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Syntheses of 1 and 2 
 

A single crystal of 1 was prepared by treating Cd(NO3)2·6H2O (0.1 mmol), 

1,3-Benzenedicarboxylic acid (0.05 mmol), and TPT (0.05 mmol) in water (6 mL) by the 

hydrothermal technique in a teflon-lined autoclave. In the course of the preparation, the pH 

value of the aqueous mixture was pre-adjusted to about 6 with 0.01 M NaOH aqueous 

solution. The autoclave was heated under autogenous pressure to 160 °C for 3 days and then 

cooled to RT over24 h. Upon cooling the mixture to RT, the desired product appeared as long 

colourless rectangular parallelopipeds in ca. 61% yield (based on TPT). Elemental analysis 

(%) calcd for C32H32CdN4O10S (777.08): C 49.46, H 4.15, N 7.21%; found: C 49.61, H 4.01, 

N 7.36%.  

Compound 2 was synthesized by using the same method as for 1, but only the amount of 

1,3-Benzenedicarboxylic acid was up to 0.1mmol. Yield ca. 56%. Elemental analysis (%) 

calcd for C40H26CdN4O8S (835.11): C 57.53, H 3.14, N 6.71%; found: C 57.36, H 3.39, N 

6.52%. 
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(a) 

 

(b) 
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(c) 

Fig. S1 (a) The asymmetrical unit of 1. (b) The asymmetrical unit of 2. (c) Coordination geometry of the 

Cd2+ ions in 1 and 2. Symmetry codes: 1: #1 = 0.25+x, 0.75-y, -0.25+z; #2 = -0.25+x, 0.75-y, 0.25+z; #3 = 

x, y, -1+z ; 2: #1 = x, -1+y, z; #2 = 1-x, -0.5+y, 0.5-z; #3 = 1+x, y, z. 

The central cadmium(II) ions in 1 and 2 are in the same distorted octahedral coordination 

sphere, which are defined by two TPT nitrogen donor occupying the axial positions. While the 

equatorial positions are furnished by one TPT nitrogen atom, one mono(bidentate) and 

monodentate carboxylate oxygen atoms from two different BDC2- ligands. 
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  a) 

       

 b) 

c) 

 

Fig. S2 (a) and (b) The 1-D water chain viewed in different directions. Hydrogen bonds are marked as 

dashed line. (c) Pespective view of the nanosized host channel embodying a guest water chain and the 

hydrogen-bond interactions between the guest and host molecules. Hydrogen bonds are marked as dashed 

lines. The detailed geometry parameters for hydrogen bonds are summarized in Table S1. 

 

Table S1. Geometry Parameters for Hydrogen Bonds in 1. 

D-H d(D-H) d(H···A) <DHA d(D···A) A 
O(5)-H(5C) 0.85 2.210 130.36 2.834 O(6) 
O(6)-H(6D) 0.85 1.830 169.00 2.668 O(7) 
O(7)-H(7A) 0.85 2.112 130.58 2.742 O(8) 
O(8)-H(8B) 0.85 2.429 112.59 2.866 O(5)#1 
O(8)-H(8D) 0.85 2.020 163.00 2.843 O(9) 
O(9)-H(9B) 0.85 2.500 106.00 2.854 O(5)#1 

O(10)-H(10A) 0.85 1.960 177.00 2.810 O(6)#1 
      

O(5)-H(5D) 0.85 1.900 179.00 2.668 O1 
O(7)-H(7C) 0.85 2.160 145.00 2.899 N4#2 

O(10)-H(10A) 0.85 1.960 177.00 2.810 O3#1 

Symmetry codes: #1 1/4+x,3/4-y,-1/4+z; #2 3/4-x,-1/4+y,1/4+z 
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Fig. S3 The 3-D supermolecular network of 1 with the π···π interactions between the thiophene and 
pyridine rings. 
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Fig. S4 The PXRD for as-synthesized and simulated of 1 and 2.  
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Fig. S5 Thermogravimetric analysis (TGA) for complexes 1, 2, 2a, and 3, respectively. 

TGA of complex 2 reveals that there is no weight loss below 330 ºC. Over this temperature, 

a weight loss step between 330 ºC and 420 ºC was observed and attributed to the 

decomposition of solid H2BDC along with the framework. The fact that the free H2BDC is not 

easy to be removed from the host network may be attributed to the following two reasons: (i) 

the guest H2BDC is rigid and spatially complementary to the vacant cavities of the MOF; (ii) 

the existence of strong hydrogen bonds between the host and guest molecules. TGA of 

complex 2a indicates a weight loss of 13.11% (calculated 12.89%) occurred below 110 ºC, 

corresponding to the removal of two and a half ethanol molecules per formula unit, then 

followed by a plateau region from 110 to 330 ºC. Beyond this temperature, a weight loss step 

between 330 ºC and 400 ºC was observed and attributed to the decomposition of the 

framework. 
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Fig. S6 Powder XRD patterns for as-synthesized 1, 2, 2a, and 3, respectively.  

Notably, the reason that intensity, width and position of some peaks in the recorded PXRD 

of 2 have minor difference with the others may be ascribed to the shape and size of the 

channels and the relative arrangements of bilayers being subject to a subtle change when it 

encapsuled H2BDC molecules. This result is consistent with the single-crystal X-ray structure 

determination. 
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Fig. S7 IR spectra of the complexes. FT-IR (KBr): The characteristic absorption peak at ν = 1693 (cm-1) 

indicate the appearance of the carboxyl group from free H2BDC molecule. 
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Fig. S8 Adsorption/desorption isotherm of nitrogen gas (77 K) for 3. 
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Fig. S9 The electron-density distribution of the corresponding frontier molecular orbitals calculated for the 

framework. 

The related mononuclear specie [Cd(BDC)2(mp)2(TPT)]2- (mp = γ-methylpyridine) 

ground-state geometry adapted from the truncated X-ray data were used to calculate and 

evaluate their electronic structure and ground-state properties. To evaluate the absorption 

spectra of the complexes and to verify the nature of the molecular orbitals involved in the 

absorption and emission processes, density functional theory (DFT) calculations on the 

electronic ground states and time-dependent DFT calculations in the singlet states were 

carried out by the Gaussian 03 program[1] with the B3LYP hybrid functional.[2] “Double-ξ” 

quality basis set LANL2DZ, which uses Duning D95V basis set on first row atoms and Los 

Alamos ECP plus DZ on Na-Bi, was employed as the basis set. This has been proved to be 

useful and satisfactory for other metal polypyridyl complexes according to the literatures.[3] 
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All calculations were performed on a Pentium-IV personal computer using the default 

convergence criteria given in the program. The results indicate that the lowest singlet 

excitation for the framework is dominated by the approximately degenerate combination of 

HOMO → LUMO and HOMO → LUMO+1 transitions, in which HOMO are mostly 

composed of π orbitals of thiophene and pyridine rings of TPT ligand and both LUMO and 

LUMO+1 mainly consist of π* orbitals of benzene rings of the H2BDC ligands (Figure S8). 

As a result, the origin of the fluorescences at 397-427 nm of these complexes can be ascribed 

to ligand-to-ligand charge transfer (LLCT). 
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