Supporting Information

Diastereoselective Diaza-Cope Rearrangement Reaction

Hyunwoo Kim,[†] Doo Seoung Choi,[‡] Cindy Pai-Hui Yen,[†] Alan J. Lough,[†] Choong Eui Song^{*,‡} and Jik Chin^{*,†}

Table of Contents

General information	S-2
Preparation and characterization of RR-2a, RR-3a, RR-3	S-2
¹ H NMR spectrum for enantioselective reaction	S-5
Calculation results	S-6
¹ H and ¹³ C NMR spectra	S-7

General Information

Commercially available compounds (including (1R)-(-)-myrtenal) were used without further purification or drying. The ¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury 400 spectrometer (400 MHz and 100 MHz, respectively). The High resolution mass spectra (HRMS) were obtained from the Department of Chemistry University of Toronto, Optical rotations were measured at 589 nm using a Rudolph Autopol IV polarimeter. Melting points were recorded using an Electrothermal melting point apparatus. Spartan 06' for windows was used for all calculations.

Preparation and characterization of RR-2a, RR-3a, RR-3

Synthesis of RR-2a: To a clear solution of 22.4 mg (0.10 mmol) of (R,R)-bis-1,2-di-(2-hydroxylphenyl)-1,2-diaminoethane (R-2) in 0.20 mL of ethanol was added 30 mg (0.20 mmol) of (1R)-(-)-Myrtenal. The resulting clear reaction mixture was stirred for half an hour at room temperature to give RR-2a as a white precipitate. The solid was filtered, washed with 0.5 mL of ethanol and dried in vacuum (90 % yield).

¹H NMR (400MHz, CDCl₃): δ 10.75 (s, 2H, ArOH), 7.53 (s, 2H, imine H), 7.04 (t, J = 7.6 Hz, 2H, ArH), 6.81 (d, J = 8.4 Hz, 2H, ArH), 6.46 (t, J = 7.6 Hz, 2H, ArH), 6.36 (d, J = 7.2 Hz, 2H, ArH), 6.06 (m, 2H, α-pinene), 4.64 (s, 2H, C*H), 2.86 (t, J = 5.2 Hz, 2H, α-pinene), 2.48 – 2.33 (m, 6H, α-pinene), 2.15 (s, 2H, α-pinene), 1.38 (s, 6H, α-pinene), 1.03 (d, J = 9.2 Hz, 2H, α-pinene), 0.81 (s, 6H, α-pinene).

¹³C-NMR (100 MHz, CDCl₃): δ 163.93, 156.82, 147.30, 138.81, 129.25, 128.80, 124.02, 119.94, 119.13 (7 aromatic and imine carbons, and 2 carbons of double bond of α-pinene), 78.48, 40.48, 40.44, 37.83, 32.76, 31.57, 26.33, 21.62 (8 carbons of α-pinene).

X-ray quality crystals for compound *RR*-2a was obtained by slow evaporation of its solution in CH_2Cl_2 / acetonitrile.

HRMS (ESI) calculated for $C_{34}H_{41}N_2O_2[M+H]^+$: 509.3162. Found: 509.3175. [α]_D²⁷ + 200.6 (c =1.0, CHCl₃), mp = 138°C.

Synthesis of *RR*-**3a**: To a clear solution of 22.4 mg (0.10 mmol) of (*S*,*S*)-bis-1,2-di-(2-hydroxylphenyl)-1,2-diaminoethane (*S*-**2**) in 0.20 mL of ethanol was added 30 mg (0.20 mmol) of (1*R*)-(-)-Myrtenal. The resulting clear reaction mixture was stirred for half an hour at room temperature to give *RR*-**3a** as a yellow precipitate. The solid was filtered, washed with 0.5 mL of ethanol and dried in vacuum (90 % yield).

¹H NMR (400MHz, CDCl₃): δ 13.13 (s, 2H, ArOH), 8.18 (s, 2H, imine H), 7.21 (t, J = 7.8 Hz, 2H, ArH), 7.09 (d, J = 7.6 Hz, 2H, ArH), 6.88 (d, J = 8.0 Hz, 2H, ArH), 6.76 (t, J = 7.6 Hz, 2H, ArH), 5.43 (m, 2H, α-pinene), 4.08 (s, 2H, C*H), 2.54 (t, J = 5.2 Hz, 2H, α-pinene), 2.45 (dt, J = 8.8, 5.6 Hz, 2H, α-pinene), 2.27 (dt, J = 18, 2.8 Hz, 2H, α-pinene), 2.20 (dt, J = 18, 2.8 Hz, 2H, α-pinene), 2.08 (s, 2H, α-pinene), 1.31 (s, 6H, α-pinene), 1.29 (d, J = 6.1 Hz, 2H, α-pinene), 0.64 (s, 6H, α-pinene).

¹³C-NMR (100 MHz, CDCl₃): 165.48, 161.03, 145.86, 132.31, 131.74, 121.53, 118.88, 118.71, 116.93 (7 aromatic and imine carbons, and 2 carbons of double bond of α-pinene), 78.22, 42.68, 41.01, 38.34, 31.63, 31.53, 26.30, 21.18 (8 carbons of α-pinene).

X-ray quality crystals for compound *RR*-**3a** was obtained from DMSO-*d*₆ HRMS (ESI) calculated for $C_{34}H_{41}N_2O_2[M+H]^+$: 509.3162. Found: 509.3183. $[\alpha]_D^{27}$ -66.4 (c =1.0, CHCl₃), mp = 184°C.

Synthesis of *RR*-**3**: To a slurry of *RR*-**3a** (1.0 mmol) in 10 mL of acetonitrile was added 0.2 mL of 37 % HCl solution. Stirring the reaction mixture at ambient temperature for 3 hrs afforded white precipitate. The solid was filtered, and the diamine dihydrochloride salt was washed with acetonitrile (2 x 3 mL) to afford analytically pure *RR*-**3**· 2HCl in 95 % yield.

¹H NMR (400MHz, D₂O): δ 5.91 (m, 2H), 4.22 (s, 2H, C*H), 2.55 (dt, *J* = 9.2, 5.6 Hz, 2H), 2.35 – 2.33 (m, 6H), 2.14 (s, 2H), 1.34 (s, 6H), 1.20 (d, *J* = 12.0 Hz, 2H), 0.70 (s, 6H).

 13 C-NMR (100 MHz, D₂O/CD₃OD): δ 138.76, 131.33 (2 carbons of double bond of α -pinene), 58.14, 41.48, 41.14, 38.65, 32.44, 32.02, 26.02, 21.53 (8 carbons of α -pinene).

HRMS (ESI) calculated for $C_{20}H_{33}N_2 [M+H]^+$: 301.2638. Found: 301.2652.

 $[\alpha]_D^{27}$ -22.1 (c =1.0, CHCl₃).

¹H NMR spectrum for enantioselective reaction between (R)-(-)-myrtenal and racemic bis-1,2-di-(2-hydroxylphenyl)-1,2-diaminoethane.

49mg of *rac*-bis-1,2-di-(2-hydroxyphenyl)-1,2-diaminoethane (0.20 mmol) was mixed with 2.2 equiv of (R)-(-)-myrtenal (0.44 mmol) in EtOH (0.2 ml). After stirring the mixture at ambient temperature for half an hour, the solvent was removed by nitrogen blowing. The crude mixture was dissolved in CDCl₃ for ¹H NMR.

Calculation results

Molecule	Energy (hartree)
<i>RR</i> -2a	-1579.5638256
SR-2a	-1579.5646739
SR- 3 a	-1579.5653749
RR- 3 a	-1579.5718981
TS_1	-1579.5287893
TS_2	-1579.5347485

Equilibrium geometries and transition state geometries were obtained by DFT computation at the B3LYP / $6-31G^*$ level

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

¹H NMR signal for alkene C-H of *RR*-**2a** and *RR*-**3a** is a multiplet in CDCl₃

