Synthetic studies and biosynthetic speculation on marine alkaloid chartelline

Shigeo Kajii, Toshio Nishikawa,* and Minoru Isobe

Supplementary Information

Acetonide 9;

To a stirred solution of vinyl imidazole $\mathbf{8}(6.49 \mathrm{~g}, 21.7 \mathrm{mmol})$ and NMO ($4.16 \mathrm{~g}, 23.9$ $\mathrm{mmol})$ in acetone (36 ml)- $\mathrm{H}_{2} \mathrm{O}(65 \mathrm{ml})$ was added a solution of $4 \% \mathrm{OsO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}(6.9$ $\mathrm{ml}, 1.1 \mathrm{mmol}$). After being stirred for 2 h at room temperature, the reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution, and extracted with AcOEt (x2). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The obtained crude product (6.15 g) was dissolved in acetone (118 ml), and 2, 2-dimethoxypropane ($27 \mathrm{ml}, 217 \mathrm{mmol}$) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.1 \mathrm{~g}, 22 \mathrm{mmol})$ were added. After being stirred for 10 h at room temperature, saturated NaHCO_{3} solution was added, and the resulting mixture was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= $1: 2 \rightarrow 1: 1$) to afford acetonide 9 ($5.91 \mathrm{~g}, 73 \%$ in 2 steps) as a white amorphous solid.
IR (KBr) $v_{\text {max }} 2984,1725,1499,1380,1253,1138 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.23\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz},-\mathrm{OCH}_{2}-\mathrm{CH}_{3}\right), 1.36(3 \mathrm{H}, \mathrm{s}$, acetonide), 1.44 ($3 \mathrm{H}, \mathrm{s}$, acetonide), $1.60\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.68\left(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz},-\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}-\mathrm{O}-\right), 4.03(1 \mathrm{H}, \mathrm{t}, J$ $\left.=8 \mathrm{~Hz},-\mathrm{CH}_{A} H_{B}-\mathrm{O}-\right), 4.11\left(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{C} \mathrm{H}_{\mathrm{D}}-\mathrm{CH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{dq}, J=10$, $\left.7 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{\mathrm{C}} H_{D}-\mathrm{CH}_{3}\right), 5.21\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}_{E} \mathrm{H}_{\mathrm{F}}-\mathrm{Ph}\right), 5.33(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{\mathrm{E}} H_{F}-\mathrm{Ph}\right), 5.34\left(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz},-\mathrm{C} H-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right), 7.10(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, phenyl), 7.28-7.38 (4H, m, aromatic). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.0,23.6,25.9,26.6,27.0$, $43.3,49.1,60.9,67.5,69.1,109.3,121.8,126.9,128.0,128.9,136.8,137.5,144.6$, 177.5. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 67.72; H, 7.58; N, 7.52. Found: C, 67.73; H,

7.68; N, 7.61

Acetylene 7;

To a solution of N-benzylimidazole $9(6.91 \mathrm{~g}, 18.6 \mathrm{mmol})$ in $\mathrm{MeOH}(169 \mathrm{ml})$ was added $\mathrm{Pd} / \mathrm{C}(20 \%, 2.30 \mathrm{~g})$. The mixture was vigorously stirred for 3.5 h at room temperature under an atmosphere of hydrogen. The reaction mixture was filtered through a pad of Super-Cel ${ }^{\circledR}$, and the filtrate was concentrated to afford a crude product $(4.76 \mathrm{~g})$ as a colorless oil, which was used for the next step without purification. A solution of the crude product in $\mathrm{Et}_{2} \mathrm{O}(56.5 \mathrm{ml})$ was added dropwise over a period of 20 min to a stirred suspension of $\mathrm{LiAlH}_{4}(961 \mathrm{mg}, 25.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(56.5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 20 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. Saturated Seignette's salt solution was added, the mixture was filtered, and NaCl salt was added to the filtrate to be saturated. The resulting solution was extracted with AcOEt (x3). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a mixture of alcohol and aldehyde (3.89 g , alcohol:aldehyde= 64:36). This mixture was dissolved in DMSO (103 ml), and IBX ($2.89 \mathrm{~g}, 10.3 \mathrm{mmol}$) was added at room temperature. After stirring for 1 h , an additional IBX ($1.45 \mathrm{~g}, 5.16 \mathrm{mmol}$) was added and stirred for 1 h. Then, IBX ($2.89 \mathrm{~g}, 10.3 \mathrm{mmol}$) was added again and a consumption of all alcohol was observed by TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right)$. The reaction was quenched with saturated NaHCO_{3} solution $\left(0{ }^{\circ} \mathrm{C}\right)$, which was extracted with AcOEt (x3). The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford a crude product (3.63 g). The product was dissolved in MeOH (127 ml), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.14 \mathrm{~g}, 8.22 \mathrm{mmol})$ and Bestmann reagent $(0.67 \mathrm{ml}, 4.52 \mathrm{mmol})$ were added at room temperature. The mixture was stirred for $30 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{AcOEt}(\mathrm{x} 2)$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= 1:1) to give acetylene $7(2.90 \mathrm{~g}, 67 \%$ in 4 steps) as a waxy solid. IR (KBr) $v_{\text {max }} 3286,2986,2109,1496,1373,1243,1156 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$
$\mathrm{MHz}) \delta 1.45(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.51(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.63(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 1.65(3 \mathrm{H}, \mathrm{s}$, $-\mathrm{Me}), 2.33(1 \mathrm{H}, \mathrm{s},-\mathrm{C} \equiv \mathrm{C} H), 3.89\left(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz},-\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}-\mathrm{O}-\right), 4.32(1 \mathrm{H}, \mathrm{dd}, J=8,6 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{\mathrm{A}} H_{B}-\mathrm{O}-\right), 5.72\left(1 \mathrm{H}, \mathrm{dd}, J=8,6 \mathrm{~Hz},-\mathrm{CH}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right), 7.48(1 \mathrm{H}, \mathrm{s}$, imidazole), $8.18(1 \mathrm{H}$, brs, NH). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.4,26.6,30.8,31.0,69.5,69.6,70.4,90.3$, 109.3, 125.0, 132.7, 138.9. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 66.64; H, 7.74; N, 11.96. Found: C, 66.63; H, 7.95; N, 11.87.

N-Boc indole 6;

To a solution of dibromoindole ($22.9 \mathrm{~g}, 66.1 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(15.2 \mathrm{ml}, 66.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{ml})$ was added DMAP ($81 \mathrm{mg}, 0.66 \mathrm{mmol}$) at room temperature. After being stirred for 20 min , the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and concentrated under reduced pressure. The residue was recrystallized ($\mathrm{Et}_{2} \mathrm{O}$-hexane) to afford N -Boc indole $6(20.4 \mathrm{~g}, 69 \%)$ as a white solid.
$\mathrm{Mp} 89-90{ }^{\circ} \mathrm{C}$. IR (KBr) $\nu_{\text {max }} 2982,1740,1602,1456,1347,1302,1154 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.70(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 3.69(3 \mathrm{H}, \mathrm{s},-\mathrm{COOMe}), 3.74(2 \mathrm{H}, \mathrm{s}$, $\left.{ }_{-} \mathrm{CH}_{2}-\right), 7.32(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.36(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole $), 8.31(1 \mathrm{H}, \mathrm{d}, J$ $=2 \mathrm{~Hz}$, indole $).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.0,31.2,52.2,85.7,111.4,116.1$, $118.5,118.6,119.4,126.4,127.4,136.9,148.6,170.4$. Anal. Cacd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NO}_{4}$: C, 42.98; H, 3.83; N, 3.13. Found: C, 42.78; H, 3.74; N, 3.29.

Coupling product 11;

Acetylene 7 ($780 \mathrm{mg}, 3.33 \mathrm{mmol}$), dibromoindole 6 ($4.47 \mathrm{~g}, 9.99 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(345 \mathrm{mg}, 0.333 \mathrm{mmol}), \mathrm{PPh}_{3}(349 \mathrm{mg}, 1.33 \mathrm{mmol})$ and $\mathrm{CuI}(127 \mathrm{mg}$,
$0.666 \mathrm{mmol})$ were placed in a two necked flask (200 ml) and the flask was charged with argon. Meanwhile, benzene in another flask was degassed by freeze/thaw cycle (3 times), benzene (111 ml) was added to the reaction vessel, and $n-\mathrm{BuNH}_{2}(1.32 \mathrm{ml}, 13.3$ mmol) was then added. The reaction mixture was heated to reflux with stirring for 3 h , cooled to room temperature. A saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with AcOEt. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= $2: 1 \rightarrow 1: 0$) to afford coupling product $\mathbf{1 1}(1.47 \mathrm{~g}, 74 \%)$ as a yellow amorphous solid.
IR (KBr) $v_{\text {max }} 3304,2981,1736,1458,1356,1246,1146 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 1.45$ (3 H , brs, acetonide), 1.54 ($3 \mathrm{H}, \mathrm{s}$, acetonide), 1.72 (9 H , brs, -Boc), 1.78 (3H, s, -Me), 1.82 (3H, brs, -Me), 3.69 ($3 \mathrm{H}, \mathrm{s},-\mathrm{COOMe}$), $3.81\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 4.24(1 \mathrm{H}$, $\left.\mathrm{t}, J=7 \mathrm{~Hz},-\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}-\mathrm{O}-\right), 4.31\left(1 \mathrm{H}\right.$, brt, $\left.J=7 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{A}} H_{B}-\mathrm{O}-\right), 5.33(1 \mathrm{H}$, brt, $J=7 \mathrm{~Hz}$, -CH-CH CH_{2}), $7.39(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.41(1 \mathrm{H}$, brd, $J=8 \mathrm{~Hz}$, indole), $7.50(1 \mathrm{H}, \mathrm{s}$, imidazole), 8.19 (1 H , brs, indole). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 26.0,26.7,28.1$, $28.2,30.3,30.7,32.6,52.3,68.9,71.3,72.9,86.0,109.2,119.0,119.6,119.9,120.3$, 120.5, 126.7, 127.5, 132.5, 135.6, 149.5, 170.6. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{O}_{6}$: C, 58.00; H, 5.71; N, 7.00. Found: C, 58.02; H, 5.55; N, 6.84.

Z-Olefin 13;

A solution of $\mathrm{NaOMe}(488 \mathrm{mg}, 9.04 \mathrm{mmol})$ in $\mathrm{MeOH}(4.0 \mathrm{ml})$ was added to a solution of coupling product $11(1.81 \mathrm{~g}, 3.01 \mathrm{mmol})$ in THF (56.2 ml) at $0^{\circ} \mathrm{C}$. After stirring for 15 min , the reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The solution was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to give a crude product (1.62 g) as a yellow amorphous solid. This product was dissolved in $\mathrm{MeOH}(151 \mathrm{ml})$ and a powder of $\mathrm{Zn}(\mathrm{Cu})(19.4 \mathrm{~g})$ was added. After $12 \mathrm{~N} \mathrm{HCl}(0.25 \mathrm{ml})$ was added, the mixture was heated to reflux with vigorous stirring for 15 min . The reaction mixture was cooled to
room temperature, then $12 \mathrm{~N} \mathrm{HCl}(0.50 \mathrm{ml})$ was added and refluxed for 15 min ; this procedure was repeated (5 times) until a complete consumption of acetylene was indicated by TLC (AcOEt:hexane= 2:1). The mixture was filtered through a pad of Super- Cel^{\oplus}, the filtrate was poured into saturated NaHCO_{3} solution, at which point white precipitate was generated. The precipitate was removed by filtration, and the filtrate was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane= 1:1) to afford Z-olefin 13 ($1.03 \mathrm{~g}, 68 \%$ in 2 steps) as a white amorphous solid.
IR (KBr) $v_{\max } 3376,2986,1734,1458,1373,1215,1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.42(3 \mathrm{H}$, brs, acetonide), $1.50(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.54(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 1.63(3 \mathrm{H}$, brs, -Me), $3.54\left(1 \mathrm{H}\right.$, brs, $\left.-\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}-\mathrm{O}-\right), 3.65(3 \mathrm{H}, \mathrm{s},-\mathrm{COOMe}), 3.70\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 4.14$ $\left(1 \mathrm{H}, \mathrm{dd}, J=8.5,6 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{A}} H_{B}-\mathrm{O}-\right), 5.35\left(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz},-\mathrm{CH}_{\left.-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right), 5.95(1 \mathrm{H}, \mathrm{d}, J}\right.$ $=12 \mathrm{~Hz}$, olefin), $6.39(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}$, olefin), $7.12(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole $), 7.35$ ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.35(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, indole), 7.54 ($1 \mathrm{H}, \mathrm{s}$, imidazole), 9.39 (1H, brs, NH). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.3,26.7,28.9,30.2,31.4,36.9,52.0$, 69.0, 70.4, 107.9, 109.5, 113.8, 115.8, 117.1, 119.8, 122.7, 126.1, 132.3, 133.3, 136.9, 140.9, 172.1. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}_{4}$: C, 57.38; H, 5.62; N, 8.36. Found: C, 57.40; H, 5.63; N, 8.21.

Aldehyde;

A solution of Z-olefin $\mathbf{1 3}(724 \mathrm{mg}, 1.44 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(548 \mathrm{mg}, 2.88 \mathrm{mmol})$ in $\mathrm{MeOH}(28.8 \mathrm{ml})$ was heated to reflux for 3 h . The reaction mixture was cooled to room temperature, and poured into saturated NaHCO_{3} solution. The solution was extracted with AcOEt (x2), the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue (737 mg) was dissolved in $\mathrm{MeOH}(21.6 \mathrm{ml}$) $\mathrm{H}_{2} \mathrm{O}(7.2 \mathrm{ml})$, and $\mathrm{NaIO}_{4}(616 \mathrm{mg}, 2.88 \mathrm{mmol})$ was added. After being stirred for 5 min, $\mathrm{H}_{2} \mathrm{O}$ was added. The solution was extracted with $\mathrm{AcOEt}(\mathrm{x} 2)$. The combined
extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt: hexane $=1: 2$) to afford aldehyde (602 mg , 97% in 2 steps) as a white amorphous solid.
IR (KBr) $v_{\max } 3407,2971,1733,1656,1458,1340,1264,1173 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.70\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.63(3 \mathrm{H}, \mathrm{s},-\mathrm{COOMe}), 3.69\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 6.02$ $(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}$, olefin), $6.49(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}$, olefin), $7.13(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.37(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.39(1 \mathrm{H}, \mathrm{s}$, indole), $7.77(1 \mathrm{H}, \mathrm{s}$, imidazole), $9.90(1 \mathrm{H}$, brs, NH of inlode), $9.97\left(1 \mathrm{H}, \mathrm{s}\right.$, aldehyde), $10.62(1 \mathrm{H}$, brs, NH of imidazole $) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.2,31.0,38.8,52.0,108.4,113.6,116.0,117.9,120.1$, 122.9, 126.3, 127.8, 132.0, 136.7, 137.6, 140.0, 157.7, 171.8, 179.7. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3}$: C, 55.83; H, 4.68; N, 9.77. Found: C, 55.83; H, 4.56; N, 9.65.

Vinyl ether 14;

14
A solution of phenyllithium (1.08 M in $\mathrm{Et}_{2} \mathrm{O}$-cyclohexane, $4.41 \mathrm{ml}, 4.76 \mathrm{mmol}$) was added dropwise over a period of 5 min to a stirred suspension of (methoxymethyl)triphenylphosphonium chloride $(1.63 \mathrm{~g}, 4.76 \mathrm{mmol})$ in THF $(17.1 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 5 min , then allowed to warm to room temperature. After being stirred for 1 h , a solution of aldehyde ($410 \mathrm{mg}, 0.953 \mathrm{mmol}$) in THF (5.7 ml) was cannulated into the dark red ylide solution. After stirring for 2.5 h at room temperature, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt:hexane $=1: 2$) to afford vinyl ether $\mathbf{1 4}$ ($341 \mathrm{mg}, 74 \%, E: Z=23: 77$) as a yellow oil.
IR (KBr) $v_{\text {max }} 3372,2970,1734,1655,1459,1337,1266,1162 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz})(E$ isomer $) \delta 1.56\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.61\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2^{-}}\right), 3.62(3 \mathrm{H}, \mathrm{s}$, -COOMe), 3.69 ($3 \mathrm{H}, \mathrm{s},-\mathrm{OMe}$), $5.80(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-\mathrm{OMe}), 5.95(1 \mathrm{H}, \mathrm{d}, J$ $=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.39(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.73(1 \mathrm{H}, \operatorname{brd}, J=12.5 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CH}-\mathrm{OMe}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole), $7.35(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, indole), 7.36 $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.64(1 \mathrm{H}, \mathrm{s}$, imidazole), $9.55(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$ of indole). (Z
isomer) $\delta 1.59\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.62(3 \mathrm{H}, \mathrm{s},-\mathrm{COOMe}), 3.63\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 3.74(3 \mathrm{H}$, $\mathrm{s},-\mathrm{OMe}), 5.50(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-\mathrm{OMe}), 5.94(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, -CH=CH-OMe), $5.99(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.38(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}$, -CH=CH-), $7.11(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole), $7.35(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, indole), $7.36(1 \mathrm{H}$, d, $J=8 \mathrm{~Hz}$, indole), $7.64\left(1 \mathrm{H}, \mathrm{s}\right.$, imidazole), $9.55\left(1 \mathrm{H}\right.$, brs, NH of indole). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.9,30.1,30.3,37.0,37.2,51.9,52.0,56.8,60.7,95.3,107.8$, 113.7, 115.6, 115.7, 116.4, 119.8, 122.5, 122.6, 123.0, 126.2, 132.0, 132.7, 132.8, 136.8, 140.4, 140.6, 142.7, 144.2, 171.9, 172.1. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{3}: \mathrm{C}, 57.65 ; \mathrm{H}$, 5.28; N, 9.17. Found: C, 57.64; H, 5.16; N, 8.98.

Oxime 15;

To a solution of vinyl ether $\mathbf{1 4}(33.4 \mathrm{mg}, 72.9 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2.4 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{ml})$ was added $\mathrm{LiOH}(1 \mathrm{~N}, 0.22 \mathrm{ml}, 0.219 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 15 min , the mixture was allowed to warm to room temperature and stirred for 4 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the mixture was extracted with AcOEt (x3). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford carboxylic acid, which was used for a next step without purification. This material was dissolved in DME (2.4 ml), O-allylhydroxylamine hydrochloride ($39.9 \mathrm{mg}, 0.365 \mathrm{mmol}$) and $\mathrm{HCl}(12 \mathrm{~N}, 30.4 \mu \mathrm{l}, 0.365 \mathrm{mmol})$ was added. The mixture was stirred for 20 min at $70^{\circ} \mathrm{C}$, then cooled to room temperature followed by dilution with $\mathrm{H}_{2} \mathrm{O}$. The product was extracted with AcOEt (x2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=19: 1\right)$ to afford oxime $\mathbf{1 5}(27.3 \mathrm{mg}, 77 \%$ in 2 steps, $E: Z=39: 61)$ as a yellow amorphous solid.
IR (KBr) $v_{\text {max }} 3244,2973,1717,1559,1458,1374,1269,1188 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)\left(E\right.$ isomer) $\delta 1.52\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.56\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\mathrm{COOH}\right)$, $3.71\left(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{N}-\right), 4.57\left(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.18(1 \mathrm{H}$, dd, $\left.J=10,2 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.26\left(1 \mathrm{H}, \mathrm{dd}, J=17,2 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.83-6.03$
$\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.01(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.45(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}$, -CH=CH-), $6.64(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{N}-), 7.05(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole), $7.27(1 \mathrm{H}$, d, $J=2 \mathrm{~Hz}$, indole), 7.35 ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), 7.48 ($1 \mathrm{H}, \mathrm{s}$, imidazole). (Z isomer) $\delta 1.53\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.58\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\mathrm{COOH}\right), 3.60(2 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{N}-\right), 4.45\left(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.12(1 \mathrm{H}, \mathrm{dd}, J=10,2 \mathrm{~Hz}$, $\left.-\mathrm{CH}=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.18\left(1 \mathrm{H}, \mathrm{dd}, J=17,2 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.83-6.03(1 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.97(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.46(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-)$, $7.06(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole), $7.24(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, indole $), 7.36(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.36\left(1 \mathrm{H}, \mathrm{s}\right.$, imidazole), $7.52(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{N}-) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 100 MHz) $\delta 24.6,28.0,30.0,30.2,32.5,32.7,38.1,38.4,75.5,76.0,109.8,114.2,114.3$, $116.0,116.1,117.9,118.6,118.8,121.0,121.0,123.2,125.4,126.3,127.8,127.9,133.4$, $133.5,133.8,133.9,135.4,135.5,136.7,137.2,138.1,143.7,149.0,149.9,177.9,178.5$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrN}_{4} \mathrm{O}_{3}$: C, 56.91; H, 5.19; N, 11.54. Found: C, 56.92; H, 5.18; N, 11.38.

O-Allylhydroxamic acid 17;

To a solution of vinyl ether $\mathbf{1 4}(60.7 \mathrm{mg}, 0.132 \mathrm{~mol})$ in $\mathrm{MeOH}(3.3 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{ml})$ was added $\mathrm{LiOH}(1 \mathrm{~N}, 0.40 \mathrm{ml}, 0.397 \mathrm{mmol})$ at room temperature. After being stirred for 11 h , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The solution was extracted with AcOEt (x3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford carboxylic acid, which was used for a next step without purification. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.4 \mathrm{ml})$, followed by additions of O -allylhydroxylamine hydrochloride ($29.0 \mathrm{mg}, 0.265 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(36.7 \mu \mathrm{l}, 0.265 \mathrm{mmol})$ and EDC (50.8 mg , 0.265 mmol). The mixture was stirred for 1.5 h , and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt : hexane $=1: 1 \rightarrow 2: 1)$ to afford O-allylhydroxamic acid $\mathbf{1 7}(41.4 \mathrm{mg}, 63 \%$ in 2 steps) as a white amorphous solid.
(Z)-O-Allylhydroxamic acid 17; IR (KBr) $v_{\max } 3368,2972,1659,1461,1337,1266$, $1101 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.61\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.67\left(2 \mathrm{H}\right.$, brs, $\left.-\mathrm{CH}_{2}-\right)$, $3.75(3 \mathrm{H}, \mathrm{s},-\mathrm{OMe}), 4.27\left(2 \mathrm{H}\right.$, brd, $\left.J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.16(1 \mathrm{H}$, brd, $J=17 \mathrm{~Hz}$, $\left.-\mathrm{CH}=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.17\left(1 \mathrm{H}\right.$, brd, $\left.J=10 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.49(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, -CH=CH-OMe), $5.82\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,6.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.99(1 \mathrm{H}, \mathrm{d}, J=7$ $\mathrm{Hz},-\mathrm{CH}=\mathrm{CH}-\mathrm{OMe}), 6.01(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.28(1 \mathrm{H}$, brd, $J=12.5 \mathrm{~Hz}$, -CH=CH-), 7.13 ($1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indole), $7.30(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.40(1 \mathrm{H}$, d, $J=2 \mathrm{~Hz}$, indole), $7.62(1 \mathrm{H}, \mathrm{s}$, imidazole), $8.05(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$ of inlode), $9.71(1 \mathrm{H}$, brs, NH of imidazole). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.1,30.3,37.5,60.8,95.0,106.5$, $113.9,115.7,116.0,119.5,120.8,123.0,125.8,128.6,131.7,132.1,133.1,137.0,141.8$, 144.6, 168.2. HRMS (FAB) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrN}_{4} \mathrm{O}_{3}$ 501.1324, found 501.1300 .
(E)-O-Allylhydroxamic acid 17; IR (KBr) $v_{\max } 3363,2969,1655,1460,1334,1217$, $1156 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.56\left(6 \mathrm{H}, \mathrm{s}\right.$, dimethyl), $3.63\left(5 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right.$ and -OMe$), 4.25\left(2 \mathrm{H}\right.$, brd, $\left.J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.16(1 \mathrm{H}$, brd, $J=17 \mathrm{~Hz}$, $\left.-\mathrm{CH}=\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.17\left(1 \mathrm{H}, \quad\right.$ brd, $\left.J=10 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{B}\right), 5.75-5.87(1 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.81(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-\mathrm{OMe}), 5.96(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CH}-), 6.29(1 \mathrm{H}, \operatorname{brd}, J=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.75(1 \mathrm{H}, \operatorname{brd}, J=12.5 \mathrm{~Hz}$, -CH=CH-OMe), $7.12(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.28(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indole), $7.37(1 \mathrm{H}$, brs, indole), $7.45\left(1 \mathrm{H}\right.$, brs, imidazole). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.9,30.1,37.3$, $57.0,94.6,106.3,114.0,116.0,116.2,119.5,121.0,123.0,125.9,131.7,132.4,133.0$, 136.9, 142.0, 149.0, 168.5. HRMS (FAB) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrN}_{4} \mathrm{O}_{3}$ 501.1324, found 501.1338.

Indolenine 19;

To a solution of O-allylhydroxamic acid $17(8.9 \mathrm{mg}, 17.9 \mu \mathrm{~mol})$ in DME (1.1 ml) was added AIBN ($2.9 \mathrm{mg}, 17.9 \mu \mathrm{~mol}$), and heated to reflux for 2.5 h . The mixture was cooled to room temperature, and concentrated under reduced pressure. The residue
was purified by PTLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right)$ to afford indolenine $\mathbf{1 8}(4.1 \mathrm{mg}, 47 \%)$ as a colorless oil.
IR (KBr) $v_{\text {max }} 3229,2965,1654,1456,1363,1293,1091 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400\right.$ $\mathrm{MHz}) \delta 1.42(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 1.53(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 2.11\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}-\right), 3.21$ $\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{A}} H_{B^{-}}\right), 3.98(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz},-\mathrm{CH}-), 4.72(1 \mathrm{H}, \mathrm{ddt}, J=10.5,6,1$ $\left.\mathrm{Hz},-\mathrm{CH}_{C} \mathrm{H}_{\mathrm{D}}-\mathrm{CH}=\mathrm{CH}_{2}\right), 4.79\left(1 \mathrm{H}, \mathrm{ddt}, J=10.5,6,1 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{C}} \mathrm{H}_{D}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.32(1 \mathrm{H}$, ddt, $\left.J=10,2,1 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{F}}\right), 5.44\left(1 \mathrm{H}, \mathrm{ddt}, J=17,2,1 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{\mathrm{E}} H_{F}\right), 6.03$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz},-\mathrm{CH}-), 6.16\left(1 \mathrm{H}, \mathrm{ddt}, J=17,10,6 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.17(1 \mathrm{H}, \mathrm{d}, J=$ $12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 6.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 7.12$ ($1 \mathrm{H}, \mathrm{s}$, imidazole), 7.25 $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indolenine), $7.39(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, indolenine), $7.43(1 \mathrm{H}, \mathrm{dd}, J=8,2$ Hz , indolenine) . ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 28.9,32.0,38.8,39.3,44.8,61.7$, $78.9,84.6,117.5,120.3,123.3,124.3,125.9,130.4,133.8,134.0,138.5,148.1,157.0$, 167.4, 185.1. HRMS (FAB) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{4} \mathrm{O}_{3}$ 485.1020, found 485.1011.

Aldehyde 19;

14

19

The reaction was conducted with vinyl ether $\mathbf{1 4}(17.0 \mathrm{mg}, 37.1 \mu \mathrm{~mol})$ following the procedure described for the preparation of compound 18. The crude material was purified by silica gel column chromatography (AcOEt:hexane $=2: 1$) to afford aldehyde 19 ($4.2 \mathrm{mg}, 26 \%$) as a yellow amorphous solid and vinyl ether ($4.8 \mathrm{mg}, 28 \%$) was recovered.
IR (KBr) $v_{\text {max }} 3323,2929,1736,1664,1567,1436 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 0.94(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 1.37(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 3.68(3 \mathrm{H}, \mathrm{s},-\mathrm{COOMe}), 3.75(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}-\right), 3.79\left(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{A}} H_{B^{-}}\right), 5.57(1 \mathrm{H}$, brs, $-\mathrm{CH}-), 5.83(1 \mathrm{H}, \mathrm{d}, J=10$ $\mathrm{Hz},-\mathrm{CH}=\mathrm{CH}-), 6.67(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 7.18(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}$, indolenine), $7.37(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, indolenine), $7.56(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}$, indolenine), 7.85 ($1 \mathrm{H}, \mathrm{s}$, imidazole), $9.15\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}\right.$, aldehyde). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$
$21.4,25.4,29.8,43.0,52.2,94.1,98.9,108.5,115.5,115.7,117.1,120.1,124.0,128.9$, 132.1, 133.7, 138.4, 151.9, 161.6, 171.4, 189.1. HRMS (FAB) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{3} 442.0766$, found 442.0786 .

