# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2008 data_global _journal_name_full Chem.Commun. _journal_coden_Cambridge 0182 _journal_volume ? _journal_page_first ? _journal_year ? loop_ _publ_author_name _publ_author_address 'Taketo Taguchi' ; School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan ; 'Arata Takahashi' '' 'Hikaru Yanai' '' _publ_contact_author_name 'Taketo Taguchi' _publ_contact_author_email TAGUCHI@PS.TOYAKU.AC.JP _publ_section_title ; Tetrakis(trifluoromethanesulfonyl)propane: Highly Effective Br\/onsted Acid Catalyst for Vinylogous Mukaiyama-Michael Reaction of alpha,beta-Enones with Silyloxyfurans ; _publ_contact_author_address ; School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi Hachioji, Tokyo, 192-0392, Japan ; _publ_contact_author_fax ' +81 42 676 3257 ' _publ_contact_author_phone ' +81 42 676 3257 ' _publ_contact_letter ; ? ; _publ_requested_category ? # Attachment 'TTFP.cif' #============================================================================== data_1 _database_code_depnum_ccdc_archive 'CCDC 674990' #============================================================================== _audit_creation_date 2008-01-17 _audit_creation_method 'SHELXL97 ' _publ_section_abstract ; 1,1,3,3-Tetrakis(trifluoromethanesulfonyl)propane was found as an excellent Bronsted acid catalyst for the Mukaiyama-Michael reaction of alpha,beta-enones and 2-silyloxyfurans. Using beta, beta-disubstituted enones as a Michael acceptor, an excellent yield construction of the quaternary carbon could be achieved. In addition, highly low catalyst loading of Bronsted acid was realized in a range from 0.05 mol% to 1.0 mol% in these cases. ; _publ_section_comment ; ; #============================================================================== # TEXT _publ_section_acknowledgements ; ; _publ_section_references ; Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of G\"ottingen, Germany. A.L.Spek (2004) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. or A.L.Spek, J.Appl.Cryst. 2003, 36, 7-13. ; #============================================================================== # CHEMICAL DATA #============================================================================== _chemical_name_systematic ; 1,1,3,3-tetrakis(trifluoromethanesulfonyl)propane ; _chemical_name_common 1,1,3,3-tetrakis(trifluoromethanesulfonyl)propane _chemical_melting_point ? _chemical_formula_moiety 'C7 H4 F12 O8 S4' _chemical_formula_sum 'C7 H4 F12 O8 S4' _chemical_formula_weight 572.34 _chemical_formula_structural ? _chemical_formula_analytical ? _chemical_absolute_configuration . loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' #============================================================================== # CRYSTAL DATA #============================================================================== _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/C ' _symmetry_space_group_name_Hall '-P 2ybc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 9.9367(9) _cell_length_b 16.5820(15) _cell_length_c 10.9892(10) _cell_angle_alpha 90.00 _cell_angle_beta 103.5850(10) _cell_angle_gamma 90.00 _cell_volume 1760.0(3) _cell_formula_units_Z 4 _cell_measurement_temperature 100 _cell_measurement_reflns_used 3579 _cell_measurement_theta_min 2.44 _cell_measurement_theta_max 27.62 _exptl_crystal_description plate _exptl_crystal_colour colorless _exptl_crystal_size_max 0.22 _exptl_crystal_size_mid 0.16 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.160 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1128 _exptl_absorpt_coefficient_mu 0.702 _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.8609 _exptl_absorpt_correction_T_max 0.9657 _exptl_absorpt_process_details ; SADABS Sheldrick 1996 ; _exptl_special_details ; ? ; #============================================================================== # EXPERIMENTAL DATA #============================================================================== _diffrn_ambient_temperature 100 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus rotating anode' _diffrn_radiation_monochromator 'multilayer confocal mirror' _diffrn_measurement_device_type 'Bruker APEXII CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean 8.333 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 9655 _diffrn_reflns_av_R_equivalents 0.0237 _diffrn_reflns_av_sigmaI/netI 0.0329 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -21 _diffrn_reflns_limit_k_max 20 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 2.11 _diffrn_reflns_theta_max 27.48 _reflns_number_total 3932 _reflns_number_gt 3263 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX2 (Bruker AXS, 2006)' _computing_cell_refinement 'APEX2 (Bruker AXS, 2006)' _computing_data_reduction 'SAINT (Bruker AXS, 2004)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'XSHEL (Bruker AXS,2002)' _computing_publication_material 'XCIF (Bruker AXS, 2001)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0276P)^2^+0.8892P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 3932 _refine_ls_number_parameters 280 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0384 _refine_ls_R_factor_gt 0.0284 _refine_ls_wR_factor_ref 0.0666 _refine_ls_wR_factor_gt 0.0621 _refine_ls_goodness_of_fit_ref 1.021 _refine_ls_restrained_S_all 1.021 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.8580(2) 0.40309(12) 0.3092(2) 0.0236(5) Uani 1 1 d . . . C2 C 1.1831(2) 0.18911(12) 0.31144(19) 0.0199(4) Uani 1 1 d . . . C3 C 0.89515(19) 0.23223(11) 0.32610(18) 0.0134(4) Uani 1 1 d . . . H3A H 0.8802 0.2441 0.2347 0.016 Uiso 1 1 calc R . . C4 C 0.76230(19) 0.19609(11) 0.35427(17) 0.0144(4) Uani 1 1 d . . . H4A H 0.7876 0.1669 0.4350 0.017 Uiso 1 1 calc R . . H4B H 0.6997 0.2408 0.3641 0.017 Uiso 1 1 calc R . . C5 C 0.68293(19) 0.13775(11) 0.25272(17) 0.0133(4) Uani 1 1 d . . . H5A H 0.7499 0.1093 0.2125 0.016 Uiso 1 1 calc R . . C6 C 0.7127(2) -0.01729(12) 0.37193(19) 0.0193(4) Uani 1 1 d . . . C7 C 0.5096(2) 0.13040(12) -0.00394(18) 0.0178(4) Uani 1 1 d . . . F1 F 0.72234(13) 0.39247(7) 0.28216(12) 0.0289(3) Uani 1 1 d . . . F2 F 0.90175(15) 0.40103(8) 0.20468(12) 0.0359(3) Uani 1 1 d . . . F3 F 0.88958(16) 0.47299(7) 0.36594(14) 0.0398(4) Uani 1 1 d . . . F4 F 1.14459(12) 0.24387(8) 0.22288(11) 0.0266(3) Uani 1 1 d . . . F5 F 1.22783(13) 0.12410(8) 0.26445(13) 0.0329(3) Uani 1 1 d . . . F6 F 1.28137(12) 0.21741(7) 0.40253(11) 0.0261(3) Uani 1 1 d . . . F7 F 0.64667(13) -0.07718(7) 0.41129(13) 0.0307(3) Uani 1 1 d . . . F8 F 0.76546(12) -0.04193(7) 0.27919(11) 0.0243(3) Uani 1 1 d . . . F9 F 0.81297(13) 0.00939(7) 0.46551(11) 0.0265(3) Uani 1 1 d . . . F10 F 0.38447(12) 0.10155(7) -0.01242(11) 0.0229(3) Uani 1 1 d . . . F11 F 0.60028(12) 0.07078(7) 0.00357(10) 0.0210(3) Uani 1 1 d . . . F12 F 0.50945(12) 0.17410(7) -0.10495(10) 0.0228(3) Uani 1 1 d . . . O1 O 0.88434(15) 0.32434(8) 0.52237(13) 0.0205(3) Uani 1 1 d . . . O2 O 1.09073(14) 0.33654(8) 0.43125(14) 0.0244(3) Uani 1 1 d . . . O3 O 1.07040(14) 0.15540(8) 0.50623(13) 0.0203(3) Uani 1 1 d . . . O4 O 0.97804(14) 0.08595(8) 0.30301(13) 0.0186(3) Uani 1 1 d . . . O5 O 0.54903(15) 0.09625(9) 0.42659(13) 0.0217(3) Uani 1 1 d . . . O6 O 0.48298(14) 0.02947(8) 0.21734(13) 0.0203(3) Uani 1 1 d . . . O7 O 0.44540(14) 0.21817(8) 0.18056(13) 0.0195(3) Uani 1 1 d . . . O8 O 0.64968(14) 0.25853(8) 0.09995(12) 0.0182(3) Uani 1 1 d . . . S1 S 0.94637(5) 0.32374(3) 0.41767(5) 0.01623(11) Uani 1 1 d . . . S2 S 1.03010(5) 0.15646(3) 0.37297(4) 0.01445(11) Uani 1 1 d . . . S3 S 0.58362(5) 0.06378(3) 0.31824(4) 0.01501(11) Uani 1 1 d . . . S4 S 0.56447(5) 0.19796(3) 0.13612(4) 0.01379(11) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0305(12) 0.0145(10) 0.0262(12) 0.0027(9) 0.0076(9) 0.0015(9) C2 0.0154(10) 0.0202(10) 0.0243(11) -0.0011(9) 0.0048(8) -0.0003(8) C3 0.0128(9) 0.0123(9) 0.0143(9) -0.0009(7) 0.0016(7) 0.0002(7) C4 0.0151(9) 0.0127(9) 0.0155(10) -0.0009(7) 0.0035(7) -0.0001(7) C5 0.0124(9) 0.0131(9) 0.0143(9) 0.0010(7) 0.0027(7) 0.0002(7) C6 0.0197(10) 0.0174(10) 0.0207(11) 0.0038(8) 0.0042(8) -0.0011(8) C7 0.0180(10) 0.0181(10) 0.0161(10) 0.0012(8) 0.0017(8) 0.0002(8) F1 0.0266(7) 0.0249(7) 0.0333(7) 0.0040(6) 0.0031(6) 0.0088(5) F2 0.0484(9) 0.0341(8) 0.0298(7) 0.0134(6) 0.0185(6) 0.0055(7) F3 0.0581(10) 0.0114(6) 0.0461(9) -0.0008(6) 0.0044(7) -0.0025(6) F4 0.0220(6) 0.0340(7) 0.0245(7) 0.0086(6) 0.0067(5) -0.0022(5) F5 0.0240(7) 0.0277(7) 0.0525(9) -0.0116(6) 0.0199(6) -0.0015(5) F6 0.0143(6) 0.0300(7) 0.0308(7) 0.0007(6) -0.0011(5) -0.0051(5) F7 0.0301(7) 0.0204(6) 0.0439(8) 0.0149(6) 0.0135(6) -0.0002(5) F8 0.0273(7) 0.0196(6) 0.0273(7) -0.0007(5) 0.0092(5) 0.0046(5) F9 0.0260(7) 0.0261(7) 0.0225(7) 0.0030(5) -0.0039(5) 0.0029(5) F10 0.0175(6) 0.0253(6) 0.0234(6) 0.0001(5) -0.0003(5) -0.0059(5) F11 0.0238(6) 0.0177(6) 0.0203(6) -0.0036(5) 0.0025(5) 0.0032(5) F12 0.0285(7) 0.0239(6) 0.0149(6) 0.0035(5) 0.0028(5) -0.0019(5) O1 0.0261(8) 0.0186(7) 0.0173(7) -0.0036(6) 0.0060(6) -0.0028(6) O2 0.0180(7) 0.0214(8) 0.0327(9) -0.0054(6) 0.0042(6) -0.0049(6) O3 0.0213(7) 0.0215(7) 0.0170(7) 0.0027(6) 0.0020(6) 0.0023(6) O4 0.0151(7) 0.0141(7) 0.0261(8) -0.0025(6) 0.0039(6) 0.0005(5) O5 0.0240(8) 0.0229(7) 0.0212(8) -0.0006(6) 0.0109(6) -0.0031(6) O6 0.0186(7) 0.0195(7) 0.0206(7) 0.0004(6) 0.0000(6) -0.0056(6) O7 0.0165(7) 0.0215(7) 0.0212(7) 0.0002(6) 0.0060(6) 0.0038(6) O8 0.0203(7) 0.0150(7) 0.0191(7) 0.0020(6) 0.0040(6) -0.0029(6) S1 0.0176(2) 0.0127(2) 0.0181(2) -0.00147(19) 0.00353(19) -0.00150(18) S2 0.0126(2) 0.0135(2) 0.0169(2) 0.00084(18) 0.00259(18) 0.00071(17) S3 0.0153(2) 0.0138(2) 0.0161(2) 0.00130(18) 0.00400(18) -0.00168(18) S4 0.0134(2) 0.0128(2) 0.0147(2) 0.00040(18) 0.00237(18) 0.00081(18) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 F3 1.319(2) . ? C1 F2 1.320(2) . ? C1 F1 1.323(2) . ? C1 S1 1.852(2) . ? C2 F6 1.310(2) . ? C2 F5 1.317(2) . ? C2 F4 1.320(2) . ? C2 S2 1.882(2) . ? C3 C4 1.546(3) . ? C3 S2 1.8215(19) . ? C3 S1 1.8259(19) . ? C3 H3A 1.0000 . ? C4 C5 1.546(3) . ? C4 H4A 0.9900 . ? C4 H4B 0.9900 . ? C5 S4 1.8209(18) . ? C5 S3 1.8249(19) . ? C5 H5A 1.0000 . ? C6 F8 1.316(2) . ? C6 F7 1.318(2) . ? C6 F9 1.329(2) . ? C6 S3 1.856(2) . ? C7 F10 1.315(2) . ? C7 F12 1.325(2) . ? C7 F11 1.327(2) . ? C7 S4 1.878(2) . ? O1 S1 1.4272(15) . ? O2 S1 1.4228(15) . ? O3 S2 1.4248(14) . ? O4 S2 1.4278(14) . ? O5 S3 1.4206(15) . ? O6 S3 1.4255(14) . ? O7 S4 1.4221(14) . ? O8 S4 1.4288(14) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag F3 C1 F2 110.13(18) . . ? F3 C1 F1 109.86(18) . . ? F2 C1 F1 109.12(18) . . ? F3 C1 S1 107.21(14) . . ? F2 C1 S1 109.79(14) . . ? F1 C1 S1 110.72(14) . . ? F6 C2 F5 109.43(16) . . ? F6 C2 F4 110.58(16) . . ? F5 C2 F4 109.87(17) . . ? F6 C2 S2 110.40(14) . . ? F5 C2 S2 106.33(13) . . ? F4 C2 S2 110.13(13) . . ? C4 C3 S2 106.41(12) . . ? C4 C3 S1 110.63(13) . . ? S2 C3 S1 109.03(10) . . ? C4 C3 H3A 110.2 . . ? S2 C3 H3A 110.2 . . ? S1 C3 H3A 110.2 . . ? C5 C4 C3 114.39(15) . . ? C5 C4 H4A 108.7 . . ? C3 C4 H4A 108.7 . . ? C5 C4 H4B 108.7 . . ? C3 C4 H4B 108.7 . . ? H4A C4 H4B 107.6 . . ? C4 C5 S4 107.50(12) . . ? C4 C5 S3 111.55(13) . . ? S4 C5 S3 109.03(10) . . ? C4 C5 H5A 109.6 . . ? S4 C5 H5A 109.6 . . ? S3 C5 H5A 109.6 . . ? F8 C6 F7 109.87(16) . . ? F8 C6 F9 109.86(17) . . ? F7 C6 F9 109.73(16) . . ? F8 C6 S3 110.49(13) . . ? F7 C6 S3 106.88(14) . . ? F9 C6 S3 109.97(13) . . ? F10 C7 F12 108.95(15) . . ? F10 C7 F11 110.51(16) . . ? F12 C7 F11 109.05(16) . . ? F10 C7 S4 111.28(14) . . ? F12 C7 S4 107.65(13) . . ? F11 C7 S4 109.33(13) . . ? O2 S1 O1 122.01(9) . . ? O2 S1 C3 108.99(9) . . ? O1 S1 C3 109.44(9) . . ? O2 S1 C1 105.97(9) . . ? O1 S1 C1 106.55(9) . . ? C3 S1 C1 101.95(9) . . ? O3 S2 O4 121.48(9) . . ? O3 S2 C3 108.04(9) . . ? O4 S2 C3 105.25(8) . . ? O3 S2 C2 108.48(9) . . ? O4 S2 C2 105.25(9) . . ? C3 S2 C2 107.63(9) . . ? O5 S3 O6 122.65(9) . . ? O5 S3 C5 109.61(9) . . ? O6 S3 C5 107.87(8) . . ? O5 S3 C6 107.05(9) . . ? O6 S3 C6 105.32(9) . . ? C5 S3 C6 102.42(9) . . ? O7 S4 O8 121.67(8) . . ? O7 S4 C5 109.88(9) . . ? O8 S4 C5 104.71(8) . . ? O7 S4 C7 108.49(9) . . ? O8 S4 C7 105.56(9) . . ? C5 S4 C7 105.37(9) . . ? _diffrn_measured_fraction_theta_max 0.974 _diffrn_reflns_theta_full 27.48 _diffrn_measured_fraction_theta_full 0.974 _refine_diff_density_max 0.421 _refine_diff_density_min -0.400 _refine_diff_density_rms 0.065