Actinide-Mediated Coupling of 4-Fluorobenzonitrile: Synthesis of an Eight-Membered Thorium(IV) Tetraazametallacycle

Eric J. Schelter, David E. Morris, Brian L. Scott and Jaqueline L. Kiplinger*

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Fax: +01 505 667 9905 ; Tel: +01 505 665 9553; E-mail: kiplinger@lanl.gov

Electronic Supplementary Information:

S2-S3: General Synthetic Considerations.

S4: Synthetic Details and Characterization for $(C_5Me_5)_2$ Th[-N=C(CH₃)(4-F-C₆H₄)]₂ (2).

S5: Crystal Data and Structure Refinement for $(C_5Me_5)_2$ Th $[-N=C(CH_3)(4-F-C_6H_4)]_2$ (2).

S6-S8: Table of Bond Distances and Angles for $(C_5Me_5)_2$ Th $[-N=C(CH_3)(4-F-C_6H_4)]_2$ (2).

S9: Crystal Data and Structure Refinement for $(C_5Me_5)_2$ Th[-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)=N-C(4-F-C₆H₄)(CH₃)₂] (**3**).

S10-S14: Table of Bond Distances and Angles for $(C_5Me_5)_2$ Th[-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)=N-C(4-F-C₆H₄)(CH₃)₂] (**3**).

General Synthetic Considerations.

Reactions and manipulations were performed at 20 °C in a recirculating Vacuum Atmospheres Model HE-553-2 inert atmosphere (N₂ or He) drybox with a MO-40-2 Dri-Train, or using standard Schlenk and high vacuum line techniques. Glassware was dried overnight at 150 °C before use. All NMR spectra were obtained using a Bruker Avance 300 MHz spectrometer. Cyclic voltammetric data were obtained in the Vacuum Atmospheres drybox system described above. All data were collected using a Perkin-Elmer Princeton Applied Research Corporation (PARC) Model 263 potentiostat under computer control with PARC Model 270 software. All sample solutions were ~5 mM in complex with 0.1 M [(n-C₄H₉)₄N][B(C₆F₅)₄] supporting electrolyte in THF solvent. X-ray data were collected using a Bruker APEX2 diffractometer. Structural solution and refinement was achieved using the SHELXL97 program suite. Details regarding data collection are provided in the CIF files.

Benzene- d_6 and toluene- d_8 were obtained from Cambridge Isotope Laboratories (CIL) and were purified by storage over activated 4 Å molecular sieves prior to use. Chemical shifts were referenced to protio solvent impurities, which are referenced to internal Si(CH₃)₄ at δ 0.00 ppm, or to CFCl₃ (¹⁹F) at δ -63.48 ppm. Mass spectrometric (MS) analyses were obtained at the University of California, Berkeley Mass Spectrometry Facility, using either VG ProSpec (EI) or VG70-SE (FAB) mass spectrometers. Elemental analyses were performed at the University of California, Berkeley Microanalytical Facility, on a Perkin-Elmer Series II 2400 CHNS analyzer. 4-Fluorobenzonitrile (Aldrich) was used as received. Celite (Aldrich) and alumina (Brockman I, Aldrich) were dried in vacuo at 250 °C for 48 h prior to use. Anhydrous toluene (Aldrich) and pentane (Aldrich), diethyl ether (Aldrich), and tetrahydrofuran (Aldrich) were passed through a column of activated alumina (A2, 12 × 32, Purifry) under nitrogen and stored over activated 4 Å molecular sieves prior to use. $(C_5Me_5)_2Th(CH_3)_2$ was prepared according to literature procedures.¹ *Caution*: Natural thorium (isotope ²³²Th) is a weak α -emitter with a half-life 1.41 x 10^{10} years; manipulations and reactions should be carried out in monitored fume hoods or in an inert atmosphere drybox in a radiation laboratory equipped with α - and β -counting equipment.

(1) Fagan, P. J.; Manriquez, J. M.; Maatta, E. A.; Seyam, A. M.; Marks, T. J., *J. Am. Chem. Soc.* **1981**, *103*, 6650-6667.

Synthesis of $(C_5Me_5)_2$ Th[-N=C(CH₃)(4-F-C₆H₄)]₂ (2). A toluene solution (10 mL) of 4fluorobenzonitrile (0.16 g, 1.4 mmol) was slowly added dropwise with stirring to a toluene solution (40 mL) containing (C₅Me₅)₂Th(CH₃)₂ (1) (0.23 g, 0.62 mmol). Excess nitrile solution was rinsed into the reaction mixture with additional toluene (3 x 2 mL). The reaction mixture immediately change color from clear and colorless to bright yellow. The solution was stirred for 1 h and the volatiles removed under reduced pressure. The resulting yellow residue was dissolved in ~ 50 mL pentane, filtered through a Celite-packed coarse-porosity frit, the filtrate was collected, and the volatiles were removed under reduced pressure to give crude 2 as a yellow solid. Recrystallization from pentane at -30 °C afforded 2 as a bright yellow crystalline solid. Yield 0.23 g, 0.30 mmol, 48%. ¹H-NMR (C₆D₆, 300 MHz, 298 K): δ 7.64 (dd, J_1 = 8.7 Hz, J_2 = 5.3 Hz, 4H, meta Ar-H), 6.87 (t, J_{HH} = 8.6 Hz, 4H, ortho Ar-H), 2.31 (s, 6H, -CH₃), 1.97 (s, 30H, C₅(CH₃)₅). ¹³C-NMR (C₆D₆, 300 MHz, 298 K): δ 167.89 (s, N=C), 164.46 (d, J_{CF} = 987 Hz, F-C), 138.21 (d, $J_{CF} = 1.2$ Hz, quat Ar-C), 129.42 (d, $J_{CF} = 33$ Hz, ortho Ar-C), 122.99 (s, $C_5(CH_3)_5$), 115.28 (d, $J_{CF} = 84$ Hz, meta Ar-C), 30.46 (s, -CH₃), 11.53 (s, $C_5(CH_3)_5$). ¹⁹F-NMR (C₆D₆, 300 MHz, 298 K): δ -113.52 (m, C₆H₅F). UV-Vis-NIR, cm⁻¹ (ε, M⁻¹ cm⁻¹, toluene): 22,396 (250). Electrochemistry (V vs. Fc/Fc^+ in THF/0.1 M [ⁿBu₄N][B(C₆F₅)₄]) E_{p,a} = -2.53 V. Anal. Calcd for C₃₆H₄₄N₂F₂Th (mol. wt. 774.78): C, 55.81; H, 5.72; N, 3.62. Found: C, 55.82; H, 5.82; N, 3.55.

Crystal Data and Structure Refinement for (C₅Me₅)₂Th[-N=C(CH₃)(4-F-C₆H₄)]₂ (2).

Empirical formula	$C_{36} H_{44} F_2 N_2 Th$		
Formula weight	774.77		
Temperature	141(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 12.9201(6) Å	α=90°	
	b = 14.0054(7) Å	β= 98.677(1)°	
	c = 18.2113(9) Å	$\gamma = 90^{\circ}$	
Volume	3257.6(3) Å ³		
Ζ	4		
Density (calculated)	1.580 Mg/m ³		
Absorption coefficient	4.615 mm ⁻¹		
F(000)	1528		
Crystal size	0.24 x 0.16 x 0.14 mm	m ³	
θ Range for data collection	2.16 to 28.85°		
Index ranges	$-17 \le h \le 17, -18 \le k \le 18, -23 \le l \le 23$		
Reflections collected	17967		
Independent reflections	4014 [R(int) = 0.0222]		
Completeness to $\theta = 25.00^{\circ}$	100.0 %	100.0 %	
Absorption correction	Semi-empirical from	equivalents	
Max. and min. transmission	0.5643 and 0.4038		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	4014 / 0 / 192		
Goodness-of-fit on F ²	1.323		
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0180, wR2 = 0	R1 = 0.0180, wR2 = 0.0484	
R indices (all data)	R1 = 0.0197, wR2 = 0	R1 = 0.0197, $wR2 = 0.0488$	
Largest diff. peak and hole	1.510 and -0.277 e.Å ⁻³		

Bond Lengths [Å] and Angles [°] for $(C_5Me_5)_2$ Th[-N=C(CH₃)(4-F-C₆H₄)]₂ (2).

Th(1)-N(1)#1	2.250(2)	N(1)#1-Th(1)-N(1)	108.67(11)
Th(1)-N(1)	2.250(2)	N(1)#1-Th(1)-C(2)	92.73(7)
Th(1)-C(2)	2.806(2)	N(1)-Th(1)-C(2)	124.27(7)
Th(1)-C(2)#1	2.806(2)	N(1)#1-Th(1)-C(2)#1	124.27(7)
Th(1)-C(3)	2.806(2)	N(1)-Th(1)-C(2)#1	92.73(7)
Th(1)-C(3)#1	2.806(2)	C(2)-Th(1)-C(2)#1	116.84(9)
Th(1)-C(4)	2.818(2)	N(1)#1-Th(1)-C(3)	121.60(7)
Th(1)-C(4)#1	2.818(2)	N(1)-Th(1)-C(3)	105.05(7)
Th(1)-C(1)	2.821(2)	C(2)-Th(1)-C(3)	29.36(7)
Th(1)-C(1)#1	2.821(2)	C(2)#1-Th(1)-C(3)	99.66(7)
Th(1)-C(5)#1	2.821(2)	N(1)#1-Th(1)-C(3)#1	105.05(7)
Th(1)-C(5)	2.821(2)	N(1)-Th(1)-C(3)#1	121.60(7)
F(1)-C(16)	1.358(4)	C(2)-Th(1)-C(3)#1	99.66(7)
N(1)-C(11)	1.260(3)	C(2)#1-Th(1)-C(3)#1	29.36(7)
C(1)-C(2)	1.413(3)	C(3)-Th(1)-C(3)#1	95.57(10)
C(1)-C(5)	1.418(3)	N(1)#1-Th(1)-C(4)	122.64(7)
C(1)-C(6)	1.508(3)	N(1)-Th(1)-C(4)	77.87(7)
C(2)-C(3)	1.422(3)	C(2)-Th(1)-C(4)	48.20(7)
C(2)-C(7)	1.504(3)	C(2)#1-Th(1)-C(4)	111.77(7)
C(3)-C(4)	1.420(3)	C(3)-Th(1)-C(4)	29.25(7)
C(3)-C(8)	1.512(3)	C(3)#1-Th(1)-C(4)	119.54(7)
C(4)-C(5)	1.421(3)	N(1)#1-Th(1)-C(4)#1	77.87(7)
C(4)-C(9)	1.505(3)	N(1)-Th(1)-C(4)#1	122.64(7)
C(5)-C(10)	1.507(3)	C(2)-Th(1)-C(4)#1	111.77(7)
C(11)-C(13)	1.504(4)	C(2)#1-Th(1)-C(4)#1	48.20(7)
C(11)-C(12)	1.520(3)	C(3)-Th(1)-C(4)#1	119.54(7)
C(13)-C(14)	1.397(4)	C(3)#1-Th(1)-C(4)#1	29.25(7)
C(13)-C(18)	1.408(3)	C(4)-Th(1)-C(4)#1	147.20(10)
C(14)-C(15)	1.381(4)	N(1)#1-Th(1)-C(1)	77.01(7)
C(15)-C(16)	1.381(4)	N(1)-Th(1)-C(1)	106.25(7)
C(16)-C(17)	1.375(5)	C(2)-Th(1)-C(1)	29.08(6)
C(17)-C(18)	1.377(4)	C(2)#1-Th(1)-C(1)	145.52(6)
		C(3)-Th(1)-C(1)	48.15(6)
		C(3)#1-Th(1)-C(1)	127.13(6)

C(4)-Th(1)-C(1)	48.03(7)	C(2)-C(1)-Th(1)	74.88(13)
C(4)#1-Th(1)-C(1)	129.94(7)	C(5)-C(1)-Th(1)	75.45(13)
N(1)#1-Th(1)-C(1)#1	106.25(7)	C(6)-C(1)-Th(1)	120.24(15)
N(1)-Th(1)-C(1)#1	77.01(7)	C(1)-C(2)-C(3)	108.1(2)
C(2)-Th(1)-C(1)#1	145.52(6)	C(1)-C(2)-C(7)	125.4(2)
C(2)#1-Th(1)-C(1)#1	29.08(6)	C(3)-C(2)-C(7)	126.3(2)
C(3)-Th(1)-C(1)#1	127.13(6)	C(1)-C(2)-Th(1)	76.04(13)
C(3)#1-Th(1)-C(1)#1	48.15(6)	C(3)-C(2)-Th(1)	75.31(12)
C(4)-Th(1)-C(1)#1	129.94(7)	C(7)-C(2)-Th(1)	118.47(15)
C(4)#1-Th(1)-C(1)#1	48.03(7)	C(4)-C(3)-C(2)	107.8(2)
C(1)-Th(1)-C(1)#1	174.58(8)	C(4)-C(3)-C(8)	124.8(2)
N(1)#1-Th(1)-C(5)#1	78.65(7)	C(2)-C(3)-C(8)	127.1(2)
N(1)-Th(1)-C(5)#1	94.38(7)	C(4)-C(3)-Th(1)	75.85(12)
C(2)-Th(1)-C(5)#1	140.88(7)	C(2)-C(3)-Th(1)	75.33(12)
C(2)#1-Th(1)-C(5)#1	48.11(7)	C(8)-C(3)-Th(1)	120.01(15)
C(3)-Th(1)-C(5)#1	143.62(7)	C(3)-C(4)-C(5)	108.0(2)
C(3)#1-Th(1)-C(5)#1	48.22(7)	C(3)-C(4)-C(9)	125.6(2)
C(4)-Th(1)-C(5)#1	158.64(7)	C(5)-C(4)-C(9)	126.1(2)
C(4)#1-Th(1)-C(5)#1	29.19(6)	C(3)-C(4)-Th(1)	74.90(13)
C(1)-Th(1)-C(5)#1	152.05(7)	C(5)-C(4)-Th(1)	75.52(13)
C(1)#1-Th(1)-C(5)#1	29.12(7)	C(9)-C(4)-Th(1)	120.12(15)
N(1)#1-Th(1)-C(5)	94.38(7)	C(1)-C(5)-C(4)	107.9(2)
N(1)-Th(1)-C(5)	78.65(7)	C(1)-C(5)-C(10)	125.8(2)
C(2)-Th(1)-C(5)	48.11(7)	C(4)-C(5)-C(10)	126.2(2)
C(2)#1-Th(1)-C(5)	140.88(7)	C(1)-C(5)-Th(1)	75.43(13)
C(3)-Th(1)-C(5)	48.22(7)	C(4)-C(5)-Th(1)	75.28(13)
C(3)#1-Th(1)-C(5)	143.62(7)	C(10)-C(5)-Th(1)	118.71(14)
C(4)-Th(1)-C(5)	29.19(6)	N(1)-C(11)-C(13)	122.3(2)
C(4)#1-Th(1)-C(5)	158.64(7)	N(1)-C(11)-C(12)	121.3(2)
C(1)-Th(1)-C(5)	29.12(7)	C(13)-C(11)-C(12)	116.4(2)
C(1)#1-Th(1)-C(5)	152.05(7)	C(14)-C(13)-C(18)	117.7(3)
C(5)#1-Th(1)-C(5)	168.14(9)	C(14)-C(13)-C(11)	119.29(19)
C(11)-N(1)-Th(1)	175.29(19)	C(18)-C(13)-C(11)	123.0(2)
C(2)-C(1)-C(5)	108.2(2)	C(15)-C(14)-C(13)	121.5(2)
C(2)-C(1)-C(6)	126.3(2)	C(16)-C(15)-C(14)	118.3(3)
C(5)-C(1)-C(6)	125.2(2)	F(1)-C(16)-C(17)	118.9(2)

F(1)-C(16)-C(15)	118.5(3)
C(17)-C(16)-C(15)	122.6(3)
C(16)-C(17)-C(18)	118.4(2)
C(17)-C(18)-C(13)	121.5(3)

Crystal Data and Structure Refinement for $(C_5Me_5)_2$ Th[-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)=N-C(4-F-C₆H₄)(CH₃)₂] (3).

Empirical formula	$C_{55} H_{64} F_4 N_4 Th$		
Formula weight	1089.14		
Temperature	141(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 24.6845(13) Å	α=90°	
	b = 18.9028(10) Å	β=95.014(1)°	
	c = 20.7781(11) Å	$\gamma = 90^{\circ}$	
Volume	9658.1(9) Å ³		
Z	8		
Density (calculated)	1.498 Mg/m^3		
Absorption coefficient	3.144 mm^{-1}		
F(000)	4384		
Crystal size	0.16 x 0.10 x 0.10 mm	$0.16 \ge 0.10 \ge 0.10 \text{ mm}^3$	
θ Range for data collection	1.63 to 25.65°.	1.63 to 25.65°.	
Index ranges	$-29 \le h \le 29, -21 \le k \le$	$-29 \le h \le 29, -21 \le k \le 22, -25 \le l \le 25$	
Reflections collected	40160	40160	
Independent reflections	9059 [R(int) = 0.0631]	9059 [R(int) = 0.0631]	
Completeness to $\theta = 25.00^{\circ}$	99.9 %	99.9 %	
Absorption correction	Semi-empirical from e	quivalents	
Max. and min. transmission	0.7439 and 0.6331	0.7439 and 0.6331	
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F^2	
Data / restraints / parameters	9059 / 0 / 544		
Goodness-of-fit on F ²	1.011		
Final R indices [I>2 σ (I)]	R1 = 0.0363, wR2 = 0	R1 = 0.0363, wR2 = 0.0929	
R indices (all data)	R1 = 0.0505, wR2 = 0	R1 = 0.0505, wR2 = 0.0985	
Largest diff. peak and hole	$1.273 \text{ and } -1.136 \text{ e.Å}^{-3}$	1.273 and -1.136 e.Å ⁻³	

	[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		
Th(1)-N(4)	2.234(4)	C(4)-C(5)	1.397(7)
Th(1)-N(2)	2.451(4)	C(4)-C(9)	1.529(7)
Th(1)-N(1)	2.727(4)	C(5)-C(10)	1.503(7)
Th(1)-C(3)	2.797(5)	C(11)-C(12)	1.406(7)
Th(1)-C(4)	2.828(5)	C(11)-C(15)	1.418(7)
Th(1)-C(11)	2.837(5)	C(11)-C(16)	1.516(8)
Th(1)-C(2)	2.843(5)	C(12)-C(13)	1.416(7)
Th(1)-C(12)	2.846(5)	C(12)-C(17)	1.515(7)
Th(1)-C(5)	2.864(5)	C(13)-C(14)	1.427(7)
Th(1)-C(15)	2.865(5)	C(13)-C(18)	1.510(7)
Th(1)-C(13)	2.873(5)	C(14)-C(15)	1.401(8)
Th(1)-C(1)	2.875(6)	C(14)-C(19)	1.514(8)
Th(1)-C(14)	2.892(5)	C(15)-C(20)	1.506(7)
Th(1)-C(30)	3.057(5)	C(21)-C(23)	1.503(8)
Th(1)-N(3)	3.879(4)	C(21)-C(22)	1.520(7)
F(1)-C(27)	1.405(6)	C(21)-C(24)	1.540(7)
F(2)-C(34)	1.346(6)	C(24)-C(29)	1.388(7)
F(3)-C(41)	1.344(5)	C(24)-C(25)	1.386(6)
F(4)-C(48)	1.380(5)	C(25)-C(26)	1.360(8)
N(1)-C(30)	1.313(6)	C(26)-C(27)	1.338(9)
N(1)-C(21)	1.518(6)	C(27)-C(28)	1.376(9)
N(2)-C(30)	1.378(6)	C(28)-C(29)	1.390(8)
N(2)-C(37)	1.383(6)	C(30)-C(31)	1.510(7)
N(3)-C(37)	1.285(6)	C(31)-C(36)	1.402(7)
N(3)-C(44)	1.406(6)	C(31)-C(32)	1.408(7)
N(4)-C(44)	1.268(6)	C(32)-C(33)	1.385(8)
C(1)-C(5)	1.400(7)	C(33)-C(34)	1.385(9)
C(1)-C(2)	1.417(7)	C(34)-C(35)	1.359(7)
C(1)-C(6)	1.520(7)	C(35)-C(36)	1.373(7)
C(2)-C(3)	1.413(7)	C(37)-C(38)	1.513(6)
C(2)-C(7)	1.493(7)	C(38)-C(43)	1.371(7)
C(3)-C(4)	1.411(7)	C(38)-C(39)	1.419(8)
C(3)-C(8)	1.514(7)	C(39)-C(40)	1.404(8)

Bond Lengths [Å] and Angles [°] for $(C_5Me_5)_2$ Th[-N=C(4-F-C₆H₄)-N=C(4-F-C₆H₄)-N-C(4-F-C₆H₄)=N-C(4-F-C₆H₄)(CH₃)₂] (3).

C(40)-C(41)	1.348(9)	C(4)-Th(1)-C(12)	164.01(16)	
C(41)-C(42)	1.363(8)	C(11)-Th(1)-C(12)	28.65(14)	
C(42)-C(43)	1.399(7)	C(2)-Th(1)-C(12)	128.47(14)	
C(44)-C(45)	1.513(6)	N(4)-Th(1)-C(5)	92.79(15)	
C(45)-C(46)	1.377(7)	N(2)-Th(1)-C(5)	84.48(14)	
C(45)-C(50)	1.405(7)	N(1)-Th(1)-C(5)	86.46(13)	
C(46)-C(47)	1.381(7)	C(3)-Th(1)-C(5)	47.61(15)	
C(47)-C(48)	1.346(7)	C(4)-Th(1)-C(5)	28.41(15)	
C(48)-C(49)	1.372(8)	C(11)-Th(1)-C(5)	165.97(16)	
C(49)-C(50)	1.383(7)	C(2)-Th(1)-C(5)	47.29(14)	
		C(12)-Th(1)-C(5)	165.27(15)	
N(4)-Th(1)-N(2)	69.78(13)	N(4)-Th(1)-C(15)	75.15(15)	
N(4)-Th(1)-N(1)	120.09(12)	N(2)-Th(1)-C(15)	121.85(15)	
N(2)-Th(1)-N(1)	50.49(12)	N(1)-Th(1)-C(15)	130.34(13)	
N(4)-Th(1)-C(3)	81.60(15)	C(3)-Th(1)-C(15)	95.22(15)	
N(2)-Th(1)-C(3)	122.67(15)	C(4)-Th(1)-C(15)	116.66(16)	
N(1)-Th(1)-C(3)	131.85(14)	C(11)-Th(1)-C(15)	28.79(15)	
N(4)-Th(1)-C(4)	70.98(16)	C(2)-Th(1)-C(15)	103.50(16)	
N(2)-Th(1)-C(4)	93.75(15)	C(12)-Th(1)-C(15)	47.36(14)	
N(1)-Th(1)-C(4)	112.92(14)	C(5)-Th(1)-C(15)	142.64(15)	
C(3)-Th(1)-C(4)	29.05(15)	N(4)-Th(1)-C(13)	119.61(14)	
N(4)-Th(1)-C(11)	74.50(15)	N(2)-Th(1)-C(13)	122.61(15)	
N(2)-Th(1)-C(11)	96.33(14)	N(1)-Th(1)-C(13)	92.21(14)	
N(1)-Th(1)-C(11)	104.90(14)	C(3)-Th(1)-C(13)	114.69(16)	
C(3)-Th(1)-C(11)	122.83(15)	C(4)-Th(1)-C(13)	143.62(16)	
C(4)-Th(1)-C(11)	137.87(16)	C(11)-Th(1)-C(13)	47.05(14)	
N(4)-Th(1)-C(2)	110.56(15)	C(2)-Th(1)-C(13)	99.88(14)	
N(2)-Th(1)-C(2)	131.55(14)	C(12)-Th(1)-C(13)	28.67(14)	
N(1)-Th(1)-C(2)	111.82(13)	C(5)-Th(1)-C(13)	142.42(14)	
C(3)-Th(1)-C(2)	29.00(14)	C(15)-Th(1)-C(13)	47.05(14)	
C(4)-Th(1)-C(2)	47.34(14)	N(4)-Th(1)-C(1)	117.42(14)	
C(11)-Th(1)-C(2)	131.39(15)	N(2)-Th(1)-C(1)	105.54(14)	
N(4)-Th(1)-C(12)	101.41(16)	N(1)-Th(1)-C(1)	85.88(13)	
N(2)-Th(1)-C(12)	96.70(14)	C(3)-Th(1)-C(1)	47.35(14)	
N(1)-Th(1)-C(12)	83.08(13)	C(4)-Th(1)-C(1)	46.61(15)	
C(3)-Th(1)-C(12)	138.07(14)			

C(11)-Th(1)-C(1)	157.60(14)	C(4)-Th(1)-N(3)	76.99(12)	
C(2)-Th(1)-C(1)	28.69(14)	C(11)-Th(1)-N(3)	87.96(11)	
C(12)-Th(1)-C(1)	139.85(15)	C(2)-Th(1)-N(3)	124.33(11)	
C(5)-Th(1)-C(1)	28.23(14)	C(12)-Th(1)-N(3)	104.97(13)	
C(15)-Th(1)-C(1)	131.77(16)	C(5)-Th(1)-N(3)	84.57(12)	
C(13)-Th(1)-C(1)	114.19(14)	C(15)-Th(1)-N(3)	101.84(13)	
N(4)-Th(1)-C(14)	102.04(15)	C(13)-Th(1)-N(3)	132.87(12)	
N(2)-Th(1)-C(14)	141.96(15)	C(1)-Th(1)-N(3)	112.67(12)	
N(1)-Th(1)-C(14)	120.79(14)	C(14)-Th(1)-N(3)	129.90(13)	
C(3)-Th(1)-C(14)	91.07(15)	C(30)-Th(1)-N(3)	61.58(10)	
C(4)-Th(1)-C(14)	119.38(15)	C(30)-N(1)-C(21)	124.2(4)	
C(11)-Th(1)-C(14)	46.83(14)	C(30)-N(1)-Th(1)	91.5(3)	
C(2)-Th(1)-C(14)	86.44(14)	C(21)-N(1)-Th(1)	140.5(3)	
C(12)-Th(1)-C(14)	47.14(14)	C(30)-N(2)-C(37)	125.3(4)	
C(5)-Th(1)-C(14)	133.55(14)	C(30)-N(2)-Th(1)	102.3(3)	
C(15)-Th(1)-C(14)	28.16(15)	C(37)-N(2)-Th(1)	132.4(3)	
C(13)-Th(1)-C(14)	28.66(15)	C(37)-N(3)-C(44)	121.2(4)	
C(1)-Th(1)-C(14)	110.77(15)	C(37)-N(3)-Th(1)	65.0(3)	
N(4)-Th(1)-C(30)	94.84(13)	C(44)-N(3)-Th(1)	56.6(2)	
N(2)-Th(1)-C(30)	26.13(12)	C(44)-N(4)-Th(1)	141.3(3)	
N(1)-Th(1)-C(30)	25.42(11)	C(5)-C(1)-C(2)	108.7(4)	
C(3)-Th(1)-C(30)	137.18(14)	C(5)-C(1)-C(6)	126.5(5)	
C(4)-Th(1)-C(30)	109.64(15)	C(2)-C(1)-C(6)	123.7(5)	
C(11)-Th(1)-C(30)	96.49(14)	C(5)-C(1)-Th(1)	75.4(3)	
C(2)-Th(1)-C(30)	129.59(14)	C(2)-C(1)-Th(1)	74.4(3)	
C(12)-Th(1)-C(30)	84.62(13)	C(6)-C(1)-Th(1)	125.9(3)	
C(5)-Th(1)-C(30)	90.37(14)	C(3)-C(2)-C(1)	107.3(4)	
C(15)-Th(1)-C(30)	125.28(15)	C(3)-C(2)-C(7)	127.6(5)	
C(13)-Th(1)-C(30)	104.15(15)	C(1)-C(2)-C(7)	124.3(5)	
C(1)-Th(1)-C(30)	100.99(13)	C(3)-C(2)-Th(1)	73.7(3)	
C(14)-Th(1)-C(30)	130.95(14)	C(1)-C(2)-Th(1)	76.9(3)	
N(4)-Th(1)-N(3)	34.42(11)	C(7)-C(2)-Th(1)	123.3(4)	
N(2)-Th(1)-N(3)	35.74(11)	C(2)-C(3)-C(4)	107.5(4)	
N(1)-Th(1)-N(3)	86.22(9)	C(2)-C(3)-C(8)	126.2(5)	
C(3)-Th(1)-N(3)	100.41(12)	C(4)-C(3)-C(8)	126.0(5)	

C(2)-C(3)-Th(1)	77.3(3)	C(13)-C(14)-C(19)	124.4(6)	
C(4)-C(3)-Th(1)	76.7(3)	C(15)-C(14)-Th(1)	74.9(3)	
C(8)-C(3)-Th(1)	117.6(4)	C(13)-C(14)-Th(1)	74.9(3)	
C(5)-C(4)-C(3)	108.9(4)	C(19)-C(14)-Th(1)	126.6(4)	
C(5)-C(4)-C(9)	125.3(5)	C(14)-C(15)-C(11)	107.8(4)	
C(3)-C(4)-C(9)	125.4(5)	C(14)-C(15)-C(20)	124.2(6)	
C(5)-C(4)-Th(1)	77.2(3)	C(11)-C(15)-C(20)	127.4(6)	
C(3)-C(4)-Th(1)	74.2(3)	C(14)-C(15)-Th(1)	77.0(3)	
C(9)-C(4)-Th(1)	120.2(4)	C(11)-C(15)-Th(1)	74.5(3)	
C(4)-C(5)-C(1)	107.6(4)	C(20)-C(15)-Th(1)	121.6(4)	
C(4)-C(5)-C(10)	123.1(5)	C(23)-C(21)-N(1)	114.3(4)	
C(1)-C(5)-C(10)	128.8(5)	C(23)-C(21)-C(22)	106.0(5)	
C(4)-C(5)-Th(1)	74.4(3)	N(1)-C(21)-C(22)	104.7(4)	
C(1)-C(5)-Th(1)	76.3(3)	C(23)-C(21)-C(24)	113.0(5)	
C(10)-C(5)-Th(1)	121.1(3)	N(1)-C(21)-C(24)	110.5(4)	
C(12)-C(11)-C(15)	108.6(5)	C(22)-C(21)-C(24)	107.6(4)	
C(12)-C(11)-C(16)	126.9(6)	C(29)-C(24)-C(25)	117.6(5)	
C(15)-C(11)-C(16)	124.1(5)	C(29)-C(24)-C(21)	121.1(4)	
C(12)-C(11)-Th(1)	76.1(3)	C(25)-C(24)-C(21)	121.2(4)	
C(15)-C(11)-Th(1)	76.7(3)	C(26)-C(25)-C(24)	122.0(6)	
C(16)-C(11)-Th(1)	118.6(3)	C(27)-C(26)-C(25)	117.9(5)	
C(11)-C(12)-C(13)	107.7(4)	C(26)-C(27)-C(28)	124.9(5)	
C(11)-C(12)-C(17)	124.2(5)	C(26)-C(27)-F(1)	119.2(6)	
C(13)-C(12)-C(17)	126.8(5)	C(28)-C(27)-F(1)	115.9(7)	
C(11)-C(12)-Th(1)	75.3(3)	C(27)-C(28)-C(29)	115.8(6)	
C(13)-C(12)-Th(1)	76.7(3)	C(24)-C(29)-C(28)	121.8(5)	
C(17)-C(12)-Th(1)	124.4(3)	N(1)-C(30)-N(2)	111.3(4)	
C(12)-C(13)-C(14)	107.7(4)	N(1)-C(30)-C(31)	129.0(4)	
C(12)-C(13)-C(18)	127.4(5)	N(2)-C(30)-C(31)	118.6(4)	
C(14)-C(13)-C(18)	124.2(5)	N(1)-C(30)-Th(1)	63.1(2)	
C(12)-C(13)-Th(1)	74.6(3)	N(2)-C(30)-Th(1)	51.6(2)	
C(14)-C(13)-Th(1)	76.4(3)	C(31)-C(30)-Th(1)	151.6(3)	
C(18)-C(13)-Th(1)	122.8(4)	C(36)-C(31)-C(32)	117.9(5)	
C(15)-C(14)-C(13)	108.2(4)	C(36)-C(31)-C(30)	118.1(4)	
C(15)-C(14)-C(19)	126.1(6)	C(32)-C(31)-C(30)	123.9(5)	

C(33)-C(32)-C(31)	119.7(6)
C(32)-C(33)-C(34)	119.1(5)
F(2)-C(34)-C(35)	119.4(6)
F(2)-C(34)-C(33)	117.4(5)
C(35)-C(34)-C(33)	123.1(6)
C(34)-C(35)-C(36)	117.5(5)
C(35)-C(36)-C(31)	122.6(5)
N(3)-C(37)-N(2)	125.3(4)
N(3)-C(37)-C(38)	114.1(4)
N(2)-C(37)-C(38)	120.2(4)
C(43)-C(38)-C(39)	118.5(4)
C(43)-C(38)-C(37)	120.2(5)
C(39)-C(38)-C(37)	121.1(5)
C(40)-C(39)-C(38)	118.8(5)
C(41)-C(40)-C(39)	120.3(6)
F(3)-C(41)-C(40)	118.6(5)
F(3)-C(41)-C(42)	119.1(5)
C(40)-C(41)-C(42)	122.3(5)
C(41)-C(42)-C(43)	118.4(5)
C(38)-C(43)-C(42)	121.7(5)
N(4)-C(44)-N(3)	127.2(4)
N(4)-C(44)-C(45)	121.7(4)
N(3)-C(44)-C(45)	111.1(4)
C(46)-C(45)-C(50)	118.1(4)
C(46)-C(45)-C(44)	123.1(4)
C(50)-C(45)-C(44)	118.8(4)
C(45)-C(46)-C(47)	121.3(5)
C(48)-C(47)-C(46)	118.9(5)
C(47)-C(48)-C(49)	122.8(5)
C(47)-C(48)-F(4)	118.3(5)
C(49)-C(48)-F(4)	118.8(5)
C(48)-C(49)-C(50)	118.2(5)
C(49)-C(50)-C(45)	120.7(5)