One-Pot Synthesis of CeO₂ NC-Superlattices

Ziyang Huo, Chen Chen, Xiangwen Liu, Deren Chu, Haohang Li, Qing Peng and Yadong Li* Department of Chemistry, Tsinghua University

Electronic Supplementary Information (ESI)

Experimental Section

All chemicals were of analytical grade and used as received without further treatment. Deionized water was used throughout.

In a typical synthesis, 0.5g NaOH was added to the mixture of 4ml oleic acid (OA) and 15ml ethanol, and stirring vigorously for a while to form a clear solution. $8\sim15$ mmol (NH4)2Ce(NO3)6 were dissolved into 5-10ml of distilled water, and then, added into above solution by drops. After stirring for a while, additional 5ml ethanol was added, and both the mixed-solvent and generated precipitation were all transferred into a 40ml autoclave. Sealed the autoclave and heated it at $120^{\circ}C\sim160^{\circ}C$ for $6\sim24$ hours. The system was then allowed to cool to room temperature. The final products were spontaneously separated in the bottom of the autoclave. Colloidal Particles CeO₂ with superlattice structures were prepared as above, except that more (18mmol~) (NH₄)₂Ce(NO₃)₆ was added and heated for 24h~36h at 180°C.

The products were characterized by a Rigaku. D/max 2500Pc X-ray diffractmeter (XRD) with Cu K α radiation (λ =1.5418Å). The operation voltage and current were kept at 40KV and 250mA, respectively. The 2 θ range 10° -80° was used in steps of 0.3° with a count time of 2s. The sizes and morphologies of the NCs were examined with a JEOL JEM-1200EX transmission electron microscope (TEM) and a Tecnai F20 high-resolution transmission electron microscope (HRTEM). SAED patterns were recorded by transmission electron microscopy. Fourier transform infrared spectra (Perkin-Elmer Spectrum GX) were used to characterize the structure of the samples. Energy dispersion X-ray analysis (EDXA) measurement was performed with a Gantan parallel detection spectrometer attached to transmission electron microscope. Thermogravimetric analysis (TGA) was recorded by TA instruments TGA2050. UV-Vis spectrum was taken by Uv-Vis diffuse-reflectance spectroscopy (Shimadzu UV-2100s spectrophotometer)

The catalytic activities for CO oxidation were evaluated in a fixed-bed quartz tubular reactor. The catalyst samples (0.25g) were placed in the reactor after annealed at 400°C for 2h and dispersed in 35ml distill water firstly. 1ml of 1% HAuCl₄ • 4H₂O (weight ratio) was added into above solution by drops and the pH was kept at 9. Finally, the catalyst was collected by centrifugation and dried at 160°C for 10h. The reactant gases (1.00% CO, 16.00% O₂, balanced with nitrogen) went through the reactor at a rate of 100ml/min. The composition of the gas existed in the reactor was monitored by gas chromatography (Shimadzu GC-8A)

The powder X-ray diffraction (XRD) measurement on CeO_2 NCs agrees with bulk materials perfectly. No peaks of any other phases or impurities were detected. The apparent broadening of some peaks indicates small size of the as-obtained NCs. By Scherrer equation (d=0.89 λ /Bcos θ), calculated size of the products is ca. 4.1 nm, which is quite close to the corresponding result measured from TEM image.

FT-IR spectrum of CeO₂ NCs, 2919cm⁻¹ and 2856cm⁻¹ are attributed to the symmetric and antisymmetric methylene stretches. 1542cm⁻¹ and 1438cm⁻¹ are assigned to the antisymmetric vs (COO-) and the symmetric vs (COO-) stretches.¹

Uv-Vis absorption spectrum of CeO₂ NCs (disperse in cyclohexane).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Thermal gravity (TG) curve of the samples measured under atmosphere

Energy dispersion X-ray analysis (EDXA) of the $CeO_2 NCs$. (Cu signal rose from the copper grid. C signal rose from the carbon membrane and OA molecules which absorb on the surface of the NCs)

TEM images of as-obtained irregular colloidal particles with superlattice structures (Fig S2a), which are assembled by CeO_2 NCs spontaneously. These colloidal particles were obtained directly in the synthetic process without further treatments, and moreover, the as-obtained colloidal particles will be separated to dissociated NCs gradually (fig S2b), when disperses them into cyclohexane (15~20mg/ml) and ultrasonic treated for 0.5~1h at 200W.

Fig S2a

Fig S2b

TEM image of CNTs knitted networks (Fig S3a) and CeO2 NCs assembled membrane (Fig S3b)

TEM image of catalyst (CeO2/Au 2%)

TEM images of Ce_xZr_{1-x}O₂ NCs synthesized by the same strategy.²

Structures of $Ce(NO_3)_6^{2-}$ and Schemes of the icosahedral crystal structure and the synthesis

The crystal structure of $Ce(NO_3)_6^{2^-}$, as shown in following figure, has been widely reported in previous reference³ and inorganic handbook⁴. Due to this crystal structure, the corresponding $Ce(NO_3)_6^{2^-}$ will be destroyed in strong acid conditions (such as $HCIO_4$). But in our system, the pH will almost keep around 6.7 during the whole process. So, we proposed that the Ce^{4+} in

 $Ce(NO_3)_6^{2-}$ will be more stable than the bare Ce^{3+} or Ce^{4+} in aqueous solution. Furthermore, when we used $CeCl_3$ or $Ce(SO_4)_2$ as precursor instead of $(NH_4)_2Ce(NO_3)_6$ for the synthesis of CeO_2 NPs, the products were always irregular CeO_2 nanoparticles with broad size distribution. Based on these as-mentioned theoretical and experimental evidences, we propose a probably mechanism as in the following fig with great prudential.

Fig. Schemes of the icosahedral structures of $Ce(NO_3)_6^{2-}$ crystal and the synthesis process

References

- 1. F Soderlind, H Pedersen, R. M Petoral, P. O Kall, K, J. Uvdal, Colloid and Interface Sci 2005, 288, 140.
- Z.Y Huo and Y.D Li, Ce_xZr_{1-x}O₂ NCs and assembled porous materials: Promising Catalysts for CO oxidation, (submitted).
- 3. N. Guillou, Acta Crystallographica Section C-Crystal Structure Communications 1995, 51, 1029.
- 4. G. A. Bandurkin and B. F. Dzhurinskii A 10-APEX POLYHEDRON OF IMPORTANCE IN THE CRYSTAL CHEMISTRY OF THE RARE EARTH ELEMENTS