Electronic Supplementary Information

Highly Sensitive and Selective Detection of Hg²⁺ in Aqueous Solution with Mercury Specific DNA and Sybr Green I

Experimental Section

MSD (5'-TTCTTTCTTCCCCTTGTTTGTT-3') and the non-cognate oligonucletide sequence (5'-AAGAAAGAAGGGGAACAAACAA-3') were synthesized and HPLC purified from research biolab Inc. (Singapore). SG (10000×) was purchased from invitrogen inc. When in use, it was diluted to $250\times$ with DMSO, then to $125\times$ with water to make a stock solution. The concentration of $125\times$ SG solution is calculated to be 2.45×10^{-4} M according to the research from Vitzthum, et al in 2004. ¹ Other chemicals were all ordered from Sigma. 1.58×10^{-8} M MSD was first incubated with different amount of Hg²⁺ in 3 mL of 10 mM MOPS buffer containing 0.1 M NaNO₃, pH 7.5. 1 uL of $125\times$ SG was then added to the solution. After incubation for two minutes, the mixture was used for the fluorescence study with a Perkin-Elmer LS-55 fluorometer equipped with a xenon lamp excitation source and a Hamamatsu (Japan) 928 PMT. CD measurements were carried out using Jasco J-810 spectropolarimeter (Japan) with a 1 mm optical path cell.

Figure S1. a) Relationship between fluorescence intensity and dbpr for SG-Hg²⁺-MSD and SG-MSD. Squares and triangles represent the fluorescence intensities of SG-MSD and SG-Hg²⁺-MSD, respectively; circles are the ratios of the fluorescence intensity of SG-Hg²⁺-MSD to that of SG-MSD. b) Relationship between the fluorescence intensity and incubation time for SG to interact with Hg²⁺-MSD. [MSD] = 1.58×10^{-8} M and [Hg²⁺] = 9.96 nM were used for optimization of dbpr. [MSD] = 1.58×10^{-8} M, [Hg²⁺] = 16.61 nM and [SG] = 8.14×10^{-8} M were used for (b). 10 mM MOPS, 0.1 M NaNO₃, pH 7.5 was used as the buffer.

Figure S2. Fluorescence spectra of solutions containing MSD only (blank), MSD with mixture of Co^{2+} , Cu^{2+} , Ni^{2+} , Pb^{2+} , Cd^{2+} , Ca^{2+} , Mg^{2+} , Ba^{2+} , Zn^{2+} ions in the presence and absence of Hg²⁺, and MSD with Hg²⁺ only. [MSD] = 1.58×10^{-8} M; [Hg²⁺] = 132.87 nM; [non-specific ion] = 1.00μ M each.

Table S1 Fluorescence data of MSD and non-cognate oligonucletide (DNAnc) in the absence and presence of ${\rm Hg}^{2+a}$

MSD: 5'-TTCTTTCTTCCCCTTGTTTGTT-3'

Concentration of	0	33.2	66.4	99.6	166.1
Hg ²⁺ /nM					
FI	14.5	141.8	280.5	346.8	329.3
Wavelength/nm	528.2	526.2	523.0	524.0	525.1

Non-cognate oligonucletide: 5'-AACAAACAAGGGGAAGAAAGAA-3'

Concentration of	0	33.2	66.4	332.0	664.0
Hg/nM					
FI	7.9	11.4	22.0	33.0	23.4
Wavelength/nm	529.0	529.0	529.0	529.2	530.0

a: $[MSD] = [DNAnc] = 1.58 \times 10^{-8} \text{ M}, [SG] = 8.14 \times 10^{-8} \text{ M}. \text{ A buffer of 10 mM MOPS},$

0.1 M NaNO₃, pH 7.5 was used.

Figure S3. a) CD spectra of MSD upon binding to Hg^{2+} . b), c) Relationships between CD intensities at wavelengths of 277, 270 nm and $[Hg^{2+}]/7[MSD]$. [MSD]= 18.58 μ M. [Hg²⁺] = 0 to 256.21 μ M. A buffer of 10 mM MOPS, 0.1 M NaNO₃, pH 7.5 was used.

Figure S4. Relationship between the fluorescence intensity of SG-Hg²⁺-MSD vs. $[Hg^{2+}]/7[MSD]$

Reference

1 H. Zipper, H. Brunner, J. Bernhagen and F. Vitzthum, *Nucleic Acids Research*, 2004, **32**, e103.