Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2007

Template controlled synthesis of a coordinated [11]ane-P₂C^{NHC} macrocycle

Oliver Kaufhold, Andreas Stasch, Peter G. Edwards, und F. Ekkehardt Hahn

General: All preparations were carried out under an argon atmosphere using conventional Schlenk techniques. Solvents were dried and degassed by standard methods prior to use. The preparation of 1,2-bis(phosphino)benzene,¹ 1,2-bis(dichlorophosphino)benzene 2^{2} , and (β -triphenylphosphinimine)ethylenamine 4^{3} have been described. *o*-bromofluorobenzene was degassed and dried over a molecular sieve. All other chemicals were used as received. NMR spectra were recorded with a Bruker Avance I 400 NMR spectrometer. IR spectra were measured with a Bruker Vector 22 spectrometer. Electrospray mass spectra were obtained with a Daltronics Micro TOF spectrometer.

Synthesis of 2: Compound **2** was prepared using a modified protocol of the synthesis reported by Kyba.¹ A solution of triphosgene (15.0 g, 50.5 mmol) in CH₂Cl₂ (150 mL) was treated dropwise with a solution of 1,2-bis(phosphino)benzene (3.2 g, 22.5 mmol) in CH₂Cl₂ (50 mL) at -78 °C. The reaction mixture was allowed to warm up to ambient temperature and was stirred at this temperature for 3 d. Compound **2** was obtained as colorless liquid after destillation in vacuo. Yield: 2.8 g (10.0 mmol, 44 %). The ¹H NMR data match those reported.^{1 13}C{¹H} NMR (100.6 MHz, CDCl₃): δ 144.6 (d, ¹*J*_{PC} = 13 Hz, Ar-C_{*ipso*}), 133.8 (Ar-C_{*meta*}), 131.1 (d, ²*J*_{PC} = 9 Hz, Ar-C_{*ortho*}); ³¹P{¹H} NMR (162.0 MHz, CDCl₃): δ 151.

Synthesis of 3: The reaction has to be carried out at -78 °C. The reactants have to be cooled to this temperature prior to use. A solution of *n*-butyllithium (22.1 mL of a 2.5 M solution, 55.3 mmol) in diethyl ether (100 mL) was treated dropwise with a solution of *o*-bromofluorobenzene (6.3 mL, 57.8 mmol) in diethyl ether (20 mL). After 15 min, a solution of **2** (3.8 g, 12.8 mmol) in diethyl ether (20 mL) was added to the reaction mixture. The

resulting mixture was stirred for 4 h at -78 C and then for 12 h at ambient temperature. Aqueous ammonium chloride (150 mL) was added and the mixture was extracted with diethyl ether (4 × 250 mL). The solvent of the combined organic phase was removed in vacuo and the residue was dissolved in hot methanol. Compound **3** was isolated by filtration after cooling to -35 °C. The crude product was again dissolved in dichloromethane (10 mL) and purified by passing down a short (2 cm) SiO₂ column. After removal of the solvent compound **3** was isolated as a colourless solid. Yield: 3.2 g (6.2 mmol, 48 %). ¹H NMR (400.1 MHz, CDCl₃, assignment of signals see Scheme 2): δ 7.33 (m, 2H, Ar-H3), 7.31 (m, 4H, Ar-H7), 7.14 (m, 2H, Ar-H2), 7.04 (m, 4H, Ar-H6), 7.00 (m, 4H, Ar-H8), 6.92 (m, 4H, Ar-H5); ¹³C{¹H} NMR (100.6 MHz, CDCl₃, assignment of signals see Scheme 2): δ 164.1 (d, ¹*J*_{CF} = 264 Hz, Ar-C9), 140.7 (m, Ar-C1), 134.7 (m, Ar-C5), 133.9 (m, Ar-C2), 131.1 (d, ³*J*_{CF} = 8.3 Hz, Ar-C7), 129.9 (Ar-C3), 124.4 (d, ³*J*_{CP} = 2.7 Hz, Ar-C6), 122.7 (m, Ar-C4), 115.2 (d, ²*J*_{CF} = 23.2 Hz, Ar-C8); ³¹P{¹H} NMR (162.0 MHz, CDCl₃): δ -36 (m). ¹⁹F NMR (376.5 MHz, CDCl₃): δ -103 (m); ES-MS (positive ions): *m/z* (%): 541.0872 (100) (calcd. [C₃₀H₂₀F₄P₂ + Na]⁺ 541.0869), 519.1062 (18) (calcd. [C₃₀H₂₀F₄P₂ + H]⁺ 519.1055).

Synthesis of [1]: Complex [1] was prepared as described for $[\text{ReBr}(\text{CO})_4(\text{NHC})]^{[3]}$ as a colourless solid. Yield: 83 %. ¹H NMR (400.1 MHz, CDCl₃): δ 6.90 (s, br, 2H, N*H*), 3.72 (s, 4H, NC*H*₂C*H*₂N); ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 193.6 (NCN), 186.8 (CO), 184.9 (CO), 184.7 (CO), 44.2 (NCH₂CH₂N); IR (KBr): *v* 3429 (s, NH), 3265 (s, br, NH), 2107 (s, CO), 2016 (s, CO), 1993 (s, br, CO), 1924 (s, br, CO); ES-MS (positive ions): *m/z* (%): 426.9455 (100) (calcd. [C₇H₆N₂ClO₄Re + Na]⁺ 426.9457).

Synthesis of [4]Cl: A solution of complex [1] (150 mg, 0.37 mmol) and ligand **3** (250 mg, 0.48 mmol) in acetonitrile (5 mL) was heated under reflux for 6 h. After cooling to ambient temperature the solution was concentrated and diethyl ether (20 mL) was added. Complex [4]Cl precipitated and was isolated by filtration. Yield: 330 mg (0.36 mmol, 98 %). ¹H NMR (400.1 MHz, CD₃CN, assignment of signals see Scheme 2): δ 8.02 (m, 2H, Ar-H4), 7.88 (m, 2H, Ar-H5), 7.67 (m, 2H, Ar-H9), 7.44 (m, 2H, Ar-H15), 7.39 (m, 2H, Ar-H10), 7.32 (m, 2H, Ar-H11), 7.27 (m, 2H, Ar-H8), 7.16 (m, 2H, Ar-H16), 7.10 (m, 2H, Ar-H14), 6.92 (m, 2H, Ar-H17), 6.56 (s, 2H, NH), 3.21 (s, 4H, NCH₂CH₂N); ¹³C{¹H} NMR (100.6 MHz, CD₃CN, assignment of signals see Scheme 2): δ 191.0 (dd, ²*J*_{CP-*trans* = 50.4 Hz, ²*J*_{CP-*cis* = 8.2 Hz, CO_{*cis*-C1}), 190.0 (m, br, CO_{*trans*-C1}), 189.8 (t, ²*J*_{CP} = 9.8 Hz, C1), 164.5 (d, ¹*J*_{CF} = 249 Hz, C7), 163.4}}}

(dd, ${}^{1}J_{CF} = 247$ Hz, ${}^{2}J_{CP} = 4.9$ Hz, C13), 139.2 (dd, ${}^{1}J_{CP} = 48.5$ Hz, ${}^{2}J_{CP} = 33.4$ Hz, C3), 136.8 (dd, ${}^{2}J_{CP} = 14.0$ Hz, ${}^{3}J_{CP} = 2.5$ Hz, C4), 136.8 (m, C11), 136.6 (dd, ${}^{3}J_{CF} = 9.5$ Hz, ${}^{4}J_{CP} = 2.0$ Hz, C9), 134.9 (dd, ${}^{3}J_{CF} = 8.5$ Hz, ${}^{4}J_{CP} = 1.6$ Hz, C15), 134.8 (dd, ${}^{3}J_{CP} = 6.2$ Hz, ${}^{4}J_{CP} = 2.2$ Hz, C5), 133.0 (m, C17), 126.5 (dd, ${}^{3}J_{CP} = 11.2$ Hz, ${}^{4}J_{CF} = 3.0$ Hz, C10), 125.6 (dd, ${}^{3}J_{CP} = 8.3$ Hz, ${}^{4}J_{CF} = 3.0$ Hz, C16), 122.2 (ddd, ${}^{1}J_{CP} = 53$ Hz, ${}^{2}J_{CF} = 17$ Hz, ${}^{4}J_{CP} = 2.0$ Hz, C12), 118.2 (dd, ${}^{2}J_{CF} = 23.8$ Hz, ${}^{3}J_{CP} = 3.4$ Hz, C8), 117.3 (ddd, ${}^{1}J_{CP} = 45$ Hz, ${}^{2}J_{CF} = 16.4$ Hz, ${}^{4}J_{CP} = 2.8$ Hz, C6), 117.0 (dd, ${}^{2}J_{CF} = 23.0$ Hz, C3.0 Hz, C14), 45.9 (C2); ${}^{31}P$ { $}^{1}H$ } NMR (162.0 MHz, CDCl₃): δ 22 (d); ${}^{19}F$ NMR (376.5 MHz, CD₃CN): δ -98, -100; IR (KBr): v 3460 (w, NH), 2043 (s, CO), 1971 (s, CO), 1949 (s, CO); ES-MS (positive ions): m/z (%): 859.0893 (100) (calcd. [C₃₆H₂₆N₂F₄O₃P₂Re]⁺ 859.0909).

Synthesis of [5]Cl: A suspension of [4]Cl (280 mg, 0.31 mmol) in THF (5 mL) was treated dropwise with a solution of KOt-Bu (12.5 mL of a 0.05 M solution, 0.62 mmol). A clear solution was obtained after the addition. This solution was stirred at ambient temperature for 5 d. The solid formed during this time was isolated by filtration and dissolved in dichloromethane. Remaining solids were separated by filtration. Complex [5]Cl was obtained as a pale yellow solid after removal of the solvent. Yield: 240 mg (0.28 mmol, 91 %). ¹H NMR (400.1 MHz, CD₃CN, assignment of the signals see Scheme 2): δ 7.83 (m, 2H, Ar-H5), 7.81 (m, 2H, Ar-H4), 7.69 (m, 2H, Ar-H13), 7.66 (m, 2H, Ar-H9), 7.63 (m, 2H, Ar-H16), 7.39 (m, 2H, Ar-H14), 7.38 (m, 2H, Ar-H15), 7.37 (m, 2H, Ar-H8), 7.25 (t, 2H, Ar-H10), 6.97 (m, 2H, Ar-H11), 4.61 (m, 2H, N-C(2)H-C(2)H-N), 3.15 (m, 2H, N-C(2)H-C(2)H-N); ${}^{3}C{}^{1}H$ NMR (100.6 MHz, CD₃CN, assignment of the signals see Scheme 2): δ 193.4 (br, CO_{trans-C1}), 192.3 (t, ²J_{CP} = 13.8 Hz, C1), 191.1 (dm, ²J_{CP-trans} 46.0, CO_{cis-C1}), 164.4 (dd, ${}^{1}J_{CF} = 249$ Hz, ${}^{2}J_{CP} = 5.0$ Hz, C7), 145.8 (d, ${}^{2}J_{CP} = 11.8$ Hz, Ar-C17), 139.9 (m, Ar-C3), 136.6 (d, ${}^{3}J_{CF} = 9.2$ Hz, Ar-C9), 136.2 (m, Ar-C4), 134.7 (d, ${}^{2}J_{CP} = 1.6$ Hz, Ar-C13), 134.6 (m, Ar-C5), 134.3 (m, Ar-C11) 131.2 (d, ${}^{4}J_{CP} = 1.6$ Hz, Ar-C15), 127.4 (d, ${}^{3}J_{CP} = 8.3$ Hz, Ar-C14), 126.8 (m, Ar-C10), 125.6 (d, ${}^{3}J_{CP} = 6.3$ Hz, Ar-C16), 123.8 (dd, ${}^{1}J_{CP} = 56.4$ Hz, ${}^{4}J_{CF} = 4.9$ Hz, A-C12), 117.8 (dd, ${}^{2}J_{CF} = 21.9$ Hz, ${}^{3}J_{CP} = 4.2$ Hz, Ar-C8), 115.1 (dd, ${}^{1}J_{CP} =$ 54.6 Hz, ${}^{2}J_{CF}$ = 17.7 Hz, Ar-C6), 52.4 (NCH₂CH₂N); ${}^{31}P{}^{1}H$ NMR (162.0 MHz, CD₃CN): δ 16 (d); ¹⁹F NMR (376.5 MHz, CD₃CN): δ -97 (m); IR (KBr): v 2031 (s, CO), 1963 (s, CO), 1937 (s, CO). ES-MS (positive ions): m/z (%): 819.0770 (100) (calcd. $[C_{36}H_{24}N_2F_2O_3P_2Re]^+$ 819.0784).

X-ray structure determinations. [1]: C₇H₆N₂ClO₄Re, M = 403.79, colourless crystal, 0.20 × 0.15 × 0.08 mm, a = 8.852(2), b = 10.297(2), c = 12.389(3) Å, $\beta = 107.84(3)^{\circ}$, V = 1075.0(4) Å³, $\rho_{calc} = 2.495$ g·cm⁻³, $\mu = 11.547$ mm⁻¹, ω - and ϕ -scans, 3540 measured intensities (6.4° $\leq 2\theta \leq 54.0^{\circ}$), $\lambda = 0.71073$ Å, T = 150(2) K, semiempirical absorption correction (0.245 $\leq T \leq 0.411$), 2315 observed ($R_{int} = 0.0249$) and 2070 observed ($I \geq 2\sigma(I)$) intensities, $P2_1/c$, Z = 4, R = 0.0264, wR = 0.0596, refinement of 136 parameters against $|F^2|$ with hydrogen atoms on calculated positions.

Figure S1. Molecular structure of complex [1]. Selected bond lengths [Å] and bond angles [°]: Re–Cl 2.4960(14), Re–Cl 2.175(5), Re–C4 1.995(5), Re–C5 1.978(6), Re–C6 2.011(5), Re–C7 1.915(5), N1–Cl 1.321(6), N2–Cl 1.314(6); Cl–Re–Cl 84.42(13), Cl–Re–C4 88.1(2), Cl–Re–C5 91.1(2), Cl–Re–C6 90.27(2), Cl–Re–C7 176.5(2), Cl–Re–C4 88.7(2), Cl–Re–C5 175.0(2), Cl–Re–C6 92.2(2), Cl–Re–C7 92.1(2), Re–C1–N1 126.5(4), Re–C1–N2 125.2(4), N1–C1–N2 108.2(4).

3: C₃₀H₂₀F₄P₂, M = 518.40, colourless crystal, $0.25 \times 0.20 \times 0.15$ mm, a = 10.966(2), b = 14.272(3), c = 15.942(3) Å, $\beta = 91.88(3)$, V = 2493.8(9) Å³, $\rho_{calc} = 1.381$ g·cm⁻³, $\mu = 0.222$ mm⁻¹, ω and ϕ -scans, 8965 measured intensities ($5.9^{\circ} \le 2\theta \le 51.0^{\circ}$), $\lambda = 0.71073$ Å, T = 150(2) K, semiempirical absorption correction ($0.802 \le T \le 0.989$), 4630 independent ($R_{int} = 0.0419$) and 3481 observed ($I \ge 2\sigma(I)$) intensities, $P2_1/n$, Z = 4, R = 0.0457, wR = 0.0950, refinement of 325 parameters against $|F^2|$ with hydrogen atoms on calculated positions.

Figure S2. Molecular structure of compound **3**. Selected bond lengths [Å] and bond angles [°]: P1–C1 1.843(2), P1–C7 1.843(2), P1–C13 1.835(2), P2–C2 1.844(2), P2–C19 1.837(2), P2–C25 1.834(2), F1–C8 1.364(3), F2–C14 1.372(3), F3–C20 1.367(3), F4–C26 1.362(3); C1–P1–C7 103.48(10), C1–P1–C13 101.05(10), C7–P1–C13 101.07(10), C2–P2–C19 99.80(11), C2–P2–C25 101.71(10), C19–P2–C25 102.11(10).

[4]Cl·3THF: C₄₈H₅₀N₂ClF₄O₆P₂Re, M = 1110.49, colourless crystal, $0.50 \times 0.30 \times 0.30$ mm, a = 11.201(5), b = 11.800(5), c = 20.504(5) Å, a = 92.239(5), $\beta = 100.058(5)$, $\gamma = 117.123(5)^{\circ}$, V = 2353.1(2) Å³, $\rho_{calc} = 1.567$ g·cm⁻³, $\mu = 2.773$ mm⁻¹, ω - and ϕ -scans, 16653 measured intensities ($6.0^{\circ} \le 2\theta \le 52.0^{\circ}$), $\lambda = 0.71073$ Å, T = 150(2) K, semiempirical absorption correction ($0.318 \le T \le 0.447$), 9183 independent ($R_{int} = 0.0308$) and 8654 observed intensities ($I \ge 2\sigma(I)$), $P\bar{1}$, Z = 2, R = 0.0399, wR = 0.0929, refinement of 557 parameters against $|F^2|$ with hydrogen atoms on calculated positions. The asymmetric unit contains one molecule of the complex and three molecules of THF. Two THF molecules are disordered.

[5]Cl·3H₂O: C₃₆H₃₀ N₂ClF₂O₆P₂Re, M = 908.21, light yellow crystal, $0.30 \times 0.20 \times 0.10$ mm, a = 9.030(5), b = 10.898(5), c = 19.929(5) Å, $a = 75.388(5), \beta = 82.356(5), \gamma = 68.013(5)^{\circ}, V$ = 1758.1(13) Å³, $\rho_{calc} = 1.716$ g·cm⁻³, $\mu = 3.682$ mm⁻¹, ω - and ϕ -scans, 11370 measured intensities ($6.3^{\circ} \le 2\theta \le 54^{\circ}$), $\lambda = 0.71073$ Å, T = 150(2) K, semiempirical absorption correction ($0.541 \le T \le 0.696$), 7588 independent ($R_{int} = 0.0269$) and 6917 observed ($I \ge 2\sigma(I)$) intensities, $P\bar{1}, Z = 2, R = 0.0298, wR = 0.0628$, refinement of 475 parameters against $|F^2|$ with hydrogen atoms on calculated positions. The asymmetric unit contains a molecule of the complex and three molecules of water.

References

- 1 E. P. Kyba, S.-T. Liu, R. L. Harris, Organometallics 1983, 2, 1877–1879.
- 2 E. P. Kyba, M. C. Kerby, S. P. Rines, Organometallics 1986, 5, 1189–1194.
- 3 C.-Y. Liu, D.-Y. Chen, G.-H. Lee, S.-M. Peng, S.-T. Liu, *Organometallics* 1996, **15**, 1055–1061.