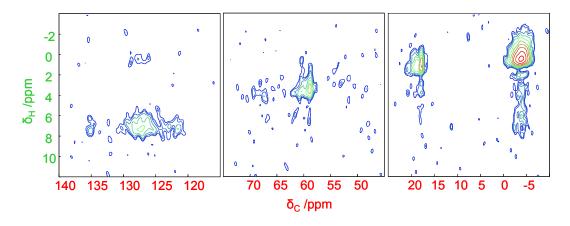
Non-Covalent Interactions of a Drug Molecule Encapsulated in a Hybrid Silica Gel

Geo Paul,^a Stefan Steuernagel^b and Hubert Koller^{*a}

Supplementary information


Table 1. Relative molar ratios, pH and stirring time (ts) for hybrid gel formulations

Gel	TEOS	MTS	H_2O	Ethanol	HCl	PP	t_s (h)/pH
TEOS:MTS(1:1)	1	1.00	9.79	3.90	0.0039	0.058	24 / 2.2
TEOS:MTS(3:1)	1	0.33	6.53	2.60	0.0026	0.039	24 / 2.2
TEOS:MTS(5:1)	1	0.20	5.88	2.34	0.0023	0.035	24 / 2.2

 Table 2: 2D ²⁹Si-¹H FSLG HETCOR and ¹³C-¹H FSLG HETCOR NMR experimental parameters.

	²⁹ Si- ¹ H HETCOR	¹³ C- ¹ H HETCOR
Number of t_1 increments	80	76
Relaxation delay /s	2	2
Number of scans	72	400
MAS rate /kHz	12.5	12.5
¹ H RF field /kHz	104	104
¹ H LG offset frequency /kHz	+1.0	+1.0
FSLG decoupling power /kHz	127	127
Positive offset frequency $(+\Delta LG)$ /kHz	+74.680	+74.680
Negative offset frequency $(-\Delta LG)$ /kHz	-72.680	-72.680
CP Contact time /ms	2.0	1.0

In theory, under FSLG decoupling, the proton chemical shift is scaled by $1/\sqrt{3}$ (0.577) and the proton chemical shift scale has been corrected for this scaling in all of the 2D spectra. The ¹H chemical shift scale and the scaling factors were determined by comparing the 1D ¹H spectra recorded under fast MAS. The scaling factors obtained for all the 2D spectra were well within the range of the theoretical value. ¹³C and ²⁹Si chemical shifts are reported using the δ scale and are externally referenced to adamantane and Q⁸M⁸, respectively. In addition, ¹³C{¹H} and ²⁹Si{¹H} CPMAS experiments were performed with a CP contact time of 2.0 and 7.0 ms, respectively.

Fig. S1: The 2D ¹³C-¹H FSLG HETCOR NMR spectra of hybrid gel (TEOS:MTS 3:1) at MAS of 12.5 kHz and a contact time of 0.8 ms.