Dimerization of aromatic ureido pyrimidinedione derivatives: Observation of an unexpected tautomer in the solid state

Cui Lu,^a Suresh Gadde,^a Atindra Shukla,^a Hao Sun,^a Joel T. Mague^b and Angel E. Kaifer^{a,*}

^aCenter for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, FL 33124-0431, U.S.A. and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, U.S.A.

ELECTRONIC SUPPLEMENTARY INFORMATION

1. SYNTHESIS

1-(5,5-diallyl-4,6-dioxo-1,4,5,6-tetrahydro-pyrimidin-2-yl)-phenyl-urea (2). NaH (80 mg, 2.0 mmol, 60% in mineral oil) was taken in 10 ml dry DMF. To this solution 1.0 equiv. of 5,5-diallyl-2-amino-1H-pyrimidine-4,6-dione (414 mg, 2.0 mmol) was slowly added. The reaction mixture was heated at 70°C for 2 hours to form the sodium salt. A solution of CH_2Cl_2 containing phenyl isocyanate (0.36 mL, 2.0 mmol) was added drop-wise to the above DMF solution and refluxed at 70°C for 12 hours. The reaction mixture was quenched with acetic acid (0.11 mL, 2.0 mmol), the solvents were removed under vacuum; the residue was dissolved in CHCl₃, washed with brine solution and water, and the organic layer was dried over Na₂SO₄ and concentrated to give the crude product, which was further purified by column chromatography (SiO₂, 9:1 CHCl₃/Hexane) to give a white solid product Phenyl-DDAA (~80mg, 12%). Upon recrystallization from CHCl₃. white crystals were obtained (48 mg, 8%).

¹H NMR (400 MHz, CDCl₃) δ , ppm.= 12.61 (s, 1H, NH), 11.27 (s, 1H, NH), 10.44 (s, 1H, NH), 7.61-7.59 (d, 2H, CH-benzene), 7.33-7.28 (t, 2H, CH-benzene), 7.19 (s, CHCl₃), 7.11-7.07 (t, 1H, CH-benzene), 5.66-5.57 (m, 2H, -CH₂CHCH₂), 5.56-5.05 (t, 4H, -CH₂CHCH₂), 2.73-2.67(d, 4H, -CH₂CHCH₂), *2.10(Acetone), *1.48(water). ¹³C NMR (CDCl₃): δ , ppm.=180.17, 170.94, 156.21, 155.68, 137.73, 130.74, 129.20, 124.80, 121.19, 120.33, 77.48/77.16/76.84 (CHCl₃), 58.70, 42.92. MS (FAB): 326 (M+H)⁺.

1-(5,5-dially-4,6-dioxo-1,4,5,6-tetrrahydro-pyrimidin-2-yl)-1-naphthyl-urea (3). Compound **3** was prepared using the same procedure described for compound **2** by reacting 1-naphthyl isocyanate (0.67 mL, 4.0 mmol) with 5,5-diallyl-2-amino-1H-pyrimidine-4,6-dione (828 mg, 4mmol) Na-salt. Yield. 8.3%.

¹H NMR (400 MHz, CDCl₃) δ ppm.= 12.57 (s, 1H, NH), 11. 21 (s, 1H, NH), 10.49 (s, 1H, NH), 7.90-7.7.85 (m, 2H, CH-Np), 7.76-7.74 (m, 1H, CH-Np), 7.64-7.62 (m, 1H, CH-Np), 7.49-7.44 (m, 3H, CH-Np), 5.64-5.59 (m, 2H, -CH₂CHCH₂), 5.12-5.07 (t, 4H, -CH₂CHCH₂), 2.64-2.60(d, 4H, -CH₂CHCH₂). ¹³C NMR (CDCl₃): δ ppm.=180.79, 171.35, 157.11, 154.74, 134.69, 132.01, 129.20, 128.91, 127.57, 125.88, 123.59, 121.33, 58.95, 43.11. MS (FAB): 377 (M+H)⁺.

1-(5,5-dially-4,6-dioxo-1,4,5,6-tetrrahydro-pyrimidin-2-yl)-2-naphthyl-urea (4). Compound **4** was prepared using the same procedure employed for compound **2** by reacting 2-naphthyl isocyanate (0.67 mL, 4.0 mmol) with 5,5-diallyl-2-amino-1H-pyrimidine-4,6-dione (828mg, 4mmol) Na-salt. Yield 11% (165 mg)

¹H NMR (400 MHz, CDCl₃) δ ppm.= 12.64 (s, 1H, NH), 11.26 (s, 1H, NH), 10.29 (s, 1H, NH), 8.19 (s, 1H, CH-Np), 7.86-7.79 (m, 2H, CH-Np), 7.84-7.82 (m, 1H, CH-Np), 7.85-7.70 (m, 3H, CH-Np), 7.61-7.59 (t, 1H, CH-Np), 7.46-7.33(m, 2H, CH-Np), 5.66-5.59 (m, 2H, -CH₂CHCH₂), 5.15-5.07 (t, 4H, -CH₂CHCH₂), 2.75-2.72(d, 4H, -CH₂CHCH₂). ¹³C NMR (CDCl₃): δ ppm.=184.00, 170.77, 158.33, 155.36, 133.97, 130.93, 130.72, 130.26, 128.99, 127.95. 127.74, 126.72, 125.38, 121.26, 121.04, 120.04, 117.12 58.68, 42.88ppm. MS (FAB): 377 (M+H)⁺.

2. EXPERIMENTAL DETAILS ON X-RAY WORK

Crystals of 2 - 4 were mounted in a Cryoloop[™] with a drop of Paratone oil and placed in the cold nitrogen stream of the Kryoflex[™] attachment of the Bruker APEX CCD diffractometer. A full sphere of data was collected using either a combination of three sets of 400 scans in ω (0.5° per scan) at $\varphi = 0$, 90 and 180° plus two sets of 800 scans in φ (0.45° per scan) at $\omega = -30$ and 210° (for 2 and 3) using the SMART software package¹ or 606 scans in ω (0.3° per scan) at $\varphi = 0$. 120 and 240° (for 4) using the APEX2 software suite.² The raw data were reduced to F^2 values using the SAINT+ software³ and a global refinements of unit cell parameters employing 7690 -9940 reflections chosen from the full data sets were performed. Multiple measurements of equivalent reflections provided the basis for empirical absorption corrections as well as a correction for any crystal deterioration during the data collection (SADABS⁴). The structures were solved by direct methods and refined by full-matrix least-squares procedures using either the SHELXTL (for 2 and 3)⁵ or APEX2 (for 4)¹ program packages. Hydrogen atoms attached to carbon were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached non-hydrogen atoms while those attached to nitrogen were refined with isotropic displacement parameters. *References:*

1. Bruker-AXS, SMART, Version 5.625, Madison, WI (2000).

2. Bruker-AXS, APEX2, Version 2.1-0, Madison, WI (2006).

3. Bruker-AXS, SAINT+, Version 6.35A (for **2** and **3**), Madison, WI (2002) or Version 7.34A (for **4**), Madison, WI (2006).

4. Sheldrick, G, M., SADABS, Version 2.05 (for **2** and **3**). University of Göttingen, Germany (2002) or Version 2007/2 (for **4**) University of Göttingen, Germany (2007).

5. a. Bruker-AXS, SHELXTL, Version 6.10, Madison, WI (2000). b. Sheldrick, G.M.,

SHELXS97 and SHELXL97. University of Göttingen, Germany (1997).

3. PLOTS OF NH PROTON CHEMICAL SHIFTS AS A FUNCTION OF CONCENTRATION

4. PLOTS OF NH PROTON CHEMICAL SHIFTS AS A FUNCTION OF TEMPERATURE FOR COMPOUND **2**.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

5. SIDE VIEWS OF THE DIMERS $(\mathbf{2}_2 - \mathbf{4}_2)$ IN THE SOLID STATE

DDAA $\mathbf{2}_2$ dimer.

DADA $\mathbf{3}_2$ dimer

DDAA $\mathbf{4}_2$ dimer.