Synthetic studies and biosynthetic speculation on marine alkaloid chartelline

Shigeo Kajii, Toshio Nishikawa,* and Minoru Isobe

Supplementary Information

Acetonide 9;

To a stirred solution of vinyl imidazole **8** (6.49 g, 21.7 mmol) and NMO (4.16 g, 23.9 mmol) in acetone (36 ml)- H₂O (65 ml) was added a solution of 4% OsO₄ in H₂O (6.9 ml, 1.1 mmol). After being stirred for 2 h at room temperature, the reaction was quenched with saturated Na₂S₂O₄ solution, and extracted with AcOEt (x2). The combined extracts were washed with brine, dried over Na₂SO₄, and concentrated. The obtained crude product (6.15 g) was dissolved in acetone (118 ml), and 2, 2-dimethoxypropane (27 ml, 217 mmol) and TsOH·H₂O (4.1 g, 22 mmol) were added. After being stirred for 10 h at room temperature, saturated NaHCO₃ solution was added, and the resulting mixture was extracted with AcOEt. The extract was washed with H₂O and brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= 1:2→ 1:1) to afford acetonide **9** (5.91 g, 73% in 2 steps) as a white amorphous solid.

IR (KBr) v_{max} 2984, 1725, 1499, 1380, 1253, 1138 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 1.23 (3H, t, J = 7 Hz, -OCH₂-CH₃), 1.36 (3H, s, acetonide), 1.44 (3H, s, acetonide), 1.60 (3H, s, -CH₃), 1.64 (3H, s, -CH₃), 3.68 (1H, t, J = 8 Hz, -CH_AH_B-O-), 4.03 (1H, t, J = 8 Hz, -CH_AH_B-O-), 4.11 (1H, dq, J = 10, 7 Hz, -O-CH_CH_D-CH₃), 4.20 (1H, dq, J = 10, 7 Hz, -O-CH_CH_D-CH₃), 5.21 (1H, d, J = 16 Hz, -CH_EH_F-Ph), 5.33 (1H, d, J = 16 Hz, -CH_EH_F-Ph), 5.34 (1H, t, J = 8 Hz, -CH-CH_AH_B-), 7.10 (2H, d, J = 7 Hz, phenyl), 7.28-7.38 (4H, m, aromatic). ¹³C NMR (CDCl₃, 75 MHz) δ 14.0, 23.6, 25.9, 26.6, 27.0, 43.3, 49.1, 60.9, 67.5, 69.1, 109.3, 121.8, 126.9, 128.0, 128.9, 136.8, 137.5, 144.6, 177.5. Anal. Calcd for C₂₁H₂₈N₂O₄: C, 67.72; H, 7.58; N, 7.52. Found: C, 67.73; H, 7.68; N, 7.61.

Acetylene 7;

To a solution of N-benzylimidazole 9 (6.91 g, 18.6 mmol) in MeOH (169 ml) was added Pd/C (20%, 2.30 g). The mixture was vigorously stirred for 3.5 h at room temperature under an atmosphere of hydrogen. The reaction mixture was filtered through a pad of Super-Cel[®], and the filtrate was concentrated to afford a crude product (4.76 g) as a colorless oil, which was used for the next step without purification. A solution of the crude product in Et₂O (56.5 ml) was added dropwise over a period of 20 min to a stirred suspension of LiAlH₄ (961 mg, 25.3 mmol) in Et₂O (56.5 ml) at 0 °C. After being stirred for 20 min, the reaction was quenched with H_2O . Saturated Seignette's salt solution was added, the mixture was filtered, and NaCl salt was added to the filtrate to be saturated. The resulting solution was extracted with AcOEt (x3). The combined extracts were dried over Na₂SO₄ and concentrated to give a mixture of alcohol and aldehyde (3.89 g, alcohol:aldehyde= 64:36). This mixture was dissolved in DMSO (103 ml), and IBX (2.89 g, 10.3 mmol) was added at room temperature. After stirring for 1 h, an additional IBX (1.45 g, 5.16 mmol) was added and stirred for 1 Then, IBX (2.89 g, 10.3 mmol) was added again and a consumption of all alcohol h. was observed by TLC analysis (CH_2Cl_2 :MeOH= 9:1). The reaction was quenched with saturated NaHCO₃ solution (0 $^{\circ}$ C), which was extracted with AcOEt (x3). The combined extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford a crude product (3.63 g). The product was dissolved in MeOH (127 ml), and K_2CO_3 (1.14 g, 8.22 mmol) and Bestmann reagent (0.67 ml, 4.52 mmol) were added at room The mixture was stirred for 30 min, H₂O was added and extracted with temperature. The combined extracts were washed with H_2O and brine, dried (Na₂SO₄), AcOEt (x2). and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= 1:1) to give acetylene 7 (2.90 g, 67% in 4 steps) as a waxy solid. IR (KBr) v_{max} 3286, 2986, 2109, 1496, 1373, 1243, 1156 cm⁻¹. ⁻¹H NMR (CDCl₃, 400 MHz) δ 1.45 (3H, s, acetonide), 1.51 (3H, s, acetonide), 1.63 (3H, s, -Me), 1.65 (3H, s, -Me), 2.33 (1H, s, -C=CH), 3.89 (1H, t, J = 8 Hz, -CH_AH_B-O-), 4.32 (1H, dd, J = 8, 6 Hz, -CH_AH_B-O-), 5.72 (1H, dd, J = 8, 6 Hz, -CH-CH_AH_B-), 7.48 (1H, s, imidazole), 8.18 (1H, brs, NH). ¹³C NMR (CDCl₃, 100 MHz) δ 25.4, 26.6, 30.8, 31.0, 69.5, 69.6, 70.4, 90.3, 109.3, 125.0, 132.7, 138.9. Anal. Calcd for C₁₃H₁₈N₂O₂: C, 66.64; H, 7.74; N, 11.96. Found: C, 66.63; H, 7.95; N, 11.87.

N-Boc indole 6;

To a solution of dibromoindole (22.9 g, 66.1 mmol) and Boc_2O (15.2 ml, 66.1 mmol) in CH_2Cl_2 (350 ml) was added DMAP (81 mg, 0.66 mmol) at room temperature. After being stirred for 20 min, the solution was washed with H₂O and concentrated under reduced pressure. The residue was recrystallized (Et₂O-hexane) to afford *N*-Boc indole **6** (20.4 g, 69%) as a white solid.

Mp 89-90 °C. IR (KBr) v_{max} 2982, 1740, 1602, 1456, 1347, 1302, 1154 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 1.70 (9H, s, Boc), 3.69 (3H, s, -COOMe), 3.74 (2H, s, -CH₂-), 7.32 (1H, d, J = 8 Hz, indole), 7.36 (1H, dd, J = 8, 2 Hz, indole), 8.31 (1H, d, J = 2 Hz, indole). ¹³C NMR (CDCl₃, 75 MHz) δ 28.0, 31.2, 52.2, 85.7, 111.4, 116.1, 118.5, 118.6, 119.4, 126.4, 127.4, 136.9, 148.6, 170.4. Anal. Cacd for C₁₆H₁₇Br₂NO₄: C, 42.98; H, 3.83; N, 3.13. Found: C, 42.78; H, 3.74; N, 3.29.

Coupling product 11;

Acetylene **7** (780 mg, 3.33 mmol), dibromoindole **6** (4.47 g, 9.99 mmol), Pd₂(dba)₃·CHCl₃ (345 mg, 0.333 mmol), PPh₃ (349 mg, 1.33 mmol) and CuI (127 mg,

0.666 mmol) were placed in a two necked flask (200 ml) and the flask was charged with argon. Meanwhile, benzene in another flask was degassed by freeze/thaw cycle (3 times), benzene (111 ml) was added to the reaction vessel, and *n*-BuNH₂ (1.32 ml, 13.3 mmol) was then added. The reaction mixture was heated to reflux with stirring for 3 h, cooled to room temperature. A saturated NH₄Cl solution was added and the mixture was extracted with AcOEt. The combined extracts were dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= $2:1 \rightarrow 1:0$) to afford coupling product **11** (1.47 g, 74%) as a yellow amorphous solid.

IR (KBr) v_{max} 3304, 2981, 1736, 1458, 1356, 1246, 1146 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 1.45 (3H, brs, acetonide), 1.54 (3H, s, acetonide), 1.72 (9H, brs, -Boc), 1.78 (3H, s, -Me), 1.82 (3H, brs, -Me), 3.69 (3H, s, -COOMe), 3.81 (2H, s, -CH₂-), 4.24 (1H, t, J = 7 Hz, $-CH_AH_B$ -O-), 4.31 (1H, brt, J = 7 Hz, $-CH_AH_B$ -O-), 5.33 (1H, brt, J = 7 Hz, -CH-CH₂-), 7.39 (1H, d, J = 8 Hz, indole), 7.41 (1H, brd, J = 8 Hz, indole), 7.50 (1H, s, imidazole), 8.19 (1H, brs, indole). ¹³C NMR (CDCl₃, 100 MHz) δ 26.0, 26.7, 28.1, 28.2, 30.3, 30.7, 32.6, 52.3, 68.9, 71.3, 72.9, 86.0, 109.2, 119.0, 119.6, 119.9, 120.3, 120.5, 126.7, 127.5, 132.5, 135.6, 149.5, 170.6. Anal. Calcd for C₂₉H₃₄BrN₃O₆: C, 58.00; H, 5.71; N, 7.00. Found: C, 58.02; H, 5.55; N, 6.84.

Z-Olefin 13;

A solution of NaOMe (488 mg, 9.04 mmol) in MeOH (4.0 ml) was added to a solution of coupling product **11** (1.81 g, 3.01 mmol) in THF (56.2 ml) at 0 °C. After stirring for 15 min, the reaction mixture was poured into saturated NH₄Cl solution. The solution was extracted with AcOEt. The extract was washed with H₂O, dried over Na₂SO₄, and evaporated under reduced pressure to give a crude product (1.62 g) as a yellow amorphous solid. This product was dissolved in MeOH (151 ml) and a powder of Zn(Cu) (19.4 g) was added. After 12 N HCl (0.25 ml) was added, the mixture was heated to reflux with vigorous stirring for 15 min. The reaction mixture was cooled to

room temperature, then 12 N HCl (0.50 ml) was added and refluxed for 15 min; this procedure was repeated (5 times) until a complete consumption of acetylene was indicated by TLC (AcOEt:hexane= 2:1). The mixture was filtered through a pad of Super-Cel[®], the filtrate was poured into saturated NaHCO₃ solution, at which point white precipitate was generated. The precipitate was removed by filtration, and the filtrate was extracted with AcOEt. The extract was washed with H₂O and brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= 1:1) to afford Z-olefin **13** (1.03 g, 68% in 2 steps) as a white amorphous solid.

IR (KBr) v_{max} 3376, 2986, 1734, 1458, 1373, 1215, 1157 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 1.42 (3H, brs, acetonide), 1.50 (3H, s, acetonide), 1.54 (3H, s, -Me), 1.63 (3H, brs, -Me), 3.54 (1H, brs, -CH_AH_B-O-), 3.65 (3H, s, -COOMe), 3.70 (2H, s, -CH₂-), 4.14 (1H, dd, J = 8.5, 6 Hz, -CH_AH_B-O-), 5.35 (1H, t, J = 6 Hz, -CH-CH_AH_B-), 5.95 (1H, d, J = 12 Hz, olefin), 6.39 (1H, d, J = 12 Hz, olefin), 7.12 (1H, dd, J = 8, 2 Hz, indole), 7.35 (1H, d, J = 8 Hz, indole), 7.35 (1H, d, J = 2 Hz, indole), 7.54 (1H, s, imidazole), 9.39 (1H, brs, NH). ¹³C NMR (CDCl₃, 100 MHz) δ 25.3, 26.7, 28.9, 30.2, 31.4, 36.9, 52.0, 69.0, 70.4, 107.9, 109.5, 113.8, 115.8, 117.1, 119.8, 122.7, 126.1, 132.3, 133.3, 136.9, 140.9, 172.1. Anal. Calcd for C₂₄H₂₈BrN₃O₄: C, 57.38; H, 5.62; N, 8.36. Found: C, 57.40; H, 5.63; N, 8.21.

Aldehyde;

A solution of Z-olefin **13** (724 mg, 1.44 mmol) and TsOH·H₂O (548 mg, 2.88 mmol) in MeOH (28.8 ml) was heated to reflux for 3 h. The reaction mixture was cooled to room temperature, and poured into saturated NaHCO₃ solution. The solution was extracted with AcOEt (x2), the combined extracts were washed with brine, dried over Na₂SO₄ and concentrated. The residue (737 mg) was dissolved in MeOH (21.6 ml) -H₂O (7.2 ml), and NaIO₄ (616 mg, 2.88 mmol) was added. After being stirred for 5 min, H₂O was added. The solution was extracted with AcOEt (x2). The combined extracts were washed with brine, dried over Na_2SO_4 , and concentrated. The residue was purified by silica gel column chromatography (AcOEt: hexane = 1:2) to afford aldehyde (602 mg, 97% in 2 steps) as a white amorphous solid.

IR (KBr) v_{max} 3407, 2971, 1733, 1656, 1458, 1340, 1264, 1173 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 1.70 (6H, s, dimethyl), 3.63 (3H, s, -COOMe), 3.69 (2H, s, -CH₂-), 6.02 (1H, d, J = 12 Hz, olefin), 6.49 (1H, d, J = 12 Hz, olefin), 7.13 (1H, d, J = 8 Hz, indole), 7.37 (1H, d, J = 8 Hz, indole), 7.39 (1H, s, indole), 7.77 (1H, s, imidazole), 9.90 (1H, brs, NH of inlode), 9.97 (1H, s, aldehyde) , 10.62 (1H, brs, NH of imidazole). ¹³C NMR (CDCl₃, 100 MHz) δ 30.2, 31.0, 38.8, 52.0, 108.4, 113.6, 116.0, 117.9, 120.1, 122.9, 126.3, 127.8, 132.0, 136.7, 137.6, 140.0, 157.7, 171.8, 179.7. Anal. Calcd for C₂₀H₂₀BrN₃O₃: C, 55.83; H, 4.68; N, 9.77. Found: C, 55.83; H, 4.56; N, 9.65.

Vinyl ether 14;

A solution of phenyllithium (1.08 M in Et₂O-cyclohexane, 4.41 ml, 4.76 mmol) was added dropwise over a period of 5 min to a stirred suspension of (methoxymethyl)triphenylphosphonium chloride (1.63 g, 4.76 mmol) in THF (17.1 ml) at 0 °C. The mixture was stirred for 5 min, then allowed to warm to room temperature. After being stirred for 1 h, a solution of aldehyde (410 mg, 0.953 mmol) in THF (5.7 ml) was cannulated into the dark red ylide solution. After stirring for 2.5 h at room temperature, the reaction was quenched with saturated NH₄Cl and extracted with AcOEt. The extract was washed with H₂O, brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= 1:2) to afford vinyl ether **14** (341 mg, 74%, *E*:*Z*= 23:77) as a yellow oil.

IR (KBr) v_{max} 3372, 2970, 1734, 1655, 1459, 1337, 1266, 1162 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) (*E* isomer) δ 1.56 (6H, s, dimethyl), 3.61 (2H, s, -CH₂-), 3.62 (3H, s, -COOMe), 3.69 (3H, s, -OMe), 5.80 (1H, d, *J* = 12.5 Hz, -CH=CH-OMe), 5.95 (1H, d, *J* = 12.5 Hz, -CH=CH-), 6.39 (1H, d, *J* = 12.5 Hz, -CH=CH-), 6.73 (1H, brd, *J* = 12.5 Hz, -CH=CH-OMe), 7.11 (1H, dd, *J* = 8, 2 Hz, indole), 7.35 (1H, d, *J* = 2 Hz, indole), 7.36 (1H, d, *J* = 8 Hz, indole), 7.64 (1H, s, imidazole), 9.55 (1H, brs, NH of indole). (*Z*

isomer) δ 1.59 (6H, s, dimethyl), 3.62 (3H, s, -COOMe), 3.63 (2H, s, -CH₂-), 3.74 (3H, s, -OMe), 5.50 (1H, d, J = 6.5 Hz, -CH=CH-OMe), 5.94 (1H, d, J = 6.5 Hz, -CH=CH-OMe), 5.99 (1H, d, J = 12.5 Hz, -CH=CH-), 6.38 (1H, d, J = 12.5 Hz, -CH=CH-), 7.11 (1H, dd, J = 8, 2 Hz, indole), 7.35 (1H, d, J = 2 Hz, indole), 7.36 (1H, d, J = 8 Hz, indole), 7.64 (1H, s, imidazole), 9.55 (1H, brs, NH of indole). ¹³C NMR (CDCl₃, 100 MHz) δ 29.9, 30.1, 30.3, 37.0, 37.2, 51.9, 52.0, 56.8, 60.7, 95.3, 107.8, 113.7, 115.6, 115.7, 116.4, 119.8, 122.5, 122.6, 123.0, 126.2, 132.0, 132.7, 132.8, 136.8, 140.4, 140.6, 142.7, 144.2, 171.9, 172.1. Anal. Calcd for C₂₂H₂₄BrN₃O₃: C, 57.65; H, 5.28; N, 9.17. Found: C, 57.64; H, 5.16; N, 8.98.

Oxime 15;

To a solution of vinyl ether **14** (33.4 mg, 72.9 µmol) in MeOH (2.4 ml) – H_2O (1.0 ml) was added LiOH (1 N, 0.22 ml, 0.219 mmol) at 0 °C. After being stirred for 15 min, the mixture was allowed to warm to room temperature and stirred for 4 h. The reaction was quenched with saturated NH₄Cl solution, the mixture was extracted with AcOEt (x3). The combined extracts were washed with brine, dried over Na₂SO₄, and concentrated to afford carboxylic acid, which was used for a next step without purification. This material was dissolved in DME (2.4 ml), *O*-allylhydroxylamine hydrochloride (39.9 mg, 0.365 mmol) and HCl (12 N, 30.4 µl, 0.365 mmol) was added. The mixture was stirred for 20 min at 70 °C, then cooled to room temperature followed by dilution with H₂O. The product was extracted with AcOEt (x2), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (CH₂Cl₂ : MeOH =19:1) to afford oxime **15** (27.3 mg, 77% in 2 steps, *E*: *Z*= 39: 61) as a yellow amorphous solid.

IR (KBr) v_{max} 3244, 2973, 1717, 1559, 1458, 1374, 1269, 1188 cm⁻¹. ¹H NMR (CD₃OD, 400 MHz) (*E* isomer) δ 1.52 (6H, s, dimethyl), 3.56 (2H, s, -CH₂-COOH), 3.71 (2H, d, *J* = 5 Hz, -CH₂-CH=N-), 4.57 (2H, d, *J* = 5.5 Hz, -CH₂-CH=CH₂), 5.18 (1H, dd, *J* = 10, 2 Hz, -CH=CH_AH_B), 5.26 (1H, dd, *J* = 17, 2 Hz, -CH=CH_AH_B), 5.83-6.03

(1H, m, -CH₂-CH=CH₂), 6.01 (1H, d, J = 12 Hz, -CH=CH-), 6.45 (1H, d, J = 12 Hz, -CH=CH-), 6.64 (1H, t, J = 5 Hz, -CH=N-), 7.05 (1H, dd, J = 8, 2 Hz, indole), 7.27 (1H, d, J = 2 Hz, indole), 7.35 (1H, d, J = 8 Hz, indole), 7.48 (1H, s, imidazole). (*Z* isomer) δ 1.53 (6H, s, dimethyl), 3.58 (2H, s, -CH₂-COOH), 3.60 (2H, d, J = 4.5 Hz, -CH₂-CH=N-), 4.45 (2H, d, J = 5.5 Hz, -CH₂-CH=CH₂), 5.12 (1H, dd, J = 10, 2 Hz, -CH=CH₄H_B), 5.18 (1H, dd, J = 17, 2 Hz, -CH=CH₄H_B), 5.83-6.03 (1H, m, -CH₂-CH=CH₂), 5.97 (1H, d, J = 12 Hz, -CH=CH-), 6.46 (1H, d, J = 12 Hz, -CH=CH-), 7.06 (1H, dd, J = 8, 2 Hz, indole), 7.52 (1H, t, J = 4.5 Hz, -CH=N-). ¹³C NMR (CD₃OD, 100 MHz) δ 24.6, 28.0, 30.0, 30.2, 32.5, 32.7, 38.1, 38.4, 75.5, 76.0, 109.8, 114.2, 114.3, 116.0, 116.1, 117.9, 118.6, 118.8, 121.0, 121.0, 123.2, 125.4, 126.3, 127.8, 127.9, 133.4, 133.5, 133.8, 133.9, 135.4, 135.5, 136.7, 137.2, 138.1, 143.7, 149.0, 149.9, 177.9, 178.5. Anal. Calcd for C₂₃H₂₅BrN₄O₃: C, 56.91; H, 5.19; N, 11.54. Found: C, 56.92; H, 5.18; N, 11.38.

O-Allylhydroxamic acid 17;

To a solution of vinyl ether **14** (60.7 mg, 0.132 mol) in MeOH (3.3 ml) – H₂O (0.7 ml) was added LiOH (1 N, 0.40 ml, 0.397 mmol) at room temperature. After being stirred for 11 h, the reaction was quenched with saturated NH₄Cl solution. The solution was extracted with AcOEt (x3), dried over Na₂SO₄, and concentrated to afford carboxylic acid, which was used for a next step without purification. The crude product was dissolved in CH₂Cl₂ (4.4 ml), followed by additions of *O*-allylhydroxylamine hydrochloride (29.0 mg, 0.265 mmol), Et₃N (36.7 µl, 0.265 mmol) and EDC (50.8 mg, 0.265 mmol). The mixture was stirred for 1.5 h, and the reaction was quenched with H₂O. The product was extracted with CH₂Cl₂ (x2), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (AcOEt : hexane = 1:1→ 2:1) to afford *O*-allylhydroxamic acid **17** (41.4 mg, 63% in 2 steps) as a white amorphous solid.

(*Z*)-*O*-Allylhydroxamic acid **17**; IR (KBr) v_{max} 3368, 2972, 1659, 1461, 1337, 1266, 1101 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 1.61 (6H, s, dimethyl), 3.67 (2H, brs, -CH₂-), 3.75 (3H, s, -OMe), 4.27 (2H, brd, *J* = 6.5 Hz, -CH₂-CH=CH₂), 5.16 (1H, brd, *J* = 17 Hz, -CH=CH_AH_B), 5.17 (1H, brd, *J* = 10 Hz, -CH=CH_AH_B), 5.49 (1H, d, *J* = 7 Hz, -CH=CH-OMe), 5.82 (1H, ddt, *J* = 17, 10, 6.5 Hz, -CH=CH-2, 5.99 (1H, d, *J* = 7 Hz, -CH=CH-OMe), 6.01 (1H, d, *J* = 12.5 Hz, -CH=CH-), 6.28 (1H, brd, *J* = 12.5 Hz, -CH=CH-), 7.13 (1H, dd, *J* = 8, 2 Hz, indole), 7.30 (1H, d, *J* = 8 Hz, indole), 7.40 (1H, d, *J* = 2 Hz, indole), 7.62 (1H, s, imidazole), 8.05 (1H, brs, NH of inlode), 9.71 (1H, brs, NH of imidazole). ¹³C NMR (CDCl₃, 100 MHz) δ 30.1, 30.3, 37.5, 60.8, 95.0, 106.5, 113.9, 115.7, 116.0, 119.5, 120.8, 123.0, 125.8, 128.6, 131.7, 132.1, 133.1, 137.0, 141.8, 144.6, 168.2. HRMS (FAB) (M+H)⁺ calcd for C₂₄H₂₈BrN₄O₃ 501.1324, found 501.1300.

(*E*)-*O*-Allylhydroxamic acid **17**; IR (KBr) v_{max} 3363, 2969, 1655, 1460, 1334, 1217, 1156 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 1.56 (6H, s, dimethyl), 3.63 (5H, s, -*CH*₂- and -OMe), 4.25 (2H, brd, J = 6.5 Hz, -*CH*₂-CH=CH₂), 5.16 (1H, brd, J = 17 Hz, -CH=CH₄H_B), 5.17 (1H, brd, J = 10 Hz, -CH=CH₄H_B), 5.75-5.87 (1H, m, -CH₂-CH=CH₂), 5.81 (1H, d, J = 12.5 Hz, -CH=CH-OMe), 5.96 (1H, d, J = 12.5 Hz, -CH=CH-), 6.29 (1H, brd, J = 12.5 Hz, -CH=CH-), 6.75 (1H, brd, J = 12.5 Hz, -CH=CH-OMe), 7.12 (1H, d, J = 8 Hz, indole), 7.28 (1H, d, J = 8 Hz, indole), 7.37 (1H, brs, inidazole). ¹³C NMR (CDCl₃, 100 MHz) δ 29.9, 30.1, 37.3, 57.0, 94.6, 106.3, 114.0, 116.0, 116.2, 119.5, 121.0, 123.0, 125.9, 131.7, 132.4, 133.0, 136.9, 142.0, 149.0, 168.5. HRMS (FAB) (M+H)⁺ calcd for C₂₄H₂₈BrN₄O₃ 501.1324, found 501.1338.

Indolenine 19;

To a solution of *O*-allylhydroxamic acid **17** (8.9 mg, 17.9 μ mol) in DME (1.1 ml) was added AIBN (2.9 mg, 17.9 μ mol), and heated to reflux for 2.5 h. The mixture was cooled to room temperature, and concentrated under reduced pressure. The residue

was purified by PTLC (CH_2Cl_2 : MeOH = 9:1) to afford indolenine **18** (4.1 mg, 47%) as a colorless oil.

IR (KBr) v_{max} 3229, 2965, 1654, 1456, 1363, 1293, 1091 cm⁻¹. ¹H NMR (CD₃OD, 400 MHz) δ 1.42 (3H, s, -Me), 1.53 (3H, s, -Me), 2.11 (1H, d, J = 16 Hz, -CH_AH_B-), 3.21 (1H, d, J = 16 Hz, -CH_AH_B-), 3.98 (1H, d, J = 9 Hz, -CH-), 4.72 (1H, ddt, J = 10.5, 6, 1 Hz, -CH_cH_D-CH=CH₂), 4.79 (1H, ddt, J = 10.5, 6, 1 Hz, -CH_cH_D-CH=CH₂), 5.32 (1H, ddt, J = 10, 2, 1 Hz, -CH=CH_EH_F), 5.44 (1H, ddt, J = 17, 2, 1 Hz, -CH=CH_EH_F), 6.03 (1H, d, J = 9 Hz, -CH-), 6.16 (1H, ddt, J = 17, 10, 6 Hz, -CH=CH₂), 6.17 (1H, d, J = 12.5 Hz, -CH=CH-), 6.25 (1H, d, J = 12.5 Hz, -CH=CH-), 7.12 (1H, s, imidazole), 7.25 (1H, d, J = 8 Hz, indolenine), 7.39 (1H, d, J = 2 Hz, indolenine), 7.43 (1H, dd, J = 8, 2 Hz, indolenine). ¹³C NMR (CD₃OD, 100 MHz) δ 28.9, 32.0, 38.8, 39.3, 44.8, 61.7, 78.9, 84.6, 117.5, 120.3, 123.3, 124.3, 125.9, 130.4, 133.8, 134.0, 138.5, 148.1, 157.0, 167.4, 185.1. HRMS (FAB) (M+H)⁺ calcd for C₂₃H₂₄BrN₄O₃ 485.1020, found 485.1011.

Aldehyde 19;

The reaction was conducted with vinyl ether **14** (17.0 mg, 37.1 μ mol) following the procedure described for the preparation of compound **18**. The crude material was purified by silica gel column chromatography (AcOEt:hexane= 2:1) to afford aldehyde **19** (4.2 mg, 26%) as a yellow amorphous solid and vinyl ether (4.8 mg, 28%) was recovered.

IR (KBr) v_{max} 3323, 2929, 1736, 1664, 1567, 1436 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz) δ 0.94 (3H, s, -Me), 1.37 (3H, s, -Me), 3.68 (3H, s, -COOMe), 3.75 (1H, d, J = 15 Hz, $-CH_AH_B$ -), 3.79 (1H, d, J = 15 Hz, $-CH_AH_B$ -), 5.57 (1H, brs, -CH-), 5.83 (1H, d, J = 10 Hz, -CH=CH-), 6.67 (1H, d, J = 10 Hz, -CH=CH-), 7.18 (1H, dd, J = 8, 2 Hz, indolenine), 7.37 (1H, d, J = 8 Hz, indolenine), 7.56 (1H, d, J = 2 Hz, indolenine), 7.85 (1H, s, imidazole), 9.15 (1H, d, J = 2 Hz, aldehyde). ¹³C NMR (CDCl₃, 100 MHz) δ 21.4, 25.4, 29.8, 43.0, 52.2, 94.1, 98.9, 108.5, 115.5, 115.7, 117.1, 120.1, 124.0, 128.9, 132.1, 133.7, 138.4, 151.9, 161.6, 171.4, 189.1. HRMS (FAB) (M+H)⁺ calcd for $C_{21}H_{21}BrN_3O_3$ 442.0766, found 442.0786.