The Influence of the Cage Size on the Reactivity of Trimetallic Nitride Metallofullerenes: A Mono and Bisadduct of $Gd_3N@C_{80}$ and A Monoadduct of $Gd_3N@C_{84}$

Manuel N. Chaur^a, Frederic Melin^a, Andreas J. Athans^a, Bevan Elliott^a, Kenneth Walker^b, Brian C. Holloway^b and Luis Echegoyen^{a*}

Contribution from the Department of Chemistry, Clemson University, Clemson, South Carolina 29634, and Luna Innovations, Inc. (NanoWorks division), 521 Bridge street, Danville, Virginia 24541

SUPPORTING INFORMATION

I. Simulated and experimental mass spectra of isolated monoadduct Gd₃N@C₈₀-C(CO₂Et)₂

II. Simulated and experimental mass spectra of isolated bisadduct $Gd_3N@C_{80}$ -[C(CO₂Et)₂]₂

III. Simulated and experimental mass spectra of isolated monoadduct $Gd_3N@C_{84}-C(CO_2Et)_2$

IV. UV-vis-NIR spectra of pure $Gd_3N@C_{80}$ (*I_h*), monoadduct $Gd_3N@C_{80}$ -(C(CO₂Et)₂), and bisadduct $Gd_3N@C_{80}$ -[C(CO₂Et)₂]₂.

V. Two stage HPLC chromatogram of bisadduct Gd₃N@C₈₀-[C(CO₂Et)₂]₂. Eluent: Toluene; Flow rate: 2.0 mL/min; Buckyprep and Buckyprep-M columns; Detection: 372 nm.

VI. UV-vis-NIR spectra of pure Gd₃N@C₈₄ and monoadduct Gd₃N@C₈₄-(C(CO₂Et)₂).

VII. Relevant redox potentials for pristine $Gd_3N@C_{80}$ and $Gd_3N@C_{84}$ and their methano derivatives (V vs Fc^+/Fc).

compound	$E_{1/2} ox_1$	$\mathrm{E}_{\mathrm{pc}}\ \mathbf{red}_{1}$	$\mathrm{E}_{\mathrm{pc}}\ \mathrm{red}_2$	$E_{pc} red_3$
$Gd_3N@C_{80}$	+0.58	-1.44	-1.86	-2.18
$Gd_3N@C_{80}$ -	+0.58	-1.39	-1.83	-2.17
[C(COOEt) ₂]				
$Gd_3N@C_{80}$ -	+0.59	-1.40	-1.88	
$[C(COOEt)_2]_2$				
$Gd_3N@C_{84}$	0.32	-1.37	-1.76	
Gd ₃ N@C ₈₄ -	0.28	-1.43	-1.77	-2.38
[C(COOEt) ₂]				