Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Oxacalixarenes and Oxacyclophanes Containing 1,8-Naphthyridines: A New Class of Molecular Tweezers With Concave-Surface Functionality

Supplementary Material

Jeffrey L. Katz,*^{*a*} Bram J. Geller^{*a*} and Peter D. Foster^{*a*}

^aDepartment of Chemistry, Colby College, 5754 Mayflower Hill, Waterville, ME 04901, USA, Fax: (207) 859-5760; Tel: (207) 859-5754; Email <u>jlkatz@colby.edu</u>

Synthetic procedures and characterization data for compounds 3, 6, 7	S2
¹ H and ¹³ C NMR spectra for compounds 3 , 6 , 7	S 3
X-ray crystallographic data for compound $3 \cdot 2 CH_2 CL_2$	S 6
X-ray crystallographic data for compound $6 \cdot 0.5 \text{CH}_2 \text{CL}_2 \cdot 0.5 \text{H}_2 \text{O}$	S 8
X-ray crystallographic data for compound 7•2CH ₃ CN	S10
¹ H NMR Titration Experiments	S12
Molecular Modeling of Host-Guest Complexes	S18

General information

¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts are reported in ppm versus tetramethylsilane with either tetramethylsilane or the residual solvent resonance used as an internal standard. Infrared spectra were recorded on a PerkinElmer Spectrum One spectrometer. Mass spectra were obtained on an IonSpec HiResMALDI Fourier transform mass spectrometer.

Synthetic Procedures and Characterization Data

General Reaction Procedure: 2,7-Dichloro-1,8-naphthyridine (1) (133 mg, 0.67 mmol, 1 equiv), diphenol 3, 6, or 7 (0.67 mmol, 1 equiv), and Cs_2CO_3 (545 mg, 1.67 mmol, 2.5 equiv) were combined under an argon atmosphere. DMSO (10 mL) was added, and the reaction was heated to 100 °C and stirred vigorously for 18 hr. The reaction mixture was then cooled to room temperature, and purified as described below.

Oxacalix[2]benzene[2]naphthyridine 3: The reaction mixture was partitioned between EtOAc (80 mL) and 0.1 M HCl (60 mL), separated, and the aqueous layer was extracted twice with EtOAc (30 mL). The combined organics were washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The product was purified via flash column chromatography through silica (linear gradient 0-3% MeOH in CH₂Cl₂) to yield 133 mg **3** as a white solid (80%). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, 4H, *J* = 8.6 Hz), 7.04 (d, 4H, *J* = 8.6 Hz), 6.86 (d, 4H, *J* = 1.8 Hz) 6.77 (t, 2H, *J* = 1.8 Hz), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 154.7, 153.9, 141.6, 139.8, 120.7, 116.9, 115.2, 111.4, 21.9;

IR (thin film): 2917, 1608, 1590, 1424, 1308, 1221, 1123, 1051, 968, 844, 797, 714 cm⁻¹; HRMS [MALDI(+) with a DHB matrix] calculated for $(M+Na)^+$ [C₃₀H₂₀N₄O₄Na]⁺: 523.13768, found: 523.13947. M.P. >533K.

Oxacalix[2]naphthalene[2]naphthyridine 6: The reaction mixture was diluted with 20 mL H₂O causing formation of a grey precipitate. The solid was collected by filtration, washed with 10 mL H₂O, dissolved in 1:1 CH₂Cl₂:MeOH, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The product was then purified via flash column chromatography through silica (linear gradient 0-3% MeOH in CH₂Cl₂) to yield 130 mg **6** as a white solid (68%). ¹H NMR (400 MHz, CD₂Cl₂): δ 8.06 (d, 4H, *J* = 8.6 Hz), 7.88 (d, 4H, *J* = 8.8 Hz), 7.47 (d, 4H, *J* = 2.1 Hz) 7.20 (dd, 4H, *J* = 8.8, 2.2 Hz), 7.13 (d, 4H, *J* = 8.6 Hz); ¹³C NMR (100 MHz, CD₂Cl₂) δ 166.0, 154.2, 151.9, 140.3, 135.7, 130.7, 130.1, 122.0, 120.0, 116.9, 111.5; IR (thin film): 3057, 1728, 1604, 1510, 1495, 1456, 1423, 1370, 1322, 1310, 1250, 1223, 1170, 1125, 962, 896, 855, 838, 797 cm⁻¹; HRMS [MALDI(+) with a DHB matrix] calculated for (M+H)⁺ [C₃₆H₂₁N₄O₄]⁺: 573.15573, found: 573.15415. M.P. >533K.

[1₄]Oxacyclophane 7: The reaction mixture was diluted with 20 mL H₂O causing formation of a grey precipitate. The solid was collected by filtration, washed with an additional 10 mL H₂O, then dissolved in 1:1 CH₂Cl₂:MeOH, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The product was purified via flash column chromatography through silica (linear gradient 0-3% MeOH in CH₂Cl₂) to yield 86 mg 7 as a white solid (45%). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.78 (dd, 4H, *J* = 6.2, 3.3), 7.72 (s, 4H), 7.66 (d, 4H, *J* = 8.6 Hz) 7.42 (dd, 4H, *J* = 6.2, 3.3 Hz), 6.83 (d, 4H, *J* = 8.6 Hz); ¹³C NMR (100 MHz, CD₂Cl₂) δ 164.2, 153.2, 145.0, 139.4, 132.3, 128.1, 126.4, 123.0, 116.5, 110.9; IR (thin film): 3048, 1724, 1604, 1493, 1457, 1424, 1319, 1304, 1245, 1209, 1144, 1119, 886, 837, 793, 739, 711 cm⁻¹; HRMS [MALDI(+) with a DHB matrix] calculated for (M+H)⁺ [C₃₆H₂₁N₄O₄]⁺: 573.15573, found: 573.15478. M.P. >533K.

oxacalix[2]benzene[2]naphthyridine 3

oxacalix[2]naphthalene[2]naphthyridine 6

X-ray Crystallographic Data for 3•2CH₂Cl₂

CCDC number	624760	
Empirical formula	$C_{32}H_{24}Cl_4N_4O_4$	
Formula weight	670.35	
Temperature	174(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pnnm	
Unit cell dimensions	a = 10.6659(9) Å	$\alpha = 90^{\circ}$
	b = 16.1506(14) Å	$\beta = 90^{\circ}$
	c = 18.2407(16) Å	$\gamma=90^\circ$
Volume, Z	3142.2(5) Å ³ , 4	
Density (calculated)	1.417 Mg/m ³	
Absorption coefficient	0.421 mm^{-1}	
F(000)	1376	
Crystal size	0.48 x 0.28 x 0.10 mm	
θ range for data collection	1.68 to 28.27°	
Limiting indices	-14 < h < 14, -21 < k	< 20, -24 < <i>l</i> < 24
Reflections collected	26939	
Independent reflections	$3942 (R_{int} = 0.0973)$	
Completeness to $\theta = 28.27^{\circ}$	97.8%	
Absorption correction	None	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	3942 / 0 / 222	
Goodness-of-fit on F ²	1.054	
Final R indices $[I>2\sigma(I)]$	R1 = 0.0567, wR2 = 0	.1586
R indices (all data)	R1 = 0.0675, wR2 = 0	.1686
Largest diff. peak and hole	0.748 and –0.295 e-/Å	

Experimental details for 3•2CH₂Cl₂

The selected crystal was covered with Paratone-N oil, placed onto the tip of a glass rod drawn out to a fiber, and frozen in the cold stream (-99 °C) provided by a Rigaku/MSC X-stream 2000 low-temperature system. The X-ray intensity data for this colorless plate of $C_{32}H_{24}Cl_4N_4O_4$ with approximate dimensions 0.48 x 0.28 x 0.10 mm were measured with phi and omega scans at 174 K on a Bruker SMART APEX CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda = 0.71073$ Å). The detector was placed at a distance of 5.00 cm from the crystal. A total of 1850 frames were collected (a hemisphere of data) with an exposure time of 30 sec/frame. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm giving a total of 26939 reflections to a maximum 20 angle of 56.5° of which 3942 reflections were independent. The structure was solved (direct methods) and refined using the Bruker SHELXTL version 6.1 Software Package using literature scattering factors (Wilson, A. J. C., Ed. International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. C.), and the orthorhombic space group Pnnm, with Z =4 because of crystallographically imposed mirror symmetry. No absorption correction was applied. The final anisotropic full-matrix least-squares refinement of F^2 converged at R1 = 5.67\%, wR2 = 15.86\% and a goodness-of-fit of 1.054 for all data. All non-hydrogen atoms were modeled anisotropically. The disordered CH₂Cl₂ molecule was modeled in two positions using a free variable with a total occupancy of

one. Hydrogen atoms were not added to the CH_2Cl_2 molecule. No further modeling was attempted, resulting in the largest peak value of 0.748 e-/A³. All hydrogen atoms were placed at calculated distances and use a riding model, which means that the positional and thermal parameters are derived from the atom each hydrogen atom is bound to, while maintaining the calculated distance and optimal angles. The largest peak and hole in the final difference map were 0.748 and -0.295 e-/A³, respectively. The calculated density is 1.417 g/cm³ and F(000) is 1376 e-.

X-ray Crystallographic Data for 6•0.5CH₂Cl₂•0.5H₂O

CCDC number	624761	
Empirical formula	$C_{36.50}H_{22}ClN_4O_{4.50}$	
Formula weight	624.03	
Temperature	180(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.6887(8) Å	$a = 100.3880(10)^{\circ}$
	b = 13.1957(10) Å	$b = 107.1250(10)^{\circ}$
	c = 13.4844(10) Å	$g = 111.1100(10)^{\circ}$
Volume, Z	1455.5(2) Å ³ , 2	
Density (calculated)	1.424 Mg/m^3	
Absorption coefficient	0.184 mm^{-1}	
F(000)	644	
Crystal size	0.46 x 0.22 x 0.14 mm	n
θ range for data collection	1.67 to 28.29°	
Limiting indices	-12 < h < 12, -16 < k	< 17, -17 < l < 17
Reflections collected	13087	
Independent reflections	6628 ($R_{int} = 0.0512$)	
Completeness to $\theta = 28.29^{\circ}$	91.7%	
Absorption correction	None	
Refinement method	Full-matrix least-squa	tres on F ²
Data / restraints / parameters	6628 / 0 / 433	
Goodness-of-fit on F ²	1.157	
Final R indices [I>2 σ (I)]	R1 = 0.0557, wR2 = 0).1811
R indices (all data)	R1 = 0.0698, wR2 = 0).1893
Largest diff. peak and hole	0.790 and –0.279 e-/Å	Å

Experimental details for 6•0.5CH₂Cl₂•0.5H₂O

The selected crystal was covered with Paratone-N oil, placed onto the tip of a glass rod drawn out to a fiber, and frozen in the cold stream (-93 °C) provided by a Rigaku/MSC X-stream 2000 low-temperature system. The X-ray intensity data for this colorless rectangular prism of C_{36.50}H₂₂ClN₄O_{4.50} with approximate dimensions 0.46 x 0.22 x 0.14 mm were measured with phi and omega scans at 180 K on a Bruker SMART APEX CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda = 0.71073$ Å). The detector was placed at a distance of 5.00 cm from the crystal. A total of 1850 frames were collected (a hemisphere of data) with an exposure time of 30 sec/frame. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm giving a total of 13087 reflections to a maximum 2θ angle of 56.6° of which 6628 reflections were independent. The structure was solved (direct methods) and refined using the Bruker SHELXTL version 6.1 Software Package using literature scattering factors (Wilson, A. J. C., Ed. International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. C.), and the triclinic space group P-1, with Z = 2. No absorption correction was applied. The final anisotropic full-matrix least-squares refinement of F^2 converged at R1 = 5.57%, wR2 = 18.11% and a goodness-of-fit of 1.157 for all data. All non-hydrogen atoms were modeled anisotropically. The solvated CH₂Cl₂ molecule occupied a special position, and was refined without added hydrogen atoms. Disorder for this CH₂Cl₂ molecule was not modeled. The disordered water molecule was refined with an occupancy of 0.5. Hydrogen atoms were also not added to the disordered water molecule. All other hydrogen atoms were placed at calculated distances and use a

riding model, which means that the positional and thermal parameters are derived from the atom each hydrogen atom is bound to, while maintaining the calculated distance and optimal angles. The largest peak and hole in the final difference map were 0.790 and -0.279 e-/A³, respectively. The calculated density is 1.424 g/cm³ and F(000) is 644 e-.

X-ray Crystallographic Data for 7•2CH₃CN

624762	
$C_{40}H_{26}N_6O_4$	
654.67	
178(2) K	
0.71073 Å	
Monoclinic	
P2(1)/n	
a = 19.4444(15) Å	a = 90°
b = 9.3321(7) Å	b = 118.0490(10)°
c = 20.5331(16) Å	$g = 90^{\circ}$
3288.3(4) Å ³ , 4	
1.322 Mg/m ³	
0.088 mm^{-1}	
1360	
0.36 x 0.24 x 0.15 mm	
1.19 to 28.30°	
-25 < h < 25, -12 < k < -12	< 12, -26 < <i>l</i> < 27
28816	
7790 ($R_{int} = 0.0685$)	
95.4%	
None	
Full-matrix least-squar	es on F ²
7790 / 0 / 453	
0.924	
R1 = 0.0534, wR2 = 0.1343	
R1 = 0.0957, wR2 = 0.	1564
0.484 and -0.221 e-/Å	
	624762 $C_{40}H_{26}N_6O_4$ 654.67 178(2) K 0.71073 Å Monoclinic P2(1)/n a = 19.4444(15) Å b = 9.3321(7) Å c = 20.5331(16) Å 3288.3(4) Å ³ , 4 1.322 Mg/m ³ 0.088 mm ⁻¹ 1360 0.36 x 0.24 x 0.15 mm 1.19 to 28.30° -25 < h < 25, -12 < k < 28816 7790 (R _{int} = 0.0685) 95.4% None Full-matrix least-squar 7790 / 0 / 453 0.924 R1 = 0.0534, wR2 = 0. R1 = 0.0957, wR2 = 0. 0.484 and -0.221 e-/Å

Experimental details for 7•2CH₃CN

The selected crystal was covered with Paratone-N oil, placed onto the tip of a glass rod drawn out to a fiber, and frozen in the cold stream (-95 °C) provided by a Rigaku/MSC X-stream 2000 low-temperature system. The X-ray intensity data for this colorless hexagonal prism of C40H26N6O4 with approximate dimensions 0.36 x 0.24 x 0.15 mm were measured with phi and omega scans at 178 K on a Bruker SMART APEX CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda = 0.71073$ Å). The detector was placed at a distance of 5.00 cm from the crystal. A total of 1850 frames were collected (a hemisphere of data) with an exposure time of 30 sec/frame. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm giving a total of 28816 reflections to a maximum 20 angle of 56.6° of which 7790 reflections were independent. The structure was solved (direct methods) and refined using the Bruker SHELXTL version 6.1 Software Package using literature scattering factors (Wilson, A. J. C., Ed. International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. C.), and the monoclinic space group P2(1)/n, with Z =4. No absorption correction was applied. The final anisotropic full-matrix least-squares refinement of F^2 converged at R1 = 5.34%, wR2 = 13.43% and a goodness-of-fit of 0.924 for all data. All non-hydrogen atoms were modeled anisotropically. Hydrogen atoms were placed at calculated distances and use a riding model, which means that the positional and thermal parameters are derived from the atom each hydrogen atom is bound to, while maintaining the calculated distance and optimal angles. The largest peak and hole in the final difference map were 0.484 and $-0.221 \text{ e}-/\text{A}^3$, respectively. The calculated density is 1.322 g/cm³ and F(000) is 1360 e-.

Determination Of Association Constants By ¹H NMR Titration

NMR titrations were performed at 25°C by treating known concentrations of host **6** or **7** in 9:1 $CH_2Cl_2:CD_2Cl_2$ with aliquots of guest **12** in 9:1 $CH_2Cl_2:CD_2Cl_2$ and monitoring the chemical shift changes in ¹H resonances. Host-guest complexation and guest monomer-dimer equilibrium are competitive in this determination. The guest dissociation constant (K_d) was determined separately (see below). Assuming a 1:1 host:guest-monomer complex, the equilibrium guest-monomer concentration [G] in each titration experiment was obtained by iterative solution of the expression:

$$\frac{2[G]^2}{K_d} + [G] - \frac{[H_0]}{(K_a[G]+1)} - ([G_0] - [H_0]) = 0$$

The complexation-induced species-averaged host chemical shift was then predicted as $\delta_{calc} = (1-\chi_{HG}) \delta_H + (\chi_{HG})(\delta_{HG})$ where the mole fraction of host-guest complex (χ_{HG}) is given by:

$$\chi_{\rm HG} = \frac{\rm K_a[G]}{1 + \rm K_a[G]}$$

 K_a and δ_{HG} were then determined by non-linear least squares fit (Solver, Microsoft Excel) of the predicted chemical shifts to the titration experiment. Standard deviations were calculated with Solver Aid.¹

For a 1:1 host:guest-dimer complex the corresponding expressions to be similarly solved and fit are:

$$\frac{2[G]^2}{K_d} + [G] - \frac{[H_0]}{(1 + \frac{K_a}{K_d}[G]^2)} - ([G_0] - 2[H_0]) = 0$$
$$[G_2] = \frac{[G]^2}{K_d}$$

The complexation-induced species-averaged host chemical shift was predicted as $\delta_{calc} = (1 - \chi_{HG_2}) \delta_H + (\chi_{HG_2}) (\delta_{HG_2})$ where the mole fraction of host-guest complex (χ_{HG_2}) is given by:

$$\chi_{\text{HG}_2} = \frac{K_a[G_2]}{1 + K_a[G_2]}$$

During the experiments, the ¹H NMR resonances of **6** and **7** were also found to vary slightly depending on the amount of residual water present. The specific ¹H resonances on hosts **6** or **7** chosen to determine association constants were not significantly affected by the amount of residual water. No attempt was made to dry the solvents used for the NMR titrations.

¹ (a) de Levie, R. *Advanced Excel For Scientific Data Analysis*, Oxford University Press, Oxford, 2004. (b) de Levie, R. *J. Chem. Ed.* **1999**, *76*, 1594-1598. (c) Fielding, L. *Tetrahedron*, **2000**, *56*, 6151-6170.

Titration experiment between host 6 and salicylic acid (12)

The association constant was determined from the chemical shift change of H_a (below) on host 6.

~	
n	
v	

[H₀]	[G₀]	[G _o]/[H _o]	δ_{obs}	δ_{calc}
(mol/l)	(mol/l)		(ppm)	(ppm)
6.46 X 10 ⁻³	0.000	0.000	7.9635	7.9635
6.32 X 10 ⁻³	9.11 X 10 ⁻⁴	0.144	7.9399	7.9373
6.19 X 10 ⁻³	1.78 X 10 ⁻³	0.288	7.9223	7.9148
6.06 X 10 ⁻³	2.62 X 10 ⁻³	0.432	7.8958	7.8951
5.93 X 10 ⁻³	3.42 X 10 ⁻³	0.576	7.8768	7.8777
5.82 X 10 ⁻³	4.19 X 10 ⁻³	0.720	7.8621	7.8622
5.70 X 10 ⁻³	4.93 X 10 ⁻³	0.865	7.8457	7.8483
5.59 X 10 ⁻³	5.64 X 10 ⁻³	1.01	7.8332	7.8358
5.49 X 10 ⁻³	6.32 X 10 ⁻³	1.15	7.8208	7.8245
5.39 X 10 ⁻³	6.98 X 10 ⁻³	1.30	7.8100	7.8141
5.19 X 10 ⁻³	8.23 X 10 ⁻³	1.58	7.7931	7.7958
5.01 X 10 ⁻³	9.39 X 10 ⁻³	1.87	7.7794	7.7802
4.85 X 10 ⁻³	1.05 X 10 ⁻²	2.16	7.7634	7.7667
4.69 X 10 ⁻³	1.15 X 10 ⁻²	2.45	7.7525	7.7549
4.41 X 10 ⁻³	1.33 X 10 ⁻²	3.03	7.7356	7.7352
2.04 X 10 ⁻³	1.64 X 10 ⁻²	8.08	7.7210	7.7016
1.12 X 10 ⁻³	3.62 X 10 ⁻²	32.3	7.5850	7.5903
7.00 X 10 ⁻⁴	4.52 X 10 ⁻²	64.6	7.5535	7.5585
4.00 X 10 ⁻⁴	5.17 X 10 ⁻²	129	7.5389	7.5396
2.33 X 10 ⁻⁴	5.53 X 10 ⁻²	237	7.5357	7.5302

δ _{HG} (ppm)	
7.090 ± 0.050	

K _a (M⁻¹)	
44.8 ± 2.5	

Titration experiment between host 7 and salicylic acid (12)

The association constant was determined from the chemical shift change of H_a (below) on host 7.

				Monomer-12	Dimer- 12
[H₀]	[G₀]	[G₀]/[H₀]	δ_{obs}	δ_{calc}	δ_{calc}
(mol/l)	(mol/l)		(ppm)	(ppm)	(ppm)
6.52 X 10 ⁻³	0.000	0.000	7.4520	7.4520	7.4520
6.24 X 10 ⁻³	2.57 X 10 ⁻³	0.411	7.4336	7.4330	7.4444
5.99 X 10 ⁻³	4.92 X 10 ⁻³	0.822	7.4193	7.4188	7.4322
5.70 X 10 ⁻³	7.61 X 10 ⁻³	1.34	7.4137	7.4050	7.4164
5.43 X 10 ⁻³	1.01 X 10 ⁻²	1.85	7.3937	7.3939	7.4017
5.24 X 10 ⁻³	1.18 X 10 ⁻²	2.26	7.3866	7.3863	7.3911
5.06 X 10 ⁻³	1.35 X 10 ⁻²	2.67	7.3787	7.3797	7.3815
4.89 X 10 ⁻³	1.51 X 10 ⁻²	3.08	7.3728	7.3738	7.3729
4.73 X 10 ⁻³	1.65 X 10 ⁻²	3.49	7.3682	7.3685	7.3653
3.94 X 10 ⁻³	2.39 X 10 ⁻²	6.06	7.3464	7.3446	7.3330
2.61 X 10 ⁻³	3.62 X 10 ⁻²	13.9	7.3054	7.3113	7.2997
1.63 X 10 ⁻³	4.52 X 10 ⁻²	27.7	7.2875	7.2903	7.2857
9.31 X 10 ⁻⁴	5.17 X 10 ⁻²	55.5	7.2768	7.2765	7.2789
6.52 X 10 ⁻⁴	5.43 X 10 ⁻²	83.2	7.2744	7.2713	7.2766
5.32 X 10 ⁻⁴	5.54 X 10 ⁻²	104	7.2703	7.2691	7.2757

δ _{HG} (ppm)	δ _{HG2} (ppm)
3.0 ± 4.3	7.2405 ± .0088

Ka (M⁻¹)	Ka (M⁻¹)
1.9 ± 1.9	306 ± 43

Dilution titration experiment of salicylic acid (12)

NMR dilutions of guest 12 in 9:1 $CH_2Cl_2:CD_2Cl_2$ were performed to determine the dimer dissociation constant (K_d) of 12 (G₂ \iff 2G) by monitoring its phenolic ¹H chemical shift change. The equilibrium monomer concentration [G] was obtained at each dilution by solution of the quadratic expression:

$$K_{d} = \frac{2[G]^{2}}{[G_{0}] - [G]}$$

The chemical shift of the dimer/monomer mixture was then predicted as $\delta_{calc} = (1-\chi_{G_2})(\delta_G) + (\chi_{G_2})(\delta_{G_2})$ where the mole fraction of dimer (χ_{G_2}) is given by:

$$\chi_{G_2} = \frac{[G_0] - [G]}{[G_0] + [G]}$$

 K_d , δ_G and δ_{G_2} were then determined by non-linear least squares fit of the predicted chemical shifts to the dilution experiments.

[G₀]	δ_{obs}	δ_{calc}
M/L	(ppm)	(ppm)
4.075 X 10 ⁻⁴	10.6265	10.6300
8.097 X 10 ⁻⁴	10.6142	10.6166
1.207 X 10 ⁻³	10.6083	10.6088
2.367 X 10 ⁻³	10.5914	10.5894
4.908 X 10 ⁻³	10.5667	10.5581
7.240 X 10 ⁻³	10.5459	10.5373
1.026 X 10 ⁻²	10.5200	10.5170
1.296 X 10 ⁻²	10.5073	10.5027
1.641 X 10 ⁻²	10.4777	10.4880
2.051 X 10 ⁻²	10.4673	10.4740
2.382 X 10 ⁻²	10.4522	10.4647
2.840 X 10 ⁻²	10.4497	10.4539
3.211 X 10 ⁻²	10.4442	10.4465
3.692 X 10 ⁻²	10.4374	10.4382
4.344 X 10 ⁻²	10.4311	10.4288
5.275 X 10 ⁻²	10.4233	10.4179
6.154 X 10 ⁻²	10.4181	10.4095

δ_{G_2} (ppm)	
10.270 ± .016	

δ_{G} (ppm)	
10.6349 ± .0051	

K _d (M)
0.0290 ± .0047

Molecular Modeling of the 6-12 and 7-12 Host-Guest Complexes

Binding geometries and steric energies were calculated in the Molecular Operating Environment (MOE) using the MMFF force field. Solvation energies were obtained using the Born solvation model with a dielectric constant of 9.1 to simulate CH_2Cl_2 . Calculated total energies are the sum of the steric and solvation energies.

Preferred host-guest binding stoichiometry was estimated from the relationship:

$$HG_2 + G \Longrightarrow HG + G_2$$

for each host, leading to the predicted energetics for host **6**:

 $6(12)_2 + (12) \implies 6(12) + (12)_2 \quad \Delta H_{rxn} = -15 \text{ kcal/mol}$

(host 6 – monomer-12 complex favored)

And for host 7:

 $7(12)_2 + (12) \implies 7(12) + (12)_2 \quad \Delta H_{rxn} = +3.2 \text{ kcal/mol}$

(host 7 – dimer-12 complex favored)