B3PW91/6-31G+(d) calculations

The structures of diamagnetic adducts were optimized in their ground states using density functional theory in the GAUSSIAN 98W suite of programs.^[1] The B3PW91 functional^[2] with the 1991 gradient-corrected correlation functional of Perdew and Wang^[3] was used; this hybrid functional has previously been shown to provide realistic geometries for organochromium complexes.^[4] The Gaussian basis set 6-31+G(d) was used for geometry optimization and final energy calculations. The optimized geometry obtained at the B3PW91/6-31+g(d) level of theory for the model compound of **5** is shown in Figure S1. The calculations clearly demonstrate an interaction of the erstwhile π_4 SOMO of the TTA radical with one of the " T_{2g} " set of three bonding metal *d* orbitals. This is the only net bonding interaction of the ligand with the metal. Note that it is this same orbital that is postulated to form the main "transannular" bond in dimers of the neutral thiatriazinyls such as [4]₂.^[5]

We have also performed B3PW91/6-31+g(d) calculations on a model of 14 using

the same 3,5-dihydro thiatriazinyl ligand as employed in the model calculations for 5.

The optimized geometry is shown in Figure S2. The bonding interactions for this system

are fully compatible with a 3e donor model for the ligand, and resemble those in the

1,2,3,5-dithiadiazoyl complexes with the same metal fragment 1 and 2.^[6]

References

- [1] Gaussian 98W, Revision A.9, M. J. Frisch, et al. Gaussian, Inc., Pittsburg, PA, 1998.
- [2] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [3] J. P. Perdew, Y. Wang, *Phys. Rev. B*, 1992, 45, 13244.
- [4] C. N. Carlson, J. D. Smith, T. P. Hanusa, W. W. Brennessel, V. G. Young, Jr., J. Organomet. Chem. 2003, 683, 191.
- [5] R. T. Boeré, A. W. Cordes, P. J. Hayes, R. T. Oakley, R. W. Reed, W. T. Pennington, *Inorg. Chem.*, 1986, 25, 2445
- [6] H. F. Lau, V. W. L. Ng, L. L. Koh, G. K. Tan, L. Y. Goh, T. L. Roemmele, S. D. Seagrave and R. T. Boeré, *Angew. Chem.*, 2006, **118**, 4610; *Angew. Chem. Int. Ed.*, 2006, **45**, 4498.

B3PW91/6-31G+(d) calculations

Center	Atom	Coordinates (Angstroms)		
Number	Туре	Х	Y	Z
1	Cr	0.871228	0.03339	0.056854
2	S	-1.27686	-0.46115	-1.10309
3	N	-2.18504	0.923895	-1.18482
4	N	-3.35002	0.254862	0.795534
5	N	-2.20827	-1.5802	-0.27441
6	0	-0.81014	-0.35361	2.536148
7	0	1.825595	2.324514	1.739789
8	0	0.505513	2.475034	-1.67652
9	С	1.310921	-1.8876	-0.93753
10	Н	0.656839	-2.45558	-1.41782
11	С	1.65647	-2.0006	0.406728
12	Н	1.29009	-2.6625	1.047148
13	С	2.64471	-1.07039	0.678068
14	Н	3.12737	-0.96509	1.536223
15	С	2.913586	-0.37419	-0.51176
16	Н	3.62677	0.299954	-0.64583
17	С	2.08022	-0.89074	-1.49663
18	Н	2.087439	-0.63379	-2.45467
19	С	-3.09919	-1.06303	0.544512
20	С	-2.97745	1.141476	-0.14552
21	С	-0.24934	-0.18333	1.565043
22	С	1.464649	1.437955	1.121674
23	С	0.578143	1.536904	-1.03713
24	Н	-3.75324	-1.75772	1.028787
25	Н	-3.4158	2.115569	-0.08312

Figure S2	$CpCr(CO)_2{\eta^2-SN_3(CH)_2}$
Endo isomer:	-2104.1323372 Hartree

Center	Atom	Co	Coordinates (Angstroms)		
Number	Туре	Х	Y	Z	
1	С	-0.0483	1.953868	0.777423	
2	Н	-0.97229	2.070616	1.330516	
3	С	1.222161	1.638447	1.334405	
4	Н	1.444836	1.520383	2.387672	
5	С	2.161484	1.55683	0.260671	
6	Н	3.222346	1.360238	0.353705	
7	С	1.453666	1.796787	-0.95175	
8	Н	1.879214	1.80931	-1.94753	
9	С	0.092012	2.047926	-0.62546	
10	Н	-0.71172	2.229799	-1.3291	
11	Cr	0.709916	-0.00674	0.013177	
12	S	-1.24632	-0.8751	-1.04099	
13	Ν	-1.0074	-0.91184	0.645307	
14	0	2.335833	-1.54554	-1.98277	
15	0	2.117212	-1.85925	1.920784	
16	С	1.687495	-0.97105	-1.21294	
17	С	1.566973	-1.1612	1.181852	
18	Ν	-3.28811	-0.2879	0.990083	
19	Ν	-2.51319	0.26001	-1.26034	
20	С	-2.07783	-0.65302	1.392229	
21	С	-3.35304	0.264939	-0.26058	
22	Н	-1.90836	-0.72827	2.46914	
23	Н	-4.24212	0.876434	-0.42939	