Supporting Information

Construction of stereodefined 1,1,2,2-tetrasubstituted cyclopropanes by acid catalyzed reaction of aryldiazoacetates and α-substituted acroleins

Takuya Hashimoto, Yuki Naganawa, Taichi Kano and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

General Information. Infrared (IR) spectra were recorded on a Shimadzu IRPrestige-21 spectrometer. ¹H NMR spectra were measured on a JEOL JNM-FX400 (400 MHz) spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = double-doublet, dq = double quartet, ddd= double double doublet, m = multiplet, br = broad, and app = apparent), coupling constants (Hz), and assignment. ¹³C NMR spectra were measured on a JEOL JNM-FX400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High-resolution mass spectra (HRMS) were performed on Brucker microTOF. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm) were used. The products were purified by flash column chromatography on silica gel 60 (Merck, 230-400 mesh).

In experiments requiring dry solvent, propionitrile was purchased from Tokyo Chemical Industry Co., Ltd. and freshly distilled over calcium hydride prior to use. Dichloromethane was purchased from Kanto Chemical Co. Inc. as "Dehydrated". Bistrifluoromethanesulfonimide was purchased from Fluka. α -Substituted acroleins were purchased or prepared according to the procedures¹⁻³ and used after distillation or column chromatography on silica gel. Aryldiazoacetates were synthesized according to the procedure⁴ and purified by column chromatography on silica gel.

Preparation of tert-butyl aryldiazoacetates.

To a stirred solution of *tert*-butyl arylacetate (10 mmol) and *p*-acetamidobenzenesulfonyl azide (3.07 g, 12 mmol) in MeCN (20 mL) was added DBU (2.2 ml, 15 mmol) at 0 °C. The reaction mixture was then allowed to warm to room temperature. After stirring for 12 h, the resulting mixture was quenched with 1N HCl, and extracted with hexane. The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate = 50:1) to give the corresponding tert-butyl aryldiazoacetate.

All diazo compounds, except the following compounds have been previously reported.

tert-Butyl 2-diazo-2-(2-naphthyl)acetate (Table 2, entry 6).

¹H NMR (400 MHz, CDCl₃) δ 8.02 (1H, d, J = 2.0 Hz, Ar**H**), 7.83 (1H, d, J2-Np = 8.8 Hz, ArH), 7.78 (2H, app d, J = 8.4 Hz, ArH), 7.51 (1H, dd, J = 8.8, 2.0 Hz, ArH), 7.39-7.50 (2H, m, ArH), 1.59 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 133.6, 131.3, 128.5, 127.62, 127.57, 126.5, 125.6, 123.3, 122.5, 121.9, 82.2, 28.4 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2075, 1695, 1368, 1327, 1267, 1250, 1144, 1125, 849, 808 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{16}H_{16}N_2O_2$: m/z 291.1104 ($[M + Na]^+$), found: m/z 291.1092 ($[M + Na]^+$).

tert-Butyl 2-diazo-2-(4-tolyl)acetate (Table 2, entry 8).

N₂CO₂tBu ¹H NMR (400 MHz, CDCl₃) δ 7.35 (2H, d, J = 8.4 Hz, ArH), 7.18 (2H, d, 4-tolyl J = 8.4 Hz, ArH), 2.33 (3H, s, CH₃), 1.54 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) & 164.8, 135.4, 129.5, 124.1, 122.7, 81.9, 28.4, 21.0 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2079, 1697, 1514, 1368, 1346, 1287, 1246, 1142, 1007, 810 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{13}H_{16}N_2O_2$: $m/z 255.1104 ([M + Na]^{+})$, found: $m/z 255.1095 ([M + Na]^{+})$.

N₂ CO₂*t*Bu 3-tolyl ¹H NMR (400 MHz, CDCl₃) δ 7.32 (1H, s, Ar**H**), 7.23-7.26 (2H, m, 3-tolyl ArH), 6.95-7.00 (1H, m, ArH), 2.35 (3H, s, CH₃), 1.55 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 138.6, 128.7, 126.4, 125.9, 124.6, 121.0, 81.9, 28.4, 21.6 (The resonance of the carbon that bears the diazo group was not detected);

IR (neat) 2079, 1699, 1368, 1342, 1290, 1263, 1248, 1180, 1142, 779 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{13}H_{16}N_2O_2$: m/z 255.1104 ($[M + Na]^+$), found: m/z 255.1096 ([M + $Na]^+$).

tert-Butyl 2-diazo-2-(4-fluorophenyl)acetate (Table 2, entry 12).

 $\begin{array}{c} \text{N}_{2} \\ \text{CO}_{2}t\text{Bu} \\ \text{4-F-C}_{6}\text{H}_{4} \end{array} \begin{array}{c} \text{Intro-Butyl 2-diazo-2-(4-Intorophenyl)actate (Table 2, entry 12).} \\ \text{Intro-Butyl 2-diazo-2-(4-Intorophenyl)actate (Table 2, entry 1$ s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 160.8 (d, ¹*J*(¹³C, ¹⁹F) = 246.9 Hz), 125.8 $(d, {}^{3}J({}^{13}C, {}^{19}F) = 7.4 \text{ Hz}), 121.8 (d, {}^{4}J({}^{13}C, {}^{19}F) = 3.3 \text{ Hz}), 115.9 (d, {}^{2}J({}^{13}C, {}^{19}F) = 17.4 \text{ Hz}),$ 82.2, 28.4 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2079, 1695, 1510, 1369, 1348, 1288, 1246, 1233, 1142, 1007, 831 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{12}H_{13}FN_2O_2$: m/z 259.0853 ([M + Na]⁺), found: m/z 259.0844 $([M + Na]^{+}).$

 N2
 CO2tBu
 tert-Butyl 2-diazo-2-(2-fluorophenyl)acetate (Table 2, entry 14).

 2-F-C₆H₄
 ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.75 (1H, m, ArH), 7.13-7.32 (2H, m, ArH), 7.03-7.12 (1H, m, ArH), 1.54 (9H, s, C(CH₃)₃); ¹³C NMR (100
MHz, CDCl₃) δ 164.5, 158.4 (d, ¹J(¹³C, ¹⁹F) = 248.6 Hz), 129.4 (d, ⁴J(¹³C, ¹⁹F) = 1.7 Hz), 128.2 (d, ${}^{3}J({}^{13}C, {}^{19}F) = 9.0$ Hz), 124.5 (d, ${}^{3}J({}^{13}C, {}^{19}F) = 4.1$ Hz), 115.6 (d, ${}^{2}J({}^{13}C, {}^{19}F) =$ 21.4 Hz), 114.4 (d, ${}^{2}J({}^{13}C, {}^{19}F) = 12.3$ Hz), 82.2, 28.3 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2092, 1697, 1497, 1369, 1348, 1288, 1246, 1144, 1107, 1009 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₂H₁₃FN₂O₂: *m/z* 259.0853 ($[M + Na]^+$), found: m/z 259.0860 ($[M + Na]^+$).

 $\begin{array}{l} & \mbox{tert-Butyl 2-(4-chlorophenyl)-2-diazoacetate (Table 2, entry 15).} \\ {}^{N_2} \\ & \mbox{Cl-C}_6 \\ H_4 \end{array} \begin{array}{l} & \mbox{tert-Butyl 2-(4-chlorophenyl)-2-diazoacetate (Table 2, entry 15).} \\ & \mbox{l} \\ & \mbox{cl-C}_6 \\ & \mbox{d} \\ & \mbo$ 4-CI-C₆H₄ CDCl₃) δ 164.2, 131.1, 129.0, 125.0, 124.8, 82.3, 28.4 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2087, 1692, 1495, 1369, 1346, 1279, 1246, 1148, 1007, 829 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₂H₁₃ClN₂O₂: *m/z* 275.0558 ($[M + Na]^+$), found: *m/z* 275.0547 ($[M + Na]^+$).

N₂ CO₂*t*Bu 3,4-Cl₂-C₆H₃ tert-Butyl 2-diazo-2-(3,4-dichlorophenyl)acetate (Table 2, entry 16).

^{3,4-Cl₂-C₆-³ ¹H NMR (400 MHz, CDCl₃) δ 7.66 (1H, d, J = 2.4 Hz, Ar**H**), 7.41 (1H, d, J = 8.8 Hz, Ar**H**), 7.25 (1H, dd, J = 8.8, 2.4 Hz, Ar**H**), 1.55 (9H, s, C(C**H**₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 133.1, 130.5, 129.0, 126.7, 125.3, 122.6, 82.7, 28.3 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2083, 1697, 1477, 1369, 1346, 1281, 1244, 1146, 1042, 1028 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₂H₁₃Cl₂N₂O₂: *m/z* 309.0168 ([M + Na]⁺), found: *m/z* 309.0169 ([M + Na]⁺).}

^{N2} CO₂*t*Bu ^{A-Br-C₆H₄ (400 MHz, CDCl₃) δ 7.47 (2H, d, *J* = 8.8 Hz, Ar**H**), 7.35 (2H, d, *J* = 8.8 Hz, Ar**H**), 1.54 (9H, s, C(C**H**₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 131.9, 125.3, 119.0, 82.3, 28.4 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2087, 1692, 1491, 1369, 1344, 1279, 1246, 1148, 1003, 829 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₂H₁₃BrN₂O₂: *m/z* 319.0053 ([M + Na]⁺).}

 $\begin{array}{l} & \overset{\text{N}_2 \leftarrow \text{CO}_2 t \text{Bu}}{4 - \text{vinyl-C}_6 \text{H}_4} & \overset{\textit{tert-Butyl 2-diazo-2-(4-vinylphenyl)acetate (Table 2, entry 19).}{}^{1} \text{H NMR (400 MHz, CDCl_3) } \delta 7.39 - 7.45 (4\text{H, br, ArH}), 6.68 (1\text{H, dd,} J = 18.0, 11.2 \text{ Hz, CH}_2 = \text{CH}), 5.73 (1\text{H, d, } J = 18.0 \text{ Hz, CH}_1 = \text{CH}), 5.23 (1\text{H, d, } J = 11.2 \text{ Hz, CH}_1 = \text{CH}), 1.55 (9\text{H, s, C}(\text{CH}_3)_3) ; {}^{13}\text{C NMR (100 MHz, CDCl}_3) \\ \delta 164.4, 136.1, 134.8, 126.7, 125.3, 123.9, 113.5, 82.1, 28.4 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2079, 1697, 1512, 1368, 1344, 1285, 1246, 1144, 1005, 841 \text{ cm}^{-1}; \text{HRMS (ESI) exact mass calcd. for C}_{14}\text{H}_{16}\text{N}_2\text{O}_2: m/z 267.1104 ([M + Na]^+), found: m/z 267.1095 ([M + Na]^+). \end{array}$

 $\begin{array}{c} & \overset{\text{N}_2}{\xrightarrow{}} CO_2 t Bu \\ 3-\text{MeO-C}_6H_4 \end{array} \begin{array}{c} tert-\text{Butyl 2-diazo-2-(3-methoxyphenyl)acetate (Table 2, entry 21).} \\ ^{1}H \ \text{NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 7.26 \ (1H, \ dd, \ J = 8.4, \ 8.4 \ \text{Hz}, \ \text{ArH}), \\ 7.14 \ (1H, \ dd, \ J = 2.4, \ 2.4 \ \text{Hz}, \ \text{ArH}), \ 6.97 \ (1H, \ ddd, \ J = 8.4, \ 1.2, \ 1.2 \ \text{Hz}, \ \text{ArH}), \\ 6.70 \ (1H, \ ddd, \ J = 8.4, \ 2.4, \ 1.2 \ \text{Hz}, \ \text{ArH}), \ 3.81 \ (3H, \ \text{s}, \ \text{OCH}_3), \ 1.55 \ (9H, \ \text{s}, \ C(\text{CH}_3)_3) \ ; \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 164.4, \ 160.0, \ 129.7, \ 127.6, \ 116.0, \ 111.3, \ 109.6, \ 82.0, \ 55.3, \ 28.4 \ (\text{The resonance of the carbon that bears the diazo group was not detected}); \\ \text{IR} \ (\text{neat}) \ 2077, \ 1697, \ 1599, \ 1368, \ 1265, \ 1236, \ 1171, \ 1138, \ 1020, \ 687 \ \text{cm}^{-1}; \ \text{HRMS} \ (\text{ESI}) \end{array}$

exact mass calcd. for $C_{13}H_{16}N_2O_3$: m/z 271.1053 ($[M + Na]^+$), found: m/z 271.1042 ($[M + Na]^+$).

N₂ CO₂tBu *tert*-Butyl 2-diazo-2-(3,5-dimethoxyphenyl)acetate (Table 2, entry 22).

^{3,5-(MeO)₂-C₆H₃ ¹H NMR (400 MHz, CDCl₃) δ 6.66 (2H, d, J = 2.0 Hz, ArH), 6.27 (1H, t, J = 2.0 Hz, ArH), 3.79 (6H, s, OCH₃), 1.55 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 161.1, 128.3, 101.9, 97.9, 82.0, 55.3, 28.4 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2079, 1697, 1589, 1285, 1254, 1206, 1153, 1138, 1065, 1028 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₄H₁₈N₂O₄: m/z 301.1159 ([M + Na]⁺), found: m/z 301.1150 ([M + Na]⁺).}

$\begin{array}{c|c} & tert-Butyl & 2-diazo-2-(2-bromo-5-methoxyphenyl)acetate \\ \hline & (Table 2, entry 23). \\ \hline & H NMR (400 \text{ MH}_7 \text{ CDC}) > 7.44 \text{ (111} \text{ I}) \end{array}$

^{2-BI-5-MeO-C₆ Π_3 ¹H NMR (400 MHz, CDCl₃) δ 7.46 (1H, d, J = 8.8 Hz, Ar**H**), 7.07 (1H, d, J = 2.8 Hz, Ar**H**), 6.75 (1H, dd, J = 8.8, 2.8 Hz, Ar**H**), 3.80 (3H, s, OC**H**₃), 1.53 (9H, s, C(C**H**₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 158.9, 133.8, 126.9, 117.5, 116.2, 114.5, 82.1, 55.6, 28.3 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2089, 1694, 1470, 1368, 1288, 1234, 1173, 1144, 1026, 1009 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₃H₁₅BrN₂O₃: *m/z* 349.0158 ([M + Na]⁺), found: *m/z* 349.0158 ([M + Na]⁺).}

tert-Butyl 2-diazo-2-(2,2-diphenylvinyl)acetate (Table 2, entry 24).

¹H NMR (400 MHz, CDCl₃) δ 7.20-7.40 (10H, m, *J* = 8.8 Hz, Ar**H**), 6.27 (1H, s, Ph₂C=C**H**), 1.50 (9H, s, C(C**H**₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 142.0, 138.5, 135.9, 130.3, 128.4, 128.2, 127.8, 127.1,

126.9, 110.3, 82.1, 28.3 (The resonance of the carbon that bears the diazo group was not detected); IR (neat) 2081, 1694, 1368, 1242, 1148, 1103, 908, 770, 758, 729 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{20}H_{20}N_2O_2$: *m/z* 343.1417 ([M + Na]⁺), found: *m/z* 343.1404 ([M + Na]⁺).

General procedure for the diastereoselective cyclopropanation reaction.

Method A: To a stirred solution of aryldiazoacetate (0.25 mmol) and α -substituted acrolein (0.30 mmol) in CH₂Cl₂ (1.0 mL) was added 1.0 M TiCl₄ in CH₂Cl₂ (50 µL, 0.050 mmol) dropwise at 0 °C under argon. The reaction mixture was stirred at the same temperature for 30 min. The mixture was quenched with aqueous NaHCO₃ and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (eluting with hexane/ethyl acetate = 50:1~40:1) to give the corresponding cyclopropane.

Method B: To a stirred solution of aryldiazoacetate (0.25 mmol) and α -substituted acrolein (0.30 mmol) in propionitrile (1.0 mL) was added 0.52 M Tf₂NH in CH₂Cl₂ (98 μ L, 0.050 mmol) dropwise at -78 °C under argon. The reaction mixture was stirred at the same temperature for 30 min. The mixture was quenched with aqueous NaHCO₃ and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (eluting with hexane/ethyl acetate = 50:1~40:1) to give the corresponding cyclopropane.

Phu, CHOtrans-2-Formyl-2-methyl-1-phenylcyclopropanecarboxylicacidPhu, CHOtert-butyl ester (Table 1, entry 1).tBuO2CMeHNMR (400 MHzCDCLS 0.40 (MHz

^{tBuO₂C Me ¹H NMR (400 MHz, CDCl₃) δ 8.43 (1H, s, CHO), 7.23-7.40 (5H, m, ArH), 2.07 (1H, d, J = 5.6 Hz, CHH), 2.00 (1H, d, J = 5.6 Hz, CHH), 1.41 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 168.1, 135.2, 130.8, 128.3, 127.7, 82.1, 43.8, 37.0, 27.8, 22.5, 12.0; IR (neat) 2978, 1715, 1449, 1369, 1254, 1161, 1113, 959, 910, 847, 700 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₆H₂₀O₃: *m/z* 283.1305 ([M + Na]⁺), found: *m/z* 283.1297 ([M + Na]⁺).}

Phu CHO MeO₂C Me trans-2-Formyl-2-methyl-1-phenylcyclopropanecarboxylic acid methyl ester (Table 1, entry 12).

^{MeO₂C Me ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s, CHO), 7.23-7.43 (5H, m, ArH), 3.67 (3H, s, OCH₃), 2.17 (1H, d, *J* = 5.6 Hz, CHH), 2.08 (1H, d, *J* = 5.6 Hz, CHH), 1.40 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 169.7, 134.5, 130.9, 128.5, 128.0, 52.8, 42.6, 37.5, 23.2, 12.0; IR (neat) 1710, 1495, 1449, 1435, 1310, 1260, 1211, 1109, 1082, 1065, 908 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₃H₁₄O₃: *m/z* 241.0835 ([M +}

 $Na]^+$, found: m/z 241.0847 ($[M + Na]^+$).

Phu, CHO tBuO₂C Et trans-2-Ethyl-2-formyl-1-phenylcyclopropanecarboxylic acid tert-butyl ester (Table 2, entry 1).

^{tBuO₂C Et ¹H NMR (400 MHz, CDCl₃) δ 8.41 (1H, s, CHO), 7.23-7.37 (5H, m, ArH), 2.09 (1H, d, *J* = 5.2 Hz, CHH), 1.94 (1H, d, *J* = 5.2 Hz, CHH), 1.94 (1H, dt, *J* = 7.2, 15.2 Hz, CHHCH₃), 1.76 (1H, dt, *J* = 7.2, 15.2 Hz, CHHCH₃), 1.37 (9H, s, C(CH₃)₃), 1.07 (3H, t, *J* = 7.2 Hz, CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 168.4, 135.4, 130.8, 128.3, 127.6, 82.0, 43.9, 43.2, 27.8, 21.9, 19.7, 11.7; IR (neat) 2976, 1713, 1367, 1274, 1247, 1213, 1111, 959, 910, 750, 700 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₇H₂₂O₃: *m/z* 297.1461 ([M + Na]⁺), found: *m/z* 297.1462 ([M + Na]⁺).}

¹H NMR (400 MHz, CDCl₃) δ 8.61 (1H, d, J = 2.0 Hz, CHO), 7.21-7.36 (5H, m, Ar**H**), 1.97 (1H, d, J = 5.2 Hz, C**H**H), 1.94 (1H, d, J = 5.2 Hz, CH**H**), 1.66 (1H, m, C**H**(CH₃)₂), 1.44 (3H, d, J = 7.2 Hz, CH(C**H**₃)(CH₃)), 1.36 (9H, s, C(C**H**₃)₃), 1.18 (3H, d, J = 7.2 Hz, CH(CH₃)(C**H**₃)); ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 168.4, 135.6, 130.9, 128.2, 127.5, 81.9, 45.7, 45.4, 29.2, 27.7, 22.0, 19.5, 19.2; IR (neat) 2976, 1713, 1449, 1368, 1298, 1254, 1211, 1155, 847, 746, 700 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₈H₂₄O₃: *m/z* 311.1618 ([M + Na]⁺), found: *m/z* 311.1614 ([M + Na]⁺).

Phu, And CHO tBuO₂C Cy trans-2-Cyclohexyl-2-formyl-1-phenylcyclopropanecarboxylic acid tert-butyl ester (Table 2, entry 3).

¹H NMR (400 MHz, CDCl₃) δ 8.67 (1H, d, J = 1.2 Hz, CHO), 7.20-7.35 (5H, m, ArH), 2.10 (1H, m, Cy), 1.91-2.00 (1H, br, Cy), 1.96 (1H, d, J = 5.6 Hz, CHH), 1.94 (1H, d, J = 5.6 Hz, CHH), 1.75-1.85 (2H, m, Cy), 1.60-1.71 (3H, m, Cy), 1.09-1.40 (4H, m, Cy), 1.37 (1H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 168.4, 135.6, 131.0, 128.1, 127.5, 81.9, 45.1, 39.4, 29.6, 29.2, 27.7 (two peaks are overlapped), 27.0, 26.8, 26.1, 21.7; IR (neat) 2928, 2852, 1713, 1449, 1368, 1252, 1157, 1140, 847, 746, 700 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₁H₂₈O₃: *m/z* 351.1931 ([M + Na]⁺), found: *m/z* 351.1942 ([M + Na]⁺).

^{Ph}^{//}, CHO tBuO₂C CH₂CH₂OBn trans-2-((2-Benzyloxy)ethyl)-2-formyl-1-phenylcyclopropanecar boxylic acid *tert*-butyl ester (Table 2, entry 5). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (1H, s, CHO), 7.23-7.37 (10H,

m, ArH), 4.51 (2H, s, OCH₂Ph), 3.64-3.74 (1H, m, CHHOBn), 3.55-3.64 (1H, m, CHHOBn), 2.38-2.48 (1H, m, CHHCH₂OBn), 2.14 (1H, d, *J* = 5.2 Hz, CHH), 1.99 (1H, d, J = 5.2 Hz, CHH), 1.92-2.03 (1H, m, CHHCH₂OBn), 1.35 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 168.3, 138.4, 135.2, 130.9, 128.3, 128.2, 127.7, 127.6, 127.5, 82.2, 73.0, 68.1, 43.7, 39.7, 27.8, 26.6, 21.4; IR (neat) 2858, 1709, 1454, 1368, 1254, 1155, 1099, 912, 845, 737, 698 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₄H₂₈O₄: *m/z* 403,1880 $([M + Na]^+)$, found: $m/z 403.1881 ([M + Na]^+)$.

2-Np // CHO tBuO₂C Me trans-2-Formyl-2-methyl-1-(2-naphthyl)cyclopropanecarboxylic acid *tert*-butyl ester (Table 2, entry 6).

¹H NMR (400 MHz, CDCl₃) δ 8.44 (1H, s, CHO), 7.74-7.87 (4H, m, ArH), 7.45-7.52 (3H, m, ArH), 2.16 (1H, d, J = 5.6 Hz, CHH), 2.13 (1H, d, J = 5.6 Hz, CHH), 1.46 (3H, s, CH₃), 1.37 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 168.0, 133.0, 132.9, 132.8, 129.3, 129.0, 128.0, 127.9, 127.8, 127.6, 126.3, 82.3, 44.0, 37.2, 27.9, 22.8, 12.0; IR (neat) 2976, 1711, 1368, 1242, 1159, 1111, 959, 914, 847, 816, 748 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{20}H_{22}O_3$: m/z 333.1461 ([M + Na]⁺), found: m/z $333.1461 ([M + Na]^+).$

4-tolyl//// Me trans-2-Formyl-2-methyl-1-(4-tolyl)cyclopropanecarboxylic acid tert-butyl ester (Table 2, entry 8).

8.0 Hz, ArH), 7.09 (2H, d, J = 8.0 Hz, ArH), 2.32 (3H, s, ArCH₃), 2.04 (1H, d, J = 5.6 Hz, CHH), 1.98 (1H, d, J = 5.6 Hz, CHH), 1.40 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 168.3, 137.5, 132.1, 130.6, 129.0, 82.0, 43.5, 36.9, 27.9, 22.6, 21.1, 12.1; IR (neat) 2978, 1713, 1514, 1456, 1317, 1159, 1105, 961, 912, 847 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{17}H_{22}O_3$: m/z 297.1461 ([M + Na]⁺), found: m/z 297.1449 ([M $+ Na]^{+}$).

trans-2-Formyl-2-methyl-1-(3-tolyl)cyclopropanecarboxylic acid $\begin{array}{l} \begin{array}{c} \text{3-tolyl} & \text{trans-2-Formyl-2-methyl-1-(3-tolyl)} \\ \text{tBuO}_2 C & \text{Me} \end{array} \\ \begin{array}{c} \text{trans-2-Formyl-2-methyl-1-(3-tolyl)} \\ \text{tert-butyl ester (Table 2, entry 10).} \end{array} \end{array}$

¹H NMR (400 MHz, CDCl₃) δ 8.42 (1H, s, CHO), 7.02-7.23 (4H, m, ArH), 2.32 (3H, s, ArCH₃), 2.04 (1H, d, J = 5.6 Hz, CHH), 1.99 (1H, d, J = 5.6 Hz, CHH), 1.40 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 168.2, 137.9, 135.0, 131.5, 128.5, 128.1, 127.9, 82.0, 43.8, 37.0, 27.9, 22.6, 21.3, 12.1; IR (neat) 2976, 1711, 1456, 1367, 1234, 1157, 1112, 959, 914, 849 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₇H₂₂O₃: m/z 297.1461 ([M + Na]⁺), found: m/z 297.1446 ([M + Na]⁺).

8.8 Hz, ${}^{4}J({}^{1}H, {}^{19}F) = 5.2$ Hz, Ar**H**), 6.99 (2H, dd, J = 8.8 Hz, ${}^{3}J({}^{1}H, {}^{19}F) = 8.8$ Hz, Ar**H**), 2.08 (1H, d, J = 5.6 Hz, CHH), 1.98 (1H, d, J = 5.6 Hz, CHH), 1.44 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 167.8, 162.1 (d, ¹J(¹³C, ¹⁹F) = 248.5 Hz), 132.4 (d, ${}^{3}J({}^{13}C, {}^{19}F) = 8.2$ Hz), 131.0 (d, ${}^{4}J({}^{13}C, {}^{19}F) = 3.2$ Hz), 115.2 (d, ${}^{2}J({}^{13}C, {}^{19}F) =$ 22.3 Hz), 82.3, 42.9, 37.1, 27.8, 22.6, 11.9; IR (neat) 2978, 1713, 1602, 1510, 1369, 1254, 1223, 1157, 959, 843 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₆H₁₉FO₃: *m/z* 301.1210 $([M + Na]^{+})$, found: m/z 301.1221 $([M + Na]^{+})$.

2-F-C₆H_{4''} $f_{H NMR}$ (400 MU) $f_{H NMR}$ (4

ArH), 7.06-7.13 (1H, m, ArH), 6.97-7.04 (1H, m, ArH), 2.14 (1H, d, J = 5.2 Hz, CHH), 1.91 (1H, d, J = 5.2 Hz, CHH), 1.50 (3H, s, CH₃), 1.35 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 167.6, 161.8 (d, ${}^{1}J({}^{13}C, {}^{19}F) = 250.1$ Hz), 131.7, 129.8 (d, ${}^{3}J({}^{13}C, {}^{19}F) = 250.1$ Hz), 131.7, 129.8 (d, ${}^{3}J({}^{19}F) = 250.1$ Hz), 131.7, 129.8 (d, {}^{3}J({}^{19}F) = 250.1 19 F) = 8.3 Hz), 124.0 (d, $^{3}J(^{13}$ C, 19 F) = 3.3 Hz), 123.5 (d, $^{2}J(^{13}$ C, 19 F) = 14.0 Hz), 115.5 (d, ${}^{2}J({}^{13}C, {}^{19}F) = 22.3 \text{ Hz}, 82.2, 38.2, 37.4, 27.8, 23.0, 11.3; IR (neat) 1715, 1495, 1452, 1368,$ 1256, 1229, 1207, 1161, 847, 758 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₆H₁₉FO₃: *m/z* $301.1210 ([M + Na]^+)$, found: $m/z \ 301.1205 ([M + Na]^+)$.

4-Cl-C₆H₄'1. tBuO₂C Me *trans*-1-(4-Chlorophenyl)-2-formyl-2-methylcyclopropanecarbo ylic acid *tert*-butyl ester (Table 2, entry 15). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s, CHO), 7.24-7.34 (4H,

m, ArH), 2.08 (1H, d, J = 5.6 Hz, CHH), 1.97 (1H, d, J = 5.6 Hz, CHH), 1.43 (3H, s, CH₃),

1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 167.6, 133.8, 133.7, 132.1, 128.5, 82.4, 43.1, 37.2, 27.8, 22.5, 11.9; IR (neat) 2978, 1713, 1493, 1369, 1254, 1159, 1094, 912, 833, 787 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₆H₁₉ClO₃: *m/z* 317.0915 $([M + Na]^{+})$, found: m/z 317.0907 $([M + Na]^{+})$.

$3,4-Cl_2-C_6H_3/...$ Me trans-1-(3,4-Difluorophenyl)-2-formyl-2-methylcyclopropane carboxylic acid *tert*-butyl ester (Table 2, entry 16).

¹H NMR (400 MHz, CDCl₃) δ 8.49 (1H, s, CHO), 7.49 (1H, d, J = 2.4 Hz, ArH), 7.38 (1H, d, J = 8.0 Hz, ArH), 7.21 (1H, dd, J = 8.0, 2.4 Hz, ArH), 2.10 (1H, d, J = 5.6 Hz, CHH), 1.98 (1H, d, J = 5.6 Hz, CHH), 1.42 (3H, s, CH₃), 1.40 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 167.1, 135.5, 132.6, 132.2, 130.3, 130.2, 82.8, 42.7, 37.5, 27.9, 22.5, 11.9; IR (neat) 1713, 1472, 1369, 1275, 1248, 1223, 1159, 1134, 1032, 912 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{16}H_{18}Cl_2O_3$: m/z 351.0525 ([M + Na]⁺), found: m/z 351.0513 ([M + Na]⁺).

4-Br-C₆H₄/, Me trans-1-(4-Bromophenyl)-2-formyl-2-methylcyclopropanecarbo xylic acid *tert*-butyl ester (Table 2, entry 18). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s, CHO), 7.43 (2H, d, J =

8.8 Hz, ArH), 7.25 (2H, d, J = 8.8 Hz, ArH), 2.08 (1H, d, J = 6.0 Hz, CHH), 1.97 (1H, d, J = 6.0 Hz, CHH), 1.41 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 167.5, 134.3, 132.5, 131.5, 121.9, 82.5, 43.1, 37.2, 27.8, 22.5, 11.9; IR (neat) 2976, 1713, 1395, 1368, 1254, 1157, 1074, 959, 845, 827 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{16}H_{19}BrO_3$: m/z 361.0410 ([M + Na]⁺), found: m/z 361.0415 ([M + Na]⁺).

4-vinyl-C₆H₄'1. tBuO₂C Me *trans*-2-Formyl-2-methyl-1-(4-vinylphenyl)cyclopropanecarbo xylic acid *tert*-butyl ester (Table 2, entry 19). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (1H, s, CHO), 7.30-7.39 (4H,

br, ArH), 6.69 (1H, dd, J = 17.6, 11.2 Hz, CH₂CH), 5.75 (1H, d, J = 17.6 Hz, CHHCH), 5.26 (1H, d, J = 11.2 Hz, CHHCH), 2.07 (1H, d, J = 5.6 Hz, CHH), 1.99 (1H, d, J = 5.6 Hz, CHH), 1.41 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 168.0, 137.0, 136.2, 134.6, 131.0, 126.1, 114.3, 82.2, 43.6, 37.1, 27.9, 22.6, 12.0; IR (neat) 1713, 1369, 1321, 1254, 1227, 1159, 1107, 961, 912, 845 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{18}H_{22}O_3$: m/z 309.1461 ([M + Na]⁺), found: m/z 309.1468 ([M + Na]⁺).

4-MeO-C₆H₄//, A horizonta in trans-2-Formyl-1-(4-methoxyphenyl)-2-methylcyclopropanec arboxylic acid *tert*-butyl ester (Table 2, entry 20).

¹H NMR (400 MHz, CDCl₃) (trans isomer) δ 8.46 (1H, s, CHO), 7.24-7.30 (2H, m, ArH), 6.79-6.86 (2H, m, ArH), 3.79 (3H, s, OCH₃), 2.04 (1H, d, J = 5.6 Hz, CHH), 1.97 (1H, d, J = 5.6 Hz, CHH), 1.39 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃) / (cis isomer) § 9.19 (1H, s, CHO), 7.28-7.32 (2H, m, ArH), 6.82-6.90 (2H, m, ArH), 3.81 (3H, m, OCH₃), 2.38 (1H, d, J = 5.6 Hz, CHH), 1.54 (1H, d, J = 5.6 Hz, CHH), 1.38 (9H, s, $C(CH_3)_3$, 0.93 (3H, s, CH_3); ¹³C NMR (100 MHz, $CDCl_3$) (mixture of two isomers) δ 200.62, 200.58, 168.3, 159.2, 159.0, 131.8, 131.7, 127.11, 127.07, 113.7, 113.6, 82.2, 82.0, 55.2, 43.8, 43.2, 38.6, 37.0, 27.9, 27.8, 23.9, 22.6, 14.2, 12.1; IR (neat) 1711, 1514, 1368, 1248, 1227, 1159, 1119, 1103, 1032, 912 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{17}H_{22}O_4$: *m/z* 314.1444 ([M + Na]⁺), found: *m/z* 314.1450 ([M + Na]⁺).

3-MeO-C₆H₄/, A, CHO *t*BuO₂C Me *trans-2*-Formyl-1-(3-methoxyphenyl)-2-methylcyclopropane carboxylic acid *tert*-butyl ester (Table 2, entry 21).

¹H NMR (400 MHz, CDCl₃) δ 8.43 (1H, s, CHO), 7.20 (1H, dd, *J* = 8.0, 8.0 Hz, ArH), 6.96 (1H, ddd, *J* = 8.0, 0.8, 0.8 Hz, ArH), 6.93 (1H, dd, *J* = 1.6, 0.8 Hz, ArH), 6.80 (1H, ddd, J = 8.0, 1.6, 0.8 Hz, ArH), 3.79 (3H, s, OCH₃), 2.04 (1H, d, J =5.2 Hz, CHH), 1.99 (1H, d, J = 5.2 Hz, CHH), 1.40 (3H, s, CH₃), 1.39 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 167.9, 159.4, 136.6, 129.2, 123.2, 116.3, 113.5, 82.1, 55.2, 43.8, 37.1, 27.9, 22.6, 12.0; IR (neat) 1711, 1599, 1368, 1317, 1288, 1240, 1157, 1113, 1042, 847 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{17}H_{22}O_4$: m/z 314.1444 ([M + Na]⁺), found: m/z 314.1443 ([M + Na]⁺).

trans-2-Formyl-1-(3,5-methoxyphenyl)-2-methylcyclopro panecarboxylic acid tert-butyl ester (Table 2, entry 22).

¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s, CHO), 6.54 (2H, d, J = 2.4 Hz, ArH), 6.36 (1H, t, J = 2.4 Hz, ArH), 3.76 (3H, s, OCH₃), 2.02 (1H, d, J = 5.2 Hz, CHH), 1.98 (1H, d, J = 5.2 Hz, CHH), 1.40 (3H, s, CH₃), 1.39 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 167.9, 160.5, 137.3, 108.9, 100.1, 82.2, 55.3, 44.0, 37.1, 27.9, 22.7, 12.1; IR (neat) 1711, 1595, 1458, 1425, 1368, 1244, 1206, 1155, 1043, 847 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{18}H_{24}O_5$: m/z 343.1522 ([M + Na]⁺), found: m/z

 $343.1516 ([M + Na]^+).$

trans-2-Formyl-1-(2-bromo-5-methoxyphenyl)-2-methylc 2-Br-5-MeO-C₆H₃¹, CHO tBuO₂C Me yclopropanecarboxylic acid tert-butyl ester (Table 2, entry 23).

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 8.59 (1H, s, CHO), 7.40 (1H, d, J = 7.2 Hz, ArH), 6.92 (1H, d, J = 3.2 Hz, ArH), 6.70 (1H, d, J = 7.2, 3.2 Hz, ArH), 3.80 (3H, s, OCH_3), 2.11 (1H, d, J = 5.2 Hz, CHH), 1.94 (1H, d, J = 5.2 Hz, CHH), 1.37 (9H, s, $C(CH_3)_3$ / (minor rotamer) δ 8.65 (1H, s, CHO), 7.43 (1H, d, J = 9.2 Hz, ArH), 6.71 (1H, dd, J = 9.2, 3.2 Hz, ArH), 6.66 (1H, d, J = 3.2 Hz, ArH), 3.73 (3H, s, OCH₃), 2.37 (1H, d, J = 5.6 Hz, CHH), 1.91 (1H, d, J = 5.6 Hz, CHH), 1.62 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) (mixture of two rotamers) δ 199.9, 198.0, 167.5, 167.4, 158.8, 158.3, 137.6, 137.5, 133.7, 133.5, 119.6, 117.9, 115.7, 114.2, 82.3, 82.2, 55.5, 55.4, 44.1, 43.1, 39.5, 39.3, 27.80, 27.75, 26.1, 25.0, 11.4, 11.2; IR (neat) 1715, 1470, 1368, 1290, 1248, 1236, 1209, 1159, 1038, 1016 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₇H₂₁BrO₄: *m/z* 391.0515 ([M $+ \text{Na}^+$), found: m/z 391.0509 ($[M + \text{Na}^+)$).

trans-2-Formyl-1-(2,2-diphenylvinyl)-2-methylcyclopropanecarbox ylic acid tert-butyl ester (Table 2, entry 24).

' Д.,.сно ¹H NMR (400 MHz, CDCl₃) δ 9.54 (1H, s, CHO), 7.18-7.41 (8H, m, tBuO₂C Me ArH), 7.05-7.14 [(2H, m, ArH), (1H, s, Ph₂C=CH)], 3.04 (1H, dd, J = 18.0, 2.0 Hz, CHH), 2.75 (1H, dd, J = 18.0, 2.0 Hz, CHH), 1.53 (9H, s, C(CH₃)₃), 1.02 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 163.9, 146.4, 141.9, 141.6, 135.1, 128.8, 128.7, 128.35, 128.31, 127.3, 127.2, 81.2, 66.0, 60.6, 42.0, 28.2, 20.3; IR (neat) 1709, 1368, 1281, 1256, 1163, 1136, 1078, 758, 745, 700 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{24}H_{26}O_3$: *m/z* 385.1786 ([M + Na]⁺), found: *m/z* 385.1774 ([M + Na]⁺).

2-Benzovloxy-2-formyl-1-phenylcyclopropanecarboxylic acid tert-butyl ester (major isomer) (Table 2, entry 25).

tBuO₂Ć ¹H NMR (400 MHz, CDCl₃) δ 8.75 (1H, s, CHO), 8.05-8.15 (2H, m, ArH), 7.45-7.98 (8H, m, ArH), 2.70 (1H, d, J = 6.8 Hz, CHH), 2.39 (1H, d, J = 6.8 Hz, CHH), 1.24 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 166.0, 165.8, 133.9, 133.6, 130.7, 130.0, 128.9, 128.5, 128.4, 128.2, 82.5, 69.0, 44.5, 27.5, 22.3; IR (neat) 1722,

1369, 1310, 1271, 1236, 1155, 1088, 1067, 1024, 708 cm⁻¹; HRMS (ESI) exact mass calcd. for $C_{22}H_{22}O_5$: m/z 389.1359 ([M + Na]⁺), found: m/z 389.1365 ([M + Na]⁺).

2-Benzoyloxy-2-formyl-1-(2-naphthyl)cyclopropanecarboxylic acid *tert*-butyl ester (Table 2, entry 26).

^{tBuO₂C OBz ¹H NMR (400 MHz, CDCl₃) (major isomer) δ 8.74 (1H, s, CHO), 8.05-8.15 (2H, m, ArH), 7.45-7.97 (8H, m, ArH), 7.16-7.24 (2H, m, ArH), 2.79 (1H, d, *J* = 6.8 Hz, CHH), 2.53 (1H, d, *J* = 6.8 Hz, CHH), 1.24 (9H, s, C(CH₃)₃) / (minor isomer) δ 9.67 (1H, s, CHO), 8.05-8.15 (2H, m, ArH), 7.45-7.97 (8H, m, ArH), 7.37-7.45 (2H, m, ArH), 2.92 (1H, d, *J* = 6.8 Hz, CHH), 2.17 (1H, d, *J* = 6.8 Hz, CHH), 1.40 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) (mixture of two isomers) δ 194.0, 192.0, 167.1, 166.0, 165.8, 165.6, 133.7, 133.5, 133.05, 133.01, 131.7, 131.0, 130.3, 130.0, 129.7, 129.6, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 127.7, 127.6, 126.5, 126.3, 126.2, 83.1, 82.7, 69.1, 68.2, 45.9, 44.6, 27.8, 27.5, 24.9, 22.5; IR (neat) 1721, 1269, 1246, 1175, 1155, 1090, 1067, 750, 733, 708 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₆H₂₄O₅: *m/z* 439.1520 ([M + Na]⁺), found: *m/z* 439.1516 ([M + Na]⁺).}

4-tolyl CHC tBuO₂C OBz

2-Benzoyloxy-2-formyl-1-(4-tolyl)cyclopropanecarboxylic acid *tert*-butyl ester (Table 2, entry 27)

¹H NMR (400 MHz, CDCl₃) (major isomer) δ 8.75 (1H, s, CHO), 8.05-8.15 (2H, m, ArH), 7.12-7.70 (7H, m, ArH), 2.66 (1H, d, *J* = 6.8 Hz, CHH), 2.38 (1H, d, *J* = 6.8 Hz, CHH), 2.35 (3H, s, CH₃), 1.25 (9H, s, C(CH₃)₃) / (minor isomer) δ 9.60 (1H, s, CHO), 7.12-7.70 (9H, m, ArH), 2.78 (1H, d, *J* = 6.8 Hz, CHH), 2.01 (1H, d, *J* = 6.8 Hz, CHH), 1.41 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) (mixture of two isomers) δ 194.0, 192.4, 167.3, 166.2, 165.7, 165.6, 138.0, 137.9, 133.6, 133.5, 130.8, 130.5, 130.4, 130.04, 130.00, 129.7, 129.2, 129.1, 128.9, 128.6, 128.5, 128.3, 82.8, 82.4, 69.0, 68.2, 45.6, 44.1, 27.8, 27.5, 24.6, 22.3, 21.18, 21.15; IR (neat) 1720, 1369, 1306, 1269, 1238, 1157, 1094, 1067, 1024, 710 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₃H₂₄O₅: *m/z* 403.1516 ([M + Na]⁺), found: *m/z* 403.1518 ([M + Na]⁺).

2-Benzoyloxy-2-formyl-1-(4-chlorophenyl)cyclopropanecarb oxylic acid *tert*-butyl ester (Table 2, entry 28)

CHO), 8.07-8.12 (2H, m, ArH), 7.31-7.68 (7H, m, ArH), 2.69 (1H, d, J = 6.8 Hz, CHH), 2.34 (1H, d, J = 6.8 Hz, CHH), 1.23 (9H, s, C(CH₃)₃) / (minor isomer) δ 9.61 (1H, s, CHO), 7.31-7.68 (9H, m, ArH), 2.81 (1H, d, J = 6.8 Hz, CHH), 2.00 (1H, d, J = 6.8 Hz, CHH), 1.41 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) (mixture of two isomers) δ 193.6, 192.1, 166.7, 166.0, 165.7, 165.5, 134.4, 134.1, 133.8, 133.7, 132.5, 132.1, 132.0, 131.9, 130.0, 129.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 83.3, 82.8, 69.0, 68.0, 45.1, 44.0, 27.8, 27.5, 24.6, 22.4; IR (neat) 1726, 1314, 1271, 1238, 1159, 1092, 1015, 912, 835, 743 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₂H₂₁ClO₅: *m/z* 423.0970 ([M + Na]⁺), found: *m/z* 423.0974 ([M + Na]⁺).

3-MeOC₆H₄ CHO *t*BuO₂C OBz

2-Benzoyloxy-2-formyl-1-(3-methoxyphenyl)cyclopropanec arboxylic acid *tert*-butyl ester (Table 2, entry 29)

^{tBuO₂C OBz ¹H NMR (400 MHz, CDCl₃) (major isomer) δ 8.73 (1H, s, CHO), 8.05-8.15 (2H, m, ArH), 6.80-7.70 (7H, m, ArH), 3.83 (3H, s, OCH₃), 2.67 (1H, d, *J* = 6.8 Hz, CHH), 2.38 (1H, d, *J* = 6.8 Hz, CHH), 1.26 (9H, s, C(CH₃)₃) / (minor isomer) δ 9.62 (1H, s, CHO), 8.05-8.15 (2H, m, ArH), 6.80-7.70 (7H, m, ArH), 2.76 (1H, d, *J* = 6.8 Hz, CHH), 2.03 (1H, d, *J* = 6.8 Hz, CHH), 1.42 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) (mixture of two isomers) δ 194.0, 192.1, 165.9, 165.7, 159.5, 159.4, 135.4, 134.6, 133.61, 133.57, 130.04, 130.00, 129.7, 129.4, 129.1, 128.9, 128.5, 128.3, 122.95, 122.89, 116.2, 116.0, 114.6, 114.2, 114.0, 113.4, 84.4, 82.9, 82.5, 81.5, 69.0, 68.1, 45.1, 55.3, 44.4, 28.5, 27.8, 27.54, 27.50, 24.6, 22.4; IR (neat) 1722, 1271, 1244, 1153, 1105, 1090, 1167, 1034, 1026, 708 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₃H₂₄O₆: *m/z* 419.1465 ([M + Na]⁺).}

Determination of the relative stereochemistry (Scheme 1).

The relative stereochemistry was determined unambiguously by the X-ray crystallographic analysis after the derivatization of the cyclopropanecarboxaldehyde **1b** to the corresponding 4-nitrobenzoyl ester **4**. Stereochemistries of other products were tentatively assigned by comparing the ¹H NMR spectrum of these cyclopropanes with **1b**.

trans-2-Isopropyl-2-(4-nitrobenzoyloxymethyl)-1-phenylcyclopropanecarboxylic acid *tert*-butyl ester (4).

To a stirred solution of **1b** (22.3 mg, 0.077 mmol) in methanol (5 mL) was added NaBH₄ (8.7 mg, 0.23 mmol) at 0 °C. The reaction mixture was stirred at the same temperature for 1 h. The mixture was quenched with 1 N HCl and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The residue was used to the next step without further purification.

To a stirred solution of this residue in CH_2Cl_2 (5mL) was added Et₃N (21 µL, 0.15 mmol), DMAP (1.8 mg, 0.015 mmol) and 4-nitrobenzoyl chloride (22.3 mg, 0.12 mmol) at room temperature. The reaction mixture was stirred overnight at the same temperature. The mixture was quenched with aqueous NaHCO₃ and extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (eluting with hexane/ethyl acetate = 30:1) to give the ester **4** (83% yield in 2 steps).

¹H NMR (400 MHz, CDCl₃) δ 8.28 (2H, d, J = 9.2 Hz, Ar**H**), 8.06 (2H, d, J = 9.2 Hz, Ar**H**), 7.35-7.48 (2H, m, Ar**H**), 7.17-7.24 (3H, m, Ar**H**), 4.12 (1H, d, J = 12.4 Hz, OC**H**H), 4.08 (1H, d, J = 12.4 Hz, OCH**H**), 1.76 (1H, app quint, J = 7.2 Hz, C**H**(CH₃)₂), 1.68 (1H, d, J = 5.2 Hz, C**H**H), 1.41 (1H, d, J = 5.2 Hz, CH**H**), 1.39 (9H, s, C(C**H**₃)₃), 1.28 (3H, d, J = 6.8 Hz, CH(C**H**₃)(CH₃)), 1.17 (3H, d, J = 7.2 Hz, CH(CH₃)(C**H**₃)) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 164.1, 150.5, 136.7, 135.5, 131.1, 130.5, 127.8, 127.7, 127.3, 123.5, 81.3, 65.6, 43.2, 36.1, 31.0, 27.8, 21.0, 20.4, 20.3 ppm; IR (neat) 1717, 1530, 1368, 1348, 1269, 1246, 1159, 1116, 1101, 719 cm⁻¹; HRMS (ESI) exact mass calcd. for C₂₅H₂₉NO₆: *m/z* 462.1887 ([M + Na]⁺), found: *m/z* 462.1883 ([M + Na]⁺).

The product was recrystallized from hexane/ether. The single crystal was mounted on a glass capillary. Data of X-ray diffraction were collected by a Rigaku RAXIS-RAPID Imaging Plate two-dimensional area detector using graphite-monochromated MoK α radiation ($\lambda = 0.71069$ Å) to a maximam 2θ value of 55°. The crystal structure was solved by the direct methods and refined by the full-matrix least squares using the program SHELXL-97.⁵ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined by using the riding model. The crystallographic data were summarized in the following table.

Empirical Formula	C ₂₅ H ₂₉ O ₆ N
Formula Weight	439.51
Crystal System	monoclinic
Lattice Parameters	a = 11.040(3) Å
	b = 7.235(2) Å
	c = 28.628(7) Å
	$\beta = 91.016(12)^{\circ}$
	$V = 2286.3(11) Å^3$
Space Group	P2 ₁ /n (#14)
Z value	4
Deale	1.277 g/cm ³
T, °C	25
μ(ΜοΚα)	0.909 cm ⁻¹
No. of Reflections Measured	Total: 21055
No. Observations (All reflections)	5179
No. Variables	290
R (All reflections)	0.0701
R _w (All reflections)	0.1576
Goodness of Fit	1.070

Ortep diagram of 4.

Titanium-BINOLate catalyzed asymmetric cyclopropanation reaction (Scheme 2).

To a stirred solution of (*S*)-BINOL (42.9 mg, 0.15 mmol) in CH_2Cl_2 (1.0 mL) was added $Ti(OiPr)_4$ (22.2 µL, 0.075 mmol) at room temperature under argon atmosphere. The mixture was then stirred for 1 h at the same temperature to afford the orange colored solution of Ti(IV)/(S)-BINOL complex.

To the catalyst solution prepared as above were added a solution of α -benzoyloxyacrolein (52.9 mg, 0.30 mmol) and *tert*-butyl phenyldiazoacetate (54.6 mg, 0.25 mmol) in CH₂Cl₂ (1.0 mL) dropwise at 0 °C. The reaction mixture was stirred at the same temperature for 48 h. The mixture was quenched with aqueous NaHCO₃, extracted with ethyl acetate and dried over Na₂SO₄. After concentration under reduced pressure, the residue was purified by column chromatography on silica gel (eluting with hexane/ethyl acetate = 30:1) to give the cyclopropane.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/2-propanol = 100/1, flow rate = 0.5 mL/min, retention time; 36.0 min (major) and 52.5 min (minor)).

Mechanistic Study of the acid catalyzed cyclopropanation reaction.

The possible courses of cyclopropanation can be delineated as below. At the first stage of the reaction, diazoacetate and α,β -unsaturated aldehyde would react in two different manners. One possibility is that diazoacetate adds to the β -positon of activated aldehyde (Michael addition, path a) to give the diazonium intermediate and that intermediate closes the ring spontaneously to generate cyclopropane and nitrogen. Another possibility is that 1,3-dipolar cycloaddition reaction initially takes place to give 1-pyrazoline (path b). The initially formed 1-pyrazoline ring is then opened by the action of acid catalysts to yield cyclopropane (path c \rightarrow e).⁶ Thermal or light driven ring contraction of 1-pyrazoline (path d) is also known. However, such a process seems to be unlikely under our reaction conditions. Hence, our concern is that the reaction takes place whether via direct Michael addition of diazoacetate (path a \rightarrow e) or via 1,3-dipolar cycloaddition (path b \rightarrow c \rightarrow e).

According to this line, an intriguing phenomenon was observed when the cyclopropanation of α -isopropylacrolein and *tert*-butyl phenyldiazoacetate was conducted in the presence of 20 mol% BF₃·Et₂O at -78 °C in CH₂Cl₂. The reaction proceeded smoothly, however the resulting compound was not the expected cyclopropane but 1-pyrazoline, as a mixture of diastereomers (for experimental procedure, see below).

$$\begin{array}{c} \text{BF}_3 \cdot \text{Et}_2\text{O} \\ \text{CO}_2 t\text{Bu} \\ \text{Ph} \end{array} + i\text{Pr} \quad \text{CHO} \underbrace{\begin{array}{c} \text{BF}_3 \cdot \text{Et}_2\text{O} \\ (20 \text{ mol}\%) \\ \text{CH}_2\text{Cl}_2 \\ -78 \text{ °C}, 30 \text{ min} \end{array}}_{\text{CH}_2\text{Cl}_2 \text{ mol}\%} \begin{array}{c} \text{Ph} \quad \text{Ph} \quad \text{CHO} \\ \text{tBuO}_2\text{C} & i\text{Pr} \\ \text{5} 71\% \text{ yield} \\ \text{trans/cis} = 1/0.71 \end{array}$$

This observation actually led us to the assumption that this cyclopropanation reaction might be intervening acid catalyzed 1,3-dipolar cycloaddition and denitrogenation of the resulting 1-pyrazoline (path $b\rightarrow c\rightarrow e$). To identify the course of the reactions catalyzed by TiCl₄ and Tf₂NH, 1-pyrazoline was re-subjected to the standard reaction conditions (Method A and Method B).

As shown above, each method led to totally different results. In Method B, the possibility of 1,3-dipolar cycloaddition pathway (path $b\rightarrow c\rightarrow e$) was easily excluded due to the disability of Tf₂NH to activate the 1-pyrazoline ring under the reaction condition. Rather weird is the result obtained by Method A. Starting from mixtures of trans and cis isomers of 1-pyrazoline, *trans*-cyclopropane and *cis*-1-pyrazoline were isolated as two major products. This observation clearly indicated the existence of the ring opening process of 1-pyrazoline. However, since we never observed the remaining cis-1-pyrazolines in TiCl₄ catalyzed cyclopropanation reaction of aryldiazoacetates and α -substituted acroleins, at this moment, we are speculating that Michael-initiated ring closure is also operative in this case.

BF₃·Et₂O catalyzed 1,3-dipolar cycloaddtion reaction of *tert*-butyl phenyldiazoacetate and α -isopropyl acrolein.

To a stirred solution of *tert*-butyl phenyldiazoacetate (152.8 mg, 0.70 mmol) and α -isopropyl acrolein (66.3 mg, 0.30 mmol) in CH₂Cl₂ (2.8 mL) was added BF₃·OEt₂ (18 µL, 0.14 mmol) at -78 °C under argon. The reaction mixture was stirred at the same temperature for 1 h. The mixture was quenched with aqueous NaHCO₃ and extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (eluting with hexane/ethyl acetate = 40:1 ~ 20:1) to give1-pyrazline **5** (71% yield, trans/cis = 1.2/1).

One isomer could be obtained in analytically pure form by further purification by column chromatography on silica gel. Heating CDCl₃ solution of this isomer at 60 °C for 3 h resulted in the formation of *trans*-cyclopropane. From this observation, the stereochemistry of this isomer was determined to be *trans*.

Ph//.N=N...CHO tBuO₂C iPr

trans-5-Formyl-5-isopropyl-3-phenyl-1-pyrazoline-3-carboxylic acid *tert*-butyl ester.

^tBuO₂C[•]ⁱPr⁻¹H NMR (400 MHz, CDCl₃) δ 9.92 (1H, s, CHO), 7.26-7.43 (5H, m, ArH), 2.96 (1H, app sept, J = 6.8 Hz, CH(CH₃)₂), 2.40 (1H, d, J = 14.0 Hz, CHH), 2.34 (1H, d, J = 14.0 Hz, CHH), 1.43 (9H, s, C(CH₃)₃), 0.99 (3H, d, J = 6.8 Hz, CH(CH₃)(CH₃)), 0.84 (3H, d, J = 6.8 Hz, CH(CH₃)(CH₃)); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 168.8, 138.9, 128.7, 128.1, 125.7, 111.3, 104.1, 83.3, 31.2, 27.8, 27.0, 17.4, 16.4; IR (neat) 2974, 1726, 1468, 1393, 1369, 1273, 1258, 1153, 1113, 843 cm⁻¹; HRMS (ESI) exact mass calcd. for C₁₈H₂₄N₂O₃: *m/z* 339.1679 ([M + Na]⁺), found: *m/z* 339.1683 ([M + Na]⁺).

References.

- 1 S. Takano, K. Inomata, K. Samizu, S. Tomita, M. Yanase, M. Suzuki, Y. Iwabuchi, T. Sugihara and K. Ogasawara, *Chem. Lett.*, 1989, 1283.
- 2 K. Basu, J. Richards and L. A. Paquette, *Synlett*, 2004, 2841.
- 3 C. S. Marvel, R. L. Myers and J. H. Saunders, J. Am. Chem. Soc., 1948, 70, 1694.
- 4 (*a*) H. M. L. Davies and A. M. Walji, *Angew. Chem., Int. Ed.*, 2005, **44**, 1733; (*b*) K. A. Jørgensen, S. Bachmann and D. Fielenbach, *Org. Biomol. Chem.*, 2004, **2**, 3044.
- 5 G. M. Sheldrick, SHELX-97: Program for Crystal Structure Refinement, University of Gottingen, Germany, 1997.
- 6 J. L. García Ruano, M. T. Peromingo, M. R. Martín and A. Tito, *Org. Lett.*, 2006, **8**, 3295.

100

150

200

50

Æ

