Samarium(II) iodide-mediated intramolecular pinacol coupling reactions with cyclopropyl ketones

Sarah L. Foster, Sandeep Handa,* Michael Krafft and David Rowling

Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.

Supporting Information

General Methods

All reactions were performed under an inert atmosphere of nitrogen (or argon for SmI₂mediated reactions) in flame dried glassware unless otherwise stated. THF was dried by distillation from sodium-benzophenone, CH_2Cl_2 was distilled from CaH_2 . All other reagents and solvents were purified by standard procedures.¹ SmI₂ solutions were prepared from Sm and CH_2I_2 using degassed (freeze-pump-thaw) THF immediately prior to use.² NMR spectra were recorded using a Bruker AM 300 spectrometer. Chemical shifts are reported in parts per million downfield from TMS and using residual protic solvent as an internal standard. *J* coupling constants are reported in Hz.

N-(2-Cyclopropylallyl)-*N*-(2-methylallyl)-4-toluenesulfonamide

Sodium hydride (95%, 43 mg, 1.70 mmol) was added to a solution of *N*-(2-methylallyl)-4-toluenesulfonamide³ (337 mg, 1.5 mmol) in dry DMF (10 ml). The reaction was stirred for 15 min and then a solution of (2-cyclopropylallyl) toluenesulfonate⁴ (280 mg, 1.11 mmol) in THF (2 ml) added dropwise. After 18 h the reaction mixture was poured into saturated aqueous ammonium chloride (10 ml) and water (10 ml) and extracted with EtOAc (3 × 20 ml). The combined extracts were dried (MgSO₄) and evaporated under reduced pressure to leave the crude product, which was purified by flash column chromatography on silica using petrol:diethyl ether (70:30) to give the title compound (287 mg, 85%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.35-0.40 (2H, m), 0.55-0.61 (2H, m), 1.13-1.22 (1H, m), 1.61 (3H, s, CH₃C=CH₂), 2.41 (3H, s, Ar-CH₃), 3.75 (2H, s, NCH₂), 3.82 (2H, s, NCH₂), 4.68 (2H, s, 2 of C=CH₂), 4.78 (1H, s, 1 of C=CH₂), 4.85 (1H, s, 1 of C=CH₂), 7.27 (2H, d, *J* 8.1, 2 × Ar-*H*), 7.70 (2H, d, *J* 8.1, 2 × Ar-*H*).

 δ_{C} (62.9 MHz, CDCl₃) 6.8 (2 × CH₂), 13.7 (CH), 20.0 (CH₃), 21.5 (CH₃), 52.3 (CH₂), 53.1 (CH₂), 109.7 (CH₂), 114.5 (CH₂), 127.3 (2 × CH), 129.7 (2 × CH), 137.7 (C), 140.2 (C), 143.0 (C), 145.5 (C).

v_{max} (cm⁻¹, film) 3081, 2922, 1657, 1598, 1322, 1155. *m/z* (FAB) 306.1527 (MH⁺. C₁₇H₂₄NO₂S requires 306.1528)

N,*N*-bis(2-Cyclopropylallyl)-4-toluenesulfonamide

Using the same procedure as above, sodium hydride (95%, 55 mg, 2.17 mmol) was reacted with 4-toluenesulfonamide (170 mg, 1.0 mmol) and (2-cyclopropylallyl) toluenesulfonate⁴ (479 mg, 1.9 mmol) to give the title compound (314 mg, 69%) as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.35-0.42 (4H, m), 0.54-0.61 (4H, m), 0.83-0.90 (2H, m), 2.41 (3H, s, Ar-CH₃), 3.87 (4H, s, 2 \times NCH₂), 4.68 (4H, brs, 2 \times C=CH₂), 7.26 (2H, d, J 8.1, 2 \times Ar-H), 7.73 (2H, d, J 8.1, 2 \times Ar-H).

 δ_{C} (62.9 MHz, CDCl₃) 3.9 (4 × CH₂), 13.7 (2 × CH), 21.5 (CH₃), 52.3 (2 × CH₂), 109.9 (2 × CH₂), 127.8 (2 × CH), 129.6 (2 × CH), 137.7 (C), 140.1 (2 × C), 143.0 (C).

v_{max} (cm⁻¹, film) 3083, 2923, 1645, 1598, 1339, 1156.

m/z (FAB) 332.1684 (MH⁺. C₁₉H₂₆NO₂S requires 332.1684)

N-(Butyl)-N-(2-cyclopropylallyl)-4-toluenesulfonamide

Using the same procedure as above, sodium hydride (95%, 44 mg, 1.72 mmol) was reacted with *N*-butyl-4-toluenesulfonamide (332 mg, 1.46 mmol) and (2-cyclopropylallyl) toluenesulfonate⁴ (337 mg, 1.33 mmol) to give the title compound (377 mg, 92%) as a colourless oil.

 $δ_{\rm H}$ (300 MHz, CDCl₃) 0.42-0.40 (2H, m), 0.63-0.69 (2H, m), 0.87 (3H, t, *J* 7.2, *CH*₃CH₂), 1.22 (2H, app sextet, *J* 7.2, CH₃CH₂), 1.29-1.36 (1H, m), 1.41-1.49 (2H, m), 2.43 (3H, s, Ar-*CH*₃), 3.15 (2H, t (2nd order), *J* 7.2, NCH₂CH₂), 3.79 (2H, s, NCH₂), 4.69 (1H, brs, C=*CH*H), 4.78 (1H, brs, C=*C*HH), 7.30 (2H, d, *J* 8.3, 2 × Ar-*H*), 7.73 (2H, d, *J* 8.3, 2 × Ar-*H*).

 δ_{C} (62.9 MHz, CDCl₃) 7.2 (2 × CH₂), 13.4 (CH₃), 13.7 (CH), 20.0 (CH₂), 21.5 (CH₃), 30.1 (CH₂), 47.7 (CH₂), 53.8 (CH₂), 109.3 (CH₂), 127.1 (2 × CH), 129.6 (2 × CH), 137.1 (C), 143.0 (C), 146.4 (C).

v_{max} (cm⁻¹, film) 3083, 2959, 1645, 1599, 1337, 1156. *m/z* (FAB) 308.1684 (MH⁺. C₁₇H₂₆NO₂S requires 308.1684)

General Procedure for the ozonolysis reactions

Ozone was bubbled through a stirred solution of the alkene (1 equiv.) in dry methanol (5-10 ml) at -78°C until a pale blue colour was observed. Nitrogen was then bubbled through until the solution turned colourless. Me_2S (5 equiv.) was added and the reaction allowed to warm to room temperature and stirred for a further 18 h. All volatiles were removed by evaporation under reduced pressure to give the ketones **1-3** in sufficient purity for the next step.

N-(2-Cyclopropyl-2-oxoethyl)-*N*-(2-oxopropyl)-4-toluenesulfonamide (1)

The general ozonolysis procedure gave 1 in 93% yield as a colourless oil. δ_{H} (300 MHz, CDCl₃) 0.86-0.92 (2H, m), 0.94-1.00 (2H, m), 1.92-1.98 (1H, m), 2.17 (3H, s, CH₃C=O), 2.40 (3H, s, Ar-CH₃), 4.01 (2H, s, NCH₂), 4.34 (2H, s, NCH₂), 7.30 (2H, d, *J* 8.0, 2 × Ar-*H*), 7.68 (2H, d, *J* 8.0, 2 × Ar-*H*). δ_{C} (62.9 MHz, CDCl₃) 11.6 (2 × CH₂), 18.1 (CH), 21.6 (CH₃), 27.0 (CH₃) 56.6 (CH₂), 56.7 (CH₂), 127.4 (2 × CH), 129.7 (2 × CH), 136.1 (C), 143.8 (C), 203.4 (C), 205.0 (C). v_{max} (cm⁻¹, film) 2924, 1712, 1597, 1335, 1155. *m/z* (FAB) 310.1112 (MH⁺. C₁₅H₂₀NO₄S requires 310.1113)

N,N-bis(2-Cyclopropyl-2-oxoethyl)-4-toluenesulfonamide (2)

The general ozonolysis procedure gave 2 in 98% yield as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.90-0.97 (4H, m), 0.98-1.04 (4H, m), 1.90-2.01 (2H, m), 2.42 (3H, s, Ar-CH₃), 4.33 (4H, s, 2 × NCH₂), 7.29 (2H, d, *J* 8.2, 2 × Ar-*H*), 7.70 (2H, d, *J* 8.2, 2 × Ar-*H*).

 δ_{C} (62.9 MHz, CDCl₃) 11.6 (4 × CH₂), 18.1 (2 × CH), 21.6 (CH₃), 56.5 (2 × CH₂), 127.4 (2 × CH), 129.6 (2 × CH), 136.4 (C), 143.2 (C), 205.2 (2 × C). v_{max} (cm⁻¹, film) 2921, 1707, 1598, 1335, 1156.

m/z (FAB) 336.1268 (MH⁺. C₁₇H₂₂NO₄S requires 336.1270)

N-(Butyl)-*N*-(2-cyclopropyl-2-oxoethyl)-4-toluenesulfonamide (3)

The general ozonolysis procedure gave 2 in 89% yield as a colourless oil.

 $δ_{\rm H}$ (300 MHz, CDCl₃) 0.86 (3H, t, *J* 7.2, *CH*₃CH₂), 0.93-0.96 (2H, m), 1.01-1.07 (2H, m), 1.26 (2H, app sextet, *J* 7.2, CH₃CH₂), 1.45-1.50 (2H, m), 2.20-2.28 (1H, m), 2.43 (3H, s, Ar-CH₃), 3.15 (2H, t (2nd order), *J* 7.2, NCH₂CH₂), 4.01 (2H, s, NCH₂CO), 7.31 (2H, d, *J* 8.4, 2 × Ar-H), 7.72 (2H, d, *J* 8.4, 2 × Ar-H).

 δ_C (62.9 MHz, CDCl₃) 12.1 (2 \times CH₂), 13.7 (CH₃), 17.8 (CH), 19.9 (CH₂), 21.6 (CH₃), 29.7 (CH₂), 49.1 (CH₂), 57.2 (CH₂), 127.3 (2 \times CH), 129.6 (2 \times CH), 136.6 (C), 143.5 (C), 206.7 (C).

v_{max} (cm⁻¹, film) 2927, 1707, 1598, 1330, 1155.

m/z (FAB) 310.1475 (MH⁺. C₁₆H₂₄NO₃S requires 310.1477)

General Procedure for SmI₂ reactions

To a -78° C solution of SmI₂ (1.8 mmol; prepared² from Sm (0.32 g, 2.12 mmol) and CH₂I₂ (0.14 ml, 1.8 mmol) in degassed THF (18 ml)) was added *via* canula a solution of the ketone (0.72 mmol) and 'BuOH (0.2 ml, 2.1 mmol) in degassed THF (3 ml). The reaction was stirred for 16 h whilst warming to room temperature and then poured into saturated aqueous sodium bicarbonate (50 ml) and water (50 ml). The organic species were extracted with ethyl acetate

 $(3 \times 50 \text{ ml})$ and the extracts washed respectively with sodium thiosulphate (10% solution, 50 ml) and saturated sodium chloride (50 ml). The combined extracts were dried (Na₂SO₄) and evaporated under reduced pressure. The crude material was analysed by ¹H & ¹³C NMR and MS before being purified by flash column chromatography on silica as stated below.

cis 3-Cyclopropyl-4-methyl-1-tosylpyrrolidine-3,4-diol (4)

Reaction of diketone 1 with SmI_2 -^{*t*}BuOH using the standard procedure gave, after purification by flash column chromatography on silica using petrol:EtOAc (80:20 \rightarrow 50:50), 4 in 73% yield as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.27-0.37 (4H, m), 0.61-0.68 (1H, m), 1.18 (3H, s, CH₃), 2.35 (3H, s, Ar-CH₃), 3.14 (1H, d, *J* 10.5, NCHH), 3.23 (1H, d, *J* 10.5, NCHH), 3.29 (2H, s, NCH₂), 7.25 (2H, d, *J* 8.4, 2 × Ar-H), 7.63 (2H, d, *J* 8.4, 2 × Ar-H).

 δ_{C} (62.9 MHz, CDCl₃) 0.0 (2 × CH₂), 0.5 (CH), 12.7 (CH₃), 20.6 (CH₃) 55.5 (CH₂), 57.6 (CH₂), 78.3 (C), 78.5 (C), 127.0 (2 × CH), 129.2 (2 × CH), 133.2 (C), 143.2 (C).

v_{max} (cm⁻¹, film) 3479 (br), 1597, 1336, 1154.

m/z (FAB) 312.1270 (MH⁺. C₁₅H₂₂NO₄S requires 312.1270)

cis 3,4-Dicyclopropyl-1-tosylpyrrolidine-3,4-diol (6)

Reaction of diketone **2** with SmI₂-^{*t*}BuOH using the standard procedure gave, after purification by flash column chromatography on silica using petrol:EtOAc ($80:20 \rightarrow 50:50$), **6** in 71% yield as a colourless oil.

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.36-0.48 (8H, m), 0.91-0.99 (2H, m), 2.39 (3H, s, Ar-CH₃), 2.54 (2H, br s, 2 \times OH), 3.23 (2H, d, J 10.3, 2 \times NCHH), 3.34 (2H, d, J 10.3, 2 \times NCHH), 7.31 (2H, d, J 8.2, 2 \times Ar-H), 7.70 (2H, d, J 8.2, 2 \times Ar-H).

 δ_{C} (62.9 MHz, CDCl₃) 0.2 (2 × CH₂), 0.5 (2 × CH₂), 13.5 (2 × CH), 21.4 (CH₃), 56.2 (2 × CH₂), 79.4 (2 × C), 127.3 (2 × CH), 129.5 (2 × CH), 133.8 (C), 143.4 (C).

v_{max} (cm⁻¹, film) 3485 (br), 2934, 1598, 1343, 1158.

m/z (FAB) 338.1426 (MH⁺. C₁₇H₂₄NO₄S requires 338.1426)

Found: C, 60.6; H, 7.0; N, 4.2%; Calc. for C₁₇H₂₃NO₄S: C, 60.5; H, 6.9; N, 4.2%.

N-butyl-*N*-(2-oxopentyl)-4-toluenesulfonamide (7)

Reaction of ketone **3** with SmI₂-^{*t*}BuOH using the standard procedure gave, after purification by flash column chromatography on silica using petrol:diethyl ether ($80:20 \rightarrow 50:50$), **7** in 10% yield as a colourless oil, together with recovered **3** (60%).

 $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.83 (3H, t, J 7.2, CH₃CH₂), 0.85 (3H, t, J 7.2, CH₃CH₂) 1.21-1.32 (2H, m), 1.40-1.48 (2H, m), 1.51-1.64 (2H, m), 2.43 (3H, s, Ar-CH₃), 2.51 (2H, t J 7.2, CH₂CH₂CO), 3.11 (2H, t (2nd order), J 7.2, NCH₂CH₂), 3.92 (2H, s, NCH₂CO), 7.33 (2H, d, J 8.2, 2 × Ar-H), 7.69 (2H, d, J 8.2, 2 × Ar-H).

 δ_C (62.9 MHz, CDCl₃) 13.6 (2 \times CH₃), 16.9 (CH₂), 19.9 (CH₂), 21.5 (CH₃), 30.0 (CH₂), 41.3 (CH₂), 48.9 (CH₂), 56.3 (CH₂), 127.4 (2 \times CH), 129.6 (2 \times CH), 136.3 (CH), 143.5 (CH), 206.5 (C).

v_{max} (cm⁻¹, film) 2931, 1730, 1599, 1337, 1156.

m/z (FAB) 312.1633 (MH⁺. C₁₆H₂₆NO₃S requires 312.1633)

References:

- 1 D. D. Penin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, 3rd Ed, Pergamon Press, NY, (1988).
- 2. G. A. Molander and C. Kenny, J. Org. Chem., 1991, 56, 1439.
- 3. S. Handa, M. S. Kachala and S. R. Lowe, Tetrahedron Lett., 2004, 45, 253.
- 4. J. Salaün, J. Org. Chem., 1978, 43, 2809.