Biaryl Phosphite-Oxazoline from Hydroxyl Aminoacid Derivatives: Highly Efficient Modular Ligands for Ir-Catalyzed Hydrogenation of Alkenes.

Montserrat Diéguez,^{a,*} Javier Mazuela,^a Oscar Pàmies,^a J. Johan Verendel,^b Pher G.

Andersson.^{b,*}

^a Departament de Química Física i Inorgànica. Universitat Rovira i Virgili. Campus Sescelades,

C/ Marcel·lí Domingo, s/n. 43007 Tarragona, Spain. ^b Department of Biochemistry and Organic

Chemistry, Uppsala University, BOX 576, 751 23 Uppsala, Sweden.

montserrat.dieguez@urv.cat; pher.andersson@kemi.uu.se

Supporting Information

Table of Contents

. General considerations	S 2
2. Typical procedure for the preparation of [Ir(cod)(L)]BArF (L= L1-L6a-e)	S2
3. Typical procedure of hydrogenation of olefins	S 7

1. General Considerations. All reactions were carried out using standard Schlenk techniques under an atmosphere of argon. Solvents were purified and dried by standard procedures. Phosphorochloridites are easily prepared in one step from the corresponding biaryls.¹ Phosphiteoxazoline ligands **L1-L6a-e**² were prepared as previously described. ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts are relative to that of SiMe₄ (¹H and ¹³C) as internal standard or H₃PO₄ (³¹P) as external standard. ¹H and ¹³C assignments were done based on ¹H-¹H gCOSY and ¹H-¹³C gHSQC experiments.

2. Typical procedure for the preparation of [Ir(cod)(L)]BArF (L=L1-L6a-e)

The corresponding ligand (0.074 mmol) was dissolved in CH_2Cl_2 (2 mL) and $[Ir(COD)Cl]_2$ (25 mg, 0.037 mmol) was added. The reaction was refluxed at 50 °C for 1 hour. After 5 min at room temperature, NaBArF (77.1 mg, 0.082 mmol) and water (2 mL) were added and the reaction mixture was stirred vigorously for 30 min at room temperature. The phases were separated and the aqueous phase was extracted twice with CH_2Cl_2 . The combined organic phases were filtered through a plug of celite, dried with MgSO₄ and the solvent was evaporated to give the product as orange solids.

[Ir(cod)(L1a)]BAr_F. Yield 123 mg (92 %). ³¹P NMR (CDCl₃), δ : 97.8 (s). ¹H NMR (CDCl₃), δ : 1.06 (s, 3H, CH₃), 1.29 (s, 3H, CH₃), 1.35 (s, 9H, CH₃, *t*Bu), 1.38 (s, 9H, CH₃, *t*Bu), 1.55 (s, 9H, CH₃, *t*Bu), 1.61 (s, 9H, CH₃, *t*Bu), 1.69 (m, 4H, CH₂, cod), 2.32 (m, 3H, CH₂, cod), 2.52 (m, 1H, CH₂, cod), 3.62 (b, 1H, CH= cod), 4.39 (m, 2H, CH= cod and CH₂), 4.58 (b, 2H, CH= cod and CH₂), 4.67 (dd, 1H, CH, ³*J*_{H-H}= 10. 0 Hz, ³*J*_{H-H}= 3.2 Hz), 5.32 (b, 1H, CH=, cod), 7.1-8.5 (m, 21H, CH= aromatics). ¹³C NMR (CDCl₃), δ : 21.3 (s,CH₃), 24.8 (b, CH₂, cod), 26.5 (m, CH₃), 28.09 (b, CH₂, cod), 31.2 (s, CH₃, *t*Bu), 31.4 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 33.2 (b, CH₂, cod), 34.8 (s, C, *t*Bu), 34.9 (s, C, *t*Bu), 35.2 (s, C, *t*Bu), 37.3 (b, CH₂, cod), 66.3 (s, CH=, cod), 69.8 (s, CH=, cod), 70.0 (s, CH₂), 71.2 (s, CH), 84.9 (d, CMe₂, *J*_{C-P}= 5.2 Hz), 93.5 (d, CH=, cod, *J*_{C-P}= 21.1 Hz), 106.3 (d, CH=, cod, *J*_{C-P}= 6.2 Hz), 117.7 (b, CH=, BAr_F), 119-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 135.5-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{C-B} = 48.6$ Hz), 173.7 (s, C=N). Anal. calc (%) for C₈₀H₇₈BF₂₄IrNO₄P: C 53.16, H 4.35, N 0.77; found: C 53.63, H 4.41, N 0.74.

[Ir(cod)(L1b)]BAr_F. Yield 115 mg (89 %). ³¹P NMR (CDCl₃), δ: 99.0 (s). ¹H NMR (CDCl₃), δ: 1.19 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.54 (s, 9H, CH₃, *t*Bu), 1.61 (s, 9H, CH₃, *t*Bu), 1.67 (m, 4H, CH₂, cod), 2.18 (m, 1H, CH₂, cod), 2.25 (m 1H, CH₂, cod), 2.37 (m, 1H, CH₂, cod), 2.55 (dd, 1H, cod, ${}^{2}J_{H+H} = 15.2$ Hz, ${}^{3}J_{H+H} = 6.4$ Hz), 3.65 (m, 1H, CH=, cod), 3.84 (s, 3H, CH₃-O), 3.86 (s, 3H, CH₃-O), 4.40 (b, 1H, CH=, cod), 4.45 (dd, 1H, CH₂, ${}^{2}J_{H+H} = 10$ Hz, ${}^{3}J_{H+H} = 3.6$ Hz), 4.57 (b, 1H, CH=, cod), 4.63 (m, 1H, CH₂), 4.72 (dd, 1H, CH, ${}^{3}J_{H+H} = 9.2$ Hz, ${}^{3}J_{H+H} = 2.8$ Hz), 5.37 (b, 1H, CH=, cod) 6.6-8.5 (m, 21H, CH= aromatic). ¹³C NMR (CDCl₃), δ : 21.5 (s, CH₃), 24.7 (b, CH₂, cod), 26.6 (d, CH₃, $J_{C-P} = 6.9$ Hz), 28.8 (b, CH₂, cod), 31.2 (s, CH₃, *t*Bu), 31.3 (s, CH₃, *t*Bu), 33.6 (b, CH₂, cod), 35.4 (s, C, *t*Bu), 35.7 (s, C, *t*Bu), 37.2 (d, CH₂, cod), $J_{C-P} = 6.9$ Hz), 55.8 (s, CH₃-O), 68.3 (s, CH=, cod), 69.8 (s, CH₂), 70.6 (s, CH=, cod), 74.0 (s, CH), 84.9 (d, CMe₂, $J_{C-P} = 5.3$ Hz), 94.6 (d, CH=, cod, $J_{C-P} = 22$ Hz), 106.2 (d, CH=, cod, $J_{C-P} = 12.1$ Hz), 113-115 (aromatic carbons), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 138-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ¹ $J_{C-B} = 49.3$ Hz), 172.4 (s, C=N). Anal. calc (%) for C₇₄H₆₆BF₂₄IrNO₆P: C 50.64, H 3.79, N 0.80; found: C 50.82, H 4.09, N 0.75.

[Ir(cod)(L1c)]BAr_F. Yield 110 mg (86 %). ³¹P NMR (CDCl₃), δ: 95.5 (s). ¹H NMR (CDCl₃), δ: 0.49 (s, 9H, SiMe₃), 0.54 (s, 9H, SiMe₃) 1.02 (s, 3H, CH₃), 1.29 (s, 3H, CH₃), 1.67 (m, 4H, CH₂, cod), 2.24 (b, 2H, CH₂, cod), 2.45 (m, 2H, cod), 3.81 (m, 1H, CH=, cod), 3.38 (b, 1H, CH=, cod), 4.43 (dd, 1H, CH₂, ²*J*_{H-H} = 10.4 Hz, ³*J*_{H-H} = 3.6 Hz), 4.66 (b, 2H, CH= cod and CH₂), 4.79 (dd, 1H, CH, ³*J*_{H-H} = 9.6 Hz, ³*J*_{H-H} = 2.8 Hz), 5.44 (b, 1H, CH=, cod) 7.1-8.6 (m, 23H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 0.2 (s, SiMe₃), 0.4 (s, SiMe₃), 21.2 (s, CH₃), 25.0 (b, CH₂, cod), 26.5 (d, CH₃, *J*_{C-P} = 7.6 Hz), 29.1 (b, CH₂, cod), 32.8 (b, CH₂, cod), 36.8 (d, CH₂, cod, *J*_{C-P} = 7.6 Hz), 67.5 (s, CH=, cod), 68.7 (s, CH=, cod), 69.9 (s, CH₂), 73.5 (s, CH), 84.7 (d, CMe₂, *J*_{C-P} = 5.3 Hz), 96.8 (d, CH=, cod, *J*_{C-P} = 21.2 Hz), 107.4 (d, CH=, cod, *J*_{C-P} = 13.7 Hz), 117.7 (b, CH=, BAr_F), 120-134 (aromatic carbons), 135.0 (b, CH=, BAr_F), 135.5-155 (aromatic carbons), 161.9 (q, C-B, BAr_F, ¹*J*_{C-B} = 49.3

Hz), 172.7 (s, C=N). Anal. calc (%) for C₇₀H₆₂BF₂₄IrNO₄PSi₂: C 48.67, H 3.62, N 0.81; found: C 48.74, H 3.71, N 0.84.

[Ir(cod)(L1d)]BAr_F. Yield 113 mg (91 %). ³¹P NMR (CDCl₃), δ: 100.9 (s). ¹H NMR (CDCl₃), δ: 1.39 (s, 3H, CH₃), 1.48 (s, 3H, CH₃), 1.57 (b, 2H, CH₂, cod), 1.75 (m, 2H, CH₂, cod), 2.20 (b, 3H, cod), 2.36 (b, 1H, CH₂, cod), 3.85 (m, 1H, CH=, cod), 4.06 (b, 1H, CH=, cod), 4.13 (b, 1H, CH=, cod), 4.56 (dd, 1H, CH₂, ²*J*_{H-H}= 10.4 Hz, ³*J*_{H-H}= 2.8 Hz), 4.69 (m, 1H, CH₂), 4.87 (dd, 1H, CH, ³*J*_H. $_{\rm H}$ = 8.8 Hz, ³*J*_{H-H} = 2.8 Hz), 5.29 (b, 1H, CH=, cod) 7.1-8.4 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 22.8 (s, CH₃), 25.8 (b, CH₂, cod), 27.5 (d, CH₃, *J*_{C-P} = 6.2 Hz), 30.5 (s, CH₂, cod), 31.7 (b, CH₂, cod), 36.0 (s, CH₂, cod, *J*_{C-P} = 5.3 Hz), 64.8 (s, CH=, cod), 66.1 (s, CH=, cod), 70.8 (s, CH₂), 72.5 (d, CH, *J*_{C-P}= 4.6 Hz), 86.0 (d, CMe₂, *J*_{C-P}= 4.9 Hz), 99.0 (d, CH=, cod, *J*_{C-P} = 20.5 Hz), 107.3 (s, CH=, cod, *J*_{C-P} = 13.7 Hz), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 136-152 (aromatic carbons), 161.9 (q, C-B BAr_F, ¹*J*_{C-B} = 49.3 Hz), 173.2 (s, C=N). Anal. calc (%) for C₇₂H₅₀BF₂₄IrNO₄P: C 51.38, H 2.99, N 0.83; found: C 51.54, H 3.03. N 0.89.

[Ir(cod)(L1e)]BAr_F. Yield 111 mg (89 %). ³¹P NMR (CDCl₃), δ: 103.5 (s). ¹H NMR (CDCl₃), δ: 1.32 (s, 3H, CH₃), 1.40 (s, 3H, CH₃), 1.61 (b, 4H, CH₂, cod), 2.15 (m, 1H, CH₂, cod), 2.40 (m, 3H, cod), 3.12 (m, 1H, CH=, cod), 3.88 (b, 1H, CH=, cod), 3.99 (m, 1H, CH=, cod), 4.55 (dd, 1H, CH₂, ${}^{2}J_{\text{H-H}} = 10.4$ Hz, ${}^{3}J_{\text{H-H}} = 2.8$ Hz), 4.7 (m, 1H, CH₂), 4.89 (dd, 1H, CH, ${}^{3}J_{\text{H-H}} = 9.2$ Hz, ${}^{3}J_{\text{H-H}} = 2.8$ Hz), 5.40 (b, 1H, CH=, cod) 7.1-8.6 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 20.9 (s, CH₃), 25.9 (s, CH₂, cod), 26.9 (s, CH₃) 29.2 (s, CH₂, cod), 32.0 (b, CH₂, cod), 36.9 (s, CH₂, cod), 66.1 (s, CH=, cod), 68.2 (s, CH=, cod), 70.6 (s, CH₂), 73.6 (s, CH), 86.1 (d, CMe₂, $J_{\text{C-P}} = 5.4$ Hz), 100.5 (s, CH=, cod), 109.1 (s, CH=, cod), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 138-150 (aromatic carbons), 161.9 (q, C-B BAr_F, ${}^{1}J_{\text{C-B}} = 49.3$ Hz), 180.9 (s, C=N). Anal. calc (%) for C₇₂H₅₀BF₂₄IrNO₄P: C 51.38, H 2.99, N 0.83; found: C 51.29, H 2.93, N 0.78.

[Ir(cod)(L2a)]BAr_F. Yield 124 mg (92 %). ³¹P NMR (CDCl₃), δ: 97.4 (s). ¹H NMR (CDCl₃), δ: 1.06 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 1.36 (s, 9H, CH₃, *t*Bu), 1.37 (s, 9H, CH₃, *t*Bu), 1.56 (s, 9H, CH₃, *t*Bu), 1.62 (s, 9H, CH₃, *t*Bu), 1.67 (b, 4H, CH₂, cod), 2.18 (b, 1H, CH₂, cod), 2.36 (m, 2H, CH₃, *t*Bu), 1.62 (s, 9H, CH₃, *t*Bu), 1.67 (b, 4H, CH₂, cod), 2.18 (b, 1H, CH₂, cod), 2.36 (m, 2H, CH₃, *t*Bu), 1.62 (s, 9H, CH₃, *t*Bu), 1.67 (b, 4H, CH₂, cod), 2.18 (b, 1H, CH₂, cod), 2.36 (m, 2H, CH₃, *t*Bu), 1.62 (s, 9H, CH₃, *t*Bu), 1.67 (b, 4H, CH₂, cod), 2.18 (b, 1H, CH₂, cod), 2.36 (m, 2H, CH₃, *t*Bu), 1.67 (b, 2H, CH₃, *t*Bu), 2.36 (m, 2H,

CH₂, cod), 2.53 (m, 4H, CH₂ cod and CH₃), 3.73 (m, 1H, CH=, cod), 4.37 (m, 2H, CH₂ and CH= cod), 4.55 (m, 2H, CH₂ and CH= cod), 4.66 (dd, 1H, CH, ${}^{3}J_{H-H} = 8.8$ Hz, ${}^{3}J_{H-H} = 2.8$ Hz), 5.34 (b, 1H, CH=, cod) 7.1-8.4 (m, 20H, CH= aromatics). 13 C NMR (CDCl₃), δ : 21.4 (s, CH₃), 24.8 (b, CH₂, cod), 26.4 (s, CH₃), 28.9 (b, CH₂, cod), 31.3 (s, CH₃, *t*Bu), 31.4 (s, CH₃, *t*Bu), 31.5 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 33.7 (b, CH₂, cod), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.4 (s, C, *t*Bu), 35.8 (s, CH₃), 37.1 (b, CH₂, cod), 67.9 (s, CH=, cod), 69.6 (s, CH₂), 70.0 (s, CH=, cod), 73.7 (s, CH), 84.8 (d, CMe₂, *J*_{C-P} = 5.2 Hz), 92.6 (m, CH=, cod), 106.4 (m, CH=, cod), 117.7 (b, CH=, BAr_F), 119-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 138-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{C-B} = 48.6$ Hz), 174.8 (s, C=N). Anal. calc (%) for C₈₁H₈₀BF₂₄IrNO₄P: C 53.41, H 4.43, N 0.77; found: C 53.53, H 4.52, N 0.79.

[Ir(cod)(L3a)]BAr_F. Yield 120 mg (87 %). ³¹P NMR (CDCl₃), δ: 97.9 (s). ¹H NMR (CDCl₃), δ: 1.05 (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 1.32 (s, 9H, CH₃, *t*Bu), 1.34 (s, 9H, CH₃, *t*Bu), 1.52 (s, 9H, CH₃, *t*Bu), 1.59 (s, 9H, CH₃, *t*Bu), 1.64 (m, 3H, CH₂, cod), 1.92 (m, 1H, CH₂, cod), 2.27 (b, 3H, CH₂, cod), 2.57 (m, 1H, cod, ${}^{2}J_{H-H} = 15.6$ Hz, ${}^{3}J_{H-H} = 9.6$ Hz), 3.54 (m, 1H, CH=, cod), 4.38 (dd, 1H, CH₂, ${}^{2}J_{H-H} = 10$ Hz, ${}^{3}J_{H-H} = 3.2$ Hz), 4.43 (b, 1H, CH=, cod), 4.57 (m, 1H, CH₂), 4.61 (b, 1H, CH=, cod), 4.71 (dd, 1H, CH, ${}^{3}J_{H-H} = 9.2$ Hz, ${}^{3}J_{H-H} = 3.2$ Hz), 5.31 (b, 1H, CH=, cod), 7.1-8.6 (m, 20H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 21.3 (s, CH₃), 24.8 (b, CH₂, cod), 26.4 (d, CH₃, $J_{C-P} = 6.8$ Hz), 28.7 (b, CH₂, cod), 31.3 (s, CH₃, *t*Bu), 31.4 (s, CH₃, *t*Bu), 31.5 (s, CH₃, *t*Bu), 33.4 (b, CH₂, cod), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.4 (s, C, *t*Bu), 35.7 (s, C, *t*Bu), 37.3 (d, CH₂, *d*_{C-P} = 5.3 Hz), 94.7 (d, CH=, cod, $J_{C-P} = 21.9$ Hz), 106.5 (d, CH=, cod), 74.5 (s, CH), 84.5 (d, CMe₂, $J_{C-P} = 5.3$ Hz), 94.7 (d, CH=, cod, $J_{C-P} = 21.9$ Hz), 106.5 (d, CH=, cod, $J_{C-P} = 33.3$ Hz), 138-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ¹ $J_{C-B} = 49.3$ Hz), 171.0 (s, C=N). Anal. calc (%) for C₈₁H₇₇BF₂₇IrNO₄P: C 51.87, H 4.14, N 0.75; found: C 51.93, H 4.17, N 0.79.

[Ir(cod)(L4a)]BAr_F. Yield 117 mg (87 %). ³¹P NMR (CDCl₃), δ: 95.0 (s). ¹H NMR (CDCl₃), δ: 1.09 (s, 3H, CH₃), 1.34 (s, 9H, CH₃, *t*Bu), 1.35 (s, 9H, CH₃, *t*Bu), 1.49 (s, 9H, CH₃, *t*Bu), 1.52 (s, 9H, CH₃), 1.54 (s, 9H, CH₃), 1.55 (s, 9H

3H, CH₃),1.56 (s, 3H, <u>CH₃-CH</u>), 1.57 (s, 9H, CH₃, *t*Bu), 1.64 (m, 4H, CH₂, cod), 2.27 (b, 3H, CH₂, cod), 2.55 (dd, 1H, cod, ${}^{2}J_{\text{H-H}} = 16.4$ Hz, ${}^{3}J_{\text{H-H}} = 7.6$ Hz), 3.63 (m, 1H, CH=, cod), 4.37 (b, 1H, CH=, cod), 4.39 (d, 1H, CH-N, ${}^{3}J_{\text{H-H}} = 8.4$ Hz), 4.60 (b, 1H, CH=, cod), 5.06 (m, 1H, CH), 5.26 (b, 1H, CH=, cod) 7.1-8.6 (m, 21H, CH= aromatics). 13 C NMR (CDCl₃), δ : 23.6 (s, CH₃), 25.0 (b, CH₂, cod), 27.7 (d, CH₃, $J_{\text{C-P}} = 6.8$ Hz), 29.1 (b, CH₂, cod), 31.1 (s, CH₃, *t*Bu), 31.3 (s, CH₃ *t*Bu), 31.5 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 33.1 (b, CH₂, cod), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.3 (s, C, *t*Bu), 35.8 (s, <u>CH₃-CH</u>), 36.9 (d, CH₂, cod, $J_{\text{C-P}} = 6.9$ Hz), 95.7 (d, CH=, cod), 69.7 (s, CH=, cod), 76.0 (s, CH=, cod, $J_{\text{C-P}} = 12.9$ Hz), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 138-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{\text{C-B}} = 49.3$ Hz), 172.5 (s, C=N). Anal. calc (%) for C₈₁H₈₀BF₂₄IrNO₄P: C 53.41, H 4.43, N 0.77; found: C 53.74, H 4.56, N 0.81.

[Ir(cod)(L5a)]BAr_F. Yield 120 mg (91 %). ³¹P NMR (CDCl₃), δ : 103.3 (s). ¹H NMR (CDCl₃), δ : 1.36 (s, 9H, CH₃, *t*Bu), 1.37 (s, 9H, CH₃, *t*Bu), 1.55 (s, 9H, CH₃, *t*Bu), 1.56 (s, 9H, CH₃, *t*Bu), 1.75 (b, 4H, CH₂, cod), 2.30 (m, 3H, CH₂, cod), 2.40 (m, 1H, cod), 2.52 (s, 3H, CH₃), 3.79 (m, 1H, CH=, cod), 4.10 (m, 1H, CH₂-OP), 4.20 (m, 2H, CH₂-OP and CH₂) 4.40 (b, 1H, CH=, cod), 4.63 (m, 1H, CH₂), 4.68 (b, 1H, CH=, cod), 4.81 (m, 1H, CH), 5.45 (b, 1H, CH=, cod), 7.1-8.6 (m, 20H, CH= aromatics). ¹³C NMR (CDCl₃), δ : 24.8 (b, CH₂, cod), 28.8 (b, CH₂, cod), 31.2 (s, CH₃, *t*Bu), 31.4 (s, CH₃, *t*Bu), 31.5 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 33.7 (b, CH₂, cod), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.4 (s, C, *t*Bu), 36.0 (s, CH₃), 37.2 (d, CH₂, cod, *J*_{C-P} = 6.9 Hz), 66.9 (s, CH), 68.5 (s, CH=, cod), 69.5 (s, CH₂), 69.6 (s, CH=, cod), 70.2 (s, CH₂-OP), 94.2 (d, CH=, cod, *J*_{C-P} = 22 Hz), 106.5 (d, CH=, cod, *J*_{C-P} = 12.1 Hz), 117.7 (b, CH=, BAr_F), 119-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 138-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ¹*J*_{C-B} = 49.3 Hz), 171.3 (s, C=N). Anal. calc (%) for C₇₉H₇₆BF₂₄IrNO₄P: C 52.91, H 4.27, N 0.78; found: C 53.07, H 4.32, N 0.82.

[**Ir**(**cod**)(**L6a**)]**BAr**_F. Yield 136 mg (92 %). ³¹P NMR (CDCl₃), δ: 92.8 (s). ¹H NMR (CDCl₃), δ: 1.08 (s, 9H, CH₃, *t*Bu), 1.35 (s, 9H, CH₃, *t*Bu), 1.39 (s, 9H, CH₃, *t*Bu), 1.81 (m, 4H, CH₂, cod), 1.87 (s, 9H, CH₃, *t*Bu), 2.33 (m, 3H, CH₂, cod), 2.55 (m, 1H, CH₂, cod), 3.93 (m, 1H, CH=, cod), 4.51 (b,

1H, CH=, cod), 4.63 (b, 1H, CH=, cod), 4.68 (dd, 1H, CH₂, ${}^{2}J_{H-H} = 10$ Hz, ${}^{3}J_{H-H} = 3.2$ Hz), 4.87 (m, 1H, CH₂), 5.27 (b, 1H, CH=, cod), 5.78 (dd, 1H, CH, ${}^{3}J_{H-H} = 8.4$ Hz, ${}^{3}J_{H-H} = 2.8$ Hz), 6.5-8.6 (m, 30H, CH= aromatics). 13 C NMR (CDCl₃), δ : 25.9 (b, CH₂, cod), 29.9 (b, CH₂, cod), 30.5 (s, CH₃, *t*Bu), 31.2 (b, CH₂, cod), 31.5 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 31.7, (s, CH₃, *t*Bu), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.4 (s, C, *t*Bu), 35.7 (s, C, *t*Bu), 36.0 (b, CH₂, cod), 67.7 (s, CH=, cod), 71.2 (s, CH₂), 71.3 (s, CH=, cod), 71.4 (s, CH), 92.7 (s, CPh₂), 99.0 (d, CH=, cod, *J*_{C-P} = 19.7 Hz), 108.1 (d, CH=, cod, *J*_{C-P} = 13.6 Hz), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 136.1 (m, CF₃), 138-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{C-B} = 49.3$ Hz), 172.3 (s, C=N). Anal. calc (%) for C₉₁H₈₁BF₂₇IrNO₄P: C 54.66, H 4.08, N 0.70; found: C 54.78, H 4.11, N 0.73.

3. Typical procedure of hydrogenation of olefins. The alkene (1 mmol) and Ir complex (0.2 mol%) were dissolved in CH_2Cl_2 (2 mL) in a high-pressure autoclave. The autoclave was purged 4 times with hydrogen. Then, it was pressurized at the desired pressure. After the desired reaction time, the autoclave was depressurised and the solvent evaporated off. The residue was dissolved in Et_2O (1.5 ml) and filtered through a short plug of celite. The enantiomeric excess was determined by chiral GC or chiral HPLC and conversions were determined by ¹H NMR.³

¹ Buisman, G. J. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. *Tetrahedron: Asymmetry* **1993**, *4*, 1625

² Diéguez, M.; Claver, C. Chem. Eur. J. 2008, 14, 3653.

³ a) Hedberg, C.; Källström, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am. Chem. Soc.
2006, 128, 2995. b) McIntyre, S.; Hörmann, E.; Menges, F.; Smidt, S. P. Pfaltz, A. Adv. Synth. *Catal.* 2005, 347, 282. c) Diéguez, M.; Mazuela, J.; Pàmies, O.; Verendel, J. J.; Andersson, P. G. J. *Am. Chem. Soc.* in press.