Organocatalytic Asymmetric 5-Hydroxyisoxazolidinone Synthesis: A Highly Enantioselective Route to β-Amino acids

Ismail Ibrahem, Ramon Rios, Jan Vesely, Gui-Ling Zhao and Armando Córdova*
The Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE10691Stockholm, Sweden

Supporting Information

General. Chemicals and solvents were either purchased puriss p.A. from commercial suppliers or purified by standard techniques. Catalyst $\mathbf{9}$ was synthesized according to litterature procedures. ${ }^{1}$ For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid $(25 \mathrm{~g}), \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~g})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{~mL})$ followed by heating or by treatment with a solution of p-anisaldehyde (23 mL), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(35 \mathrm{~mL})$, acetic acid (10 mL), and ethanol (900 mL) followed by heating. Flash chromatography was performed using silica gel Merck 60 (particle size $0.040-0.063 \mathrm{~mm}$), ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian AS 400. Chemical shifts are given in δ relative to tetramethylsilane (TMS), the coupling constants J are given in Hz. The spectra were recorded in CDCl_{3} as solvent at room temperature, TMS served as internal standard ($\delta=0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} was used as internal standard ($\delta=77.0 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR. HPLC was carried out using a Waters 2690 Millennium with photodiode array detector. Optical rotations were recorded on a Perkin Elemer 241 Polarimeter ($\lambda=589 \mathrm{~nm}, 1 \mathrm{dm}$ cell). High-resolution mass spectra were recorded on a Bruker MicrOTOF spectrometer.

[^0]Typical experimental procedure: To a stirred solution of catalyst 9 ($20 \mathrm{~mol} \%$) in chloroform $(0.5 \mathrm{~mL})$ at $4{ }^{\circ} \mathrm{C}$ was added α, β-unsaturated aldehyde 2 (1.0 equiv. 0.25 $\mathrm{mmol})$ and hydroxycarbamate 1 (1.2 equiv. 0.3 mmol). The reaction was vigorously stirred for 3 hours or 16 hours. Next, the reaction mixture was directly loaded upon a silica-gel column and immediate chromatography (pentane:EtOAc-mixtures or toluene:EtOAc-mixtures) furnished the pure 5-hydroxyisoxazolidines 3 .

3a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.89(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ $(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76\left(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J^{\prime}=12.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.0,142.3,128.8,127.5,126.4,98.8,82.8$, 61.7, 45.5, 28.3; $[\alpha]_{\mathrm{D}}{ }^{25}=-8.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with iso-hexane/i-PrOH (97:3) as the eluent. Flow: $0.5 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=14.9 \mathrm{~min}$; major isomer: $\mathrm{t}_{\mathrm{R}}=13.4$ min.; HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}\right)$ requires m / z 288.1206, found 288.1197.

3b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.84(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ $(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 2.78\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J^{\prime}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3,141.4,135.6,128.6,128.4,128.1,127.7$, 127.4, 126.0, 98.7, 68.1, 61.3, 45.2. $[\alpha]_{D}{ }^{25}=-22.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with isohexane $/ i-\operatorname{PrOH}(98: 2)$ as the eluent; Flow: $1.0 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=35.89 \mathrm{~min}$; major isomer: $\mathrm{t}_{\mathrm{R}}=30.78 \mathrm{~min}$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 300.1230$, found 300.1233 .

3c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.85(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76\left(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J^{\prime}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.25-2.19 (m, 1H), $1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0,141.0$, $133.3,129.0,127.7,98.8,83.0,61.2,45.5,28.3 \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-10.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with isohexane $/ i-\mathrm{PrOH}$ (98:2) as the eluent; Flow: $0.5 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=16.5 \mathrm{~min}$; major isomer: $t_{R}=18.3$ min. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 322.0817$, found 322.0820 .

3d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d} . J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.83 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $\left.J=8.3 \mathrm{~Hz}, J^{\prime}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.25-2.19 (m, 1H), $1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0,141.4$, $132.0,128.1,121.4,99.0,83.1,61.2,45.5,28.3 .[\alpha]_{D}{ }^{25}=-11.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with isohexane $/ i-\mathrm{PrOH}$ (98:2) as the eluent; Flow: $0.5 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=18.8 \mathrm{~min}$; major isomer: $\mathrm{t}_{\mathrm{R}}=20.9$ min. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}^{79} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 366.0311$, found 366.0326 .

3e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d} . J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.85(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79\left(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J^{\prime}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.22-2.18 (m, 1H), $1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0,147.7$, $132.8,127.1,119.0,111.5,98.7,83.4,61.4,45.4,28.3 .[\alpha]_{D}^{25}=-12.1(c=1.0$, CHCl_{3}). The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD with iso-hexane $/ i-\operatorname{PrOH}(96: 4)$ as the eluent; Flow: $0.5 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=$
52.9 min; major isomer: $\mathrm{t}_{\mathrm{R}}=58.8 \mathrm{~min}$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 313.1159$, found 313.1147.

3f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H})$, 5.87 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83\left(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J^{\prime}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.23-2.19 (m, 1H), $1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.5,149.3$, $147.3,126.9,124.0,98.5,83.2,60.9,45.2,28.1 .[\alpha]_{\mathrm{D}}{ }^{25}=-15.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with isohexane $/ i-\mathrm{PrOH}(90: 10)$ as the eluent; Flow: $1.0 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=13.16$ min; major isomer: $\mathrm{t}_{\mathrm{R}}=10.75 \mathrm{~min}$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$ requires $\mathrm{m} / \mathrm{z} 333.1057$, found 333.1041 .

3g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J^{\prime}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8,139.3,133.3,132.8$, $128,6,127.8,127.6,126.2,125.8,124.8,124.1,98.6,82.5,61.5,45.4,28.1 .[\alpha]_{\mathrm{D}}{ }^{25}=-$ $6.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with iso-hexane $/$ i-PrOH (95:5) as the eluent; Flow: $1.0 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=6.77 \mathrm{~min}$; major isomer: $\mathrm{t}_{\mathrm{R}}=8.24 \mathrm{~min}$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 316.1543$, found 316.1531.

3h: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.59\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J^{\prime}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.49-2.45(\mathrm{~m}, 1 \mathrm{H}) 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=170.5,159.1,135.5,128.7,128.7,128.5,128.4,128.1$, 98.4, 68.7, 62.0, 58.9, 39.7, 14.3. $[\alpha]_{\mathrm{D}}{ }^{25}=-34.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.The enantiomeric excess was determined by HPLC on Daicel Chiralpak OD-H with iso-hexane $/ i-\mathrm{PrOH}$ (95:5) as the eluent; Flow: $1.0 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=27.2 \mathrm{~min}$; major isomer: t_{R} $=23.8 \mathrm{~min}$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$ requires m / z 296.1129, found 296.1138.

3i: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.69(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{dd}, J=12.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.51(\mathrm{~m}$, $2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.37(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.4,98.8,82.2,58.2,41.8,36.1,28.6,28.3,22.5,14.1 ;[\alpha]_{\mathrm{D}}^{25}=-3.4(\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined on a Chromasil CP-ChirasilDexCB column, temperature program: 70-170 ${ }^{\circ} \mathrm{C}$, rate: $10^{\circ} \mathrm{C} / \mathrm{min}$, hold $10 \mathrm{~min}, 170-$ $200{ }^{\circ} \mathrm{C}$, rate: $80{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min . Major isomer: $\mathrm{t}_{\mathrm{R}}=13.958 \mathrm{~min}$; minor isomer: t_{R} $=14.211 \mathrm{~min}$; HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$ requires m / z 268.1519, found 268.1524 .

3j: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major rotamer $\delta 5.70(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=12.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.55-$ $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.96(\mathrm{~m}, 3 \mathrm{H}) ;$ minor rotamer $\delta 5.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.63(\mathrm{dd}, J=12.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.96(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) mixture of two rotamer: $\delta 159.4,155.4,98.7,82.4,82.1,57.9,42.7,41.8$,
38.6, 28.4, 28.3, 19.3, 19.8, 14.0, 13.9; $[\alpha]_{\mathrm{D}}{ }^{25}=-1.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined on a Chromasil CP-Chirasil-DexCB column, temperature program: $70-160{ }^{\circ} \mathrm{C}$, rate: $10{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold $1 \mathrm{~min}, 160-200{ }^{\circ} \mathrm{C}$, rate: 80 ${ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min . Major isomer: $\mathrm{t}_{\mathrm{R}}=11.164 \mathrm{~min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=11.248 \mathrm{~min}$; HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4}\right)$ requires m / z 254.1363, found 254.1373.

3k: Mixture of rotamers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.80$ (dd, $J=3.6 \mathrm{~Hz}, J^{\prime}=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ minor rotamer), $5.69\left(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J^{\prime}=32.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ major rotamer), 5.25-5.20 (m, 2H), 4.45-4.30 (m, 1H, major rotamer), 4.05-4.00 (m, 1H, minor rotamer), 2.7-2.6 ($\mathrm{m}, 1 \mathrm{H}$, minor rotamer), 2.43-2.28 ($\mathrm{m}, 1 \mathrm{H}$, major rotamer), $2.10-1.35(\mathrm{~m}, 5 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.6,135.9$, 135.6, 128.6, 128.5, 128.4, 128.2, 128.1, 128.1 98.7, 79.6, 67.9, 67.8, 58.0, 42.3, 41.5, $41.4,38.2,34.9,34.6,19.4,19.0,19.0,13.9,13.7 .[\alpha]_{\mathrm{D}}^{25}=-5.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD with isohexane $/ i-\operatorname{PrOH}(98.5: 1.5)$ as the eluent; Flow: $1.0 \mathrm{~mL} / \mathrm{min}$; minor isomer: $\mathrm{t}_{\mathrm{R}}=44.1$ min; major isomer: $\mathrm{t}_{\mathrm{R}}=37.4 \mathrm{~min}$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 288.1206$, found 288.1198 .

Typical experimental procedure for the direct enantioselective catalytic Synthesis of 5-isoxazolidinones 10: To a stirred solution of catalyst 9 ($20 \mathrm{~mol} \%$) in chloroform $(0.5 \mathrm{~mL})$ at $4{ }^{\circ} \mathrm{C}$ was added α, β-unsaturated aldehyde 2 (1.0 equiv. 0.25 $\mathrm{mmol})$ and hydroxycarbamate $\mathbf{1}$ (1.2 equiv. 0.3 mmol). (In the case of the synthesis of $\mathbf{1 0 a}$, the reaction temperature was $25^{\circ} \mathrm{C}$). The reaction was vigorously stirred for 3 hours. Upon completion (a small aliquot was removed for ee determination) The reaction temperature was increased to room temperature, isobutene (0.1 mL), tertbutanol (0.4 mL), $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL}) \mathrm{KH}_{2} \mathrm{PO}_{4}(54.4 \mathrm{mg}, 4 \mathrm{mmol})$, and NaClO_{2} (36 mg , 4 mmol) were added sequentially. After 16 h , the crude product 10 was purified by column chromatography (pentane/EtOAC mixtures) to afford the desired 5isoxazolidinones 10.

10a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (dd, $\left.J=8.4 \mathrm{~Hz}, J^{\prime}=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.85\left(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J^{\prime}=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.7,157.4,138.9,128.8,128.2,127.3,83.2,59.6$, 37.4, 28.5. $[\alpha]_{\mathrm{D}}{ }^{25}=-13.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 286.1050$, found 286.1047.

10b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.60(\mathrm{dd}, J=5.1 \mathrm{~Hz}$, $\left.J^{\prime}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.20-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.26\left(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J^{\prime}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.85(\mathrm{dd}$, $\left.J=5.1 \mathrm{~Hz}, J^{\prime}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.3,157.4,138.1$, $135.5,128.6,128.5,128.2,128.1,127.9,127.2,68.3,59.1,36.6 .[\alpha]_{\mathrm{D}}{ }^{25}=-33.2(\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}\right)$ requires m / z 338.0999 , found 338.1002 .

10c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}$, $1 \mathrm{H}), 2.61(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.6,158.9,135.1,128.6,128.5,128.4,82.6,68.2,38.5,34.5$, 18.7, 13.8. $[\alpha]_{D}^{25}=-24.2\left(c=0.7, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 304.1155$, found 304.1159.
$\boldsymbol{\beta}$-amino acid synthesis: To a stirred solution of Cbz-protected isoxazolidinones $\mathbf{1 0}$ in $\mathrm{MeOH}(0.1 \mathrm{M})$, was added 10% (in weight) of $\mathrm{Pd} / \mathrm{C}(10 \%)$. The reaction was stirred under 90 atm of Hydrogen overnight. Then the cude reaction was filtered
through a plug of Celite ${ }^{\circledR}$. The solvent was removed under reduced pressure to afford the pure β-aminoacid 11.

11b: ${ }^{2}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{CO}_{3}$): $\delta=7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{CO}_{3}$): $\delta=179.4,128.9,128.8$, 128.7, 127.6, 53.1, 46.7.; $[\alpha]_{D}^{25}=-6.9\left(c=1, \mathrm{H}_{2} \mathrm{O}\right)$.

11c: ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 3.96-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.35$ $(\mathrm{m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;[\alpha]_{\mathrm{D}}{ }^{25}=+30.8\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right)$.

Experimental procedure for the one-pot synthesis of amino alcohols 12: To a stirred solution of the catalyst $9(16 \mathrm{mg}, 20 \mathrm{~mol} \%)$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added transcinnamaldehyde 2a ($33 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathbf{1 a}(40 \mathrm{mg}, 0.3 \mathrm{mmol})$. The reaction was vigorously stirred at room temperature for 4 hours. Then the reaction mixture was diluted with $\mathrm{MeOH}(1 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NaBH}_{4}(19 \mathrm{mg}$, $0.5 \mathrm{mmol})$. The mixture was then stirred for 10 min ., quenched with $\mathrm{HCl}(1 \mathrm{~N})$, and extracted with EtOAc. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed. The residue was purified by silica gel (pentane: ethyl acetate $=$ $4: 1$) to give the product 58 mg (yield 87%).

12a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.42(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=$ $10.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,140.3,128.5,127.6,127.4,82.0,60.3,60.1$, 34.2, 28.4; $[\alpha]_{D}^{25}=-52.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 290.1363$, found 290.1355.
2. Nejman, M.; Sliwinska, A.; Zwierzak, A. Tetrahedron 2005, 61, 8536.; Rachina, V.; Blagoeva, I. Synthesis 1982, 11, 967.; Tan, C. Y. K.; Weaver, D.F.; Tetrahedron 2002, 58, 7449.; Liu, S.; Mueller, J.F.; Neuburger, M.; Schaffner, S.; Zehnder, M.; Helv. Chim. Acta, 2000, 83 (6), 1256. Cardillo, G.; Gentilucci, L.; Tolomelli, A.; Tomasini, C.; J. Org. Chem. 1998, 63, 2351.; Graf, E.; Boeddeker, H. Liebigs Ann. Chem. 1958, 613, 111.
3. Gedey, S.; Liljeblad, A.; Lazar, L.; Fulop, F.; Kanerva, L.T. Tetrahedron Asymmetry 2001, 12, 105.

[^0]: 1. a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794.
 b) M. Marigo, D. Fielenbach, A. Braunton, A. Kjaersgaard, K. A. Jørgensen, Angew. Chem. Int. Ed.

 2005, 44, 3703. c) J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjaersgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296. d) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212. e) M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964. g) H. Sundén, I. Ibrahem, A. Córdova, Tetrahedron Lett. 2006, 47, 99. h) I. Ibrahem, A. Córdova, Chem. Commun. 2006, 1760.

