© Royal Society of Chemistry

Electronic Supplementary Information

Encapsulation of charge-diffuse peralkylated onium cations in the cavity of cucurbit[7]uril

Antony D. St-Jacques, Ian W. Wyman and Donal H. Macartney*

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6 Canada. Fax: +1 613 533-6669 Tel: +1 613 533 2617 E-mail: donal@chem.queensu.ca

Contents

General experimental detailsS2Table S1Host-guest stability constants ($K_{CB[7]}$) for the inclusion of peralkylatedonium cations in CB[7] by competitive ¹H NMR experiments in D₂O.S3Figure S1Energy-minimized structure of {NMe₄•CB[7]}⁺S4Figure S2Energy-minimized structure of {NEt₄•CB[7]}⁺S4Figure S3Energy-minimized structure of {NⁿPr₄•CB[7]}⁺S5Figure S4Energy-minimized structure of {NⁿBu₄•CB[7]}⁺S5

Page

General experimental details

The cucurbit[7]uril was prepared and characterized by Day's method,¹ while the cationic guests and competitive guests were used as received (Sigma-Aldrich, Alfa Aesar). The ¹H and ³¹P NMR chemical shift titrations and competitive NMR binding experiments (Bruker Avance 400 MHz instrument) were carried out at 25 °C in D₂O using a 0.050 dm³ mol⁻¹ NaOAc/HOAc buffer (pD 4.75) with 1.0 mmol dm⁻³ guest and, in the case of the competition experiments (with 1,2-phenylenediammonium ($K_{CB[7]} = (8.04 \pm 1.28) \times 10^4 \text{ dm}^3 \text{ mol}^{-1}$), 1,4-phenylenediammonium ((2.07 ± 0.33) x 10⁶ dm³ mol⁻¹), or 3-trimethylsilylpropionic acid-2,2,3,3-*d*₄ ((1.82 ± 0.22) x 10⁷ dm³ mol⁻¹)),² 1.0 mmol dm⁻³ competitor in the presence of a slight deficiency of CB[7] using Isaac's methods for stability constant and error calculations (Table S1).² The gas-phase energy-minimization calculations (Fig. S1-S9) were perfomed using Chem3D Pro 11.0 software (CambridgeSoft).

- A. Day, A. P. Arnold, R. J. Blanch and B. Snushall, *J. Org. Chem.* 2001, 66, 8094.
- S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij and L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959.

Table S1. Host-guest stability constants ($K_{CB[7]}$) for the inclusion of peralkylated onium cations in CB[7] by competitive ¹H NMR experiments in D₂O.

Guest	Competitor Guest	$K_{\text{CB[7]}}, \text{dm}^3 \text{ mol}^{-1}$
$N(CH_3)_3^+$	1,2-phenylenediamine	$(1.2 \pm 0.4) \times 10^5$
	$P(CH_3)_4^+$	$(1.2 \pm 0.4) \times 10^5$ (1.3 \pm 0.2) \times 10^5
$N(CH_2CH_3)_4^+$	1,4-phenylenediamine	$(1.0 \pm 0.2) \ge 10^6$
	$P(CH_3)_4^+$	$(1.3 \pm 0.3) \ge 10^6$
	N(CH ₃) ₄ ⁺	$(8.8 \pm 1.6) \ge 10^5$
$N(CH_2CH_2CH_3)_4^+$	1,2-phenylenediamine	$(9.0 \pm 2.4) \ge 10^3$
		2
$N(CH_2CH_2CH_2CH_3)_4^+$	chemical shift titration	$(2.8 \pm 0.7) \times 10^3$
$P(CH_3)_4^+$	1,4-phenylenediamine	$(2.2 \pm 0.4) \ge 10^6$
D(CILCIL) ⁺	1.4 nh and an diamina	$(1, 2, +0, 2) = 10^5$
$P(CH_2CH_3)_4^+$	1,4-phenylendiamine	$(1.3 \pm 0.3) \times 10^5$ (8.3 ± 1.5) × 10 ⁴
	$\frac{\text{N}(\text{CH}_2\text{CH}_3)_4^+}{\text{P}(\text{CH}_3)_4^+}$	$(8.3 \pm 1.3) \times 10$ (1.1 ± 0.2) × 10 ⁵
	r(C113)4	$(1.1 \pm 0.2) \times 10$
S(CH ₃) ₃ ⁺	1,2-phenylenediamine	$(3.4 \pm 0.6) \ge 10^4$
5(0113)3	$P(CH_3)_4^+$	$(2.9 \pm 0.5) \times 10^4$
	- (3/4	
$S(CH_2CH_3)_4^+$	1,4-phenylenediamine	$(5.2 \pm 0.9) \ge 10^6$
	$P(CH_2CH_3)_4^+$	$(1.3 \pm 0.2) \times 10^7$
	S(CH ₃) ₃ ⁺	$(1.2 \pm 0.2) \times 10^7$
$N(CH_3)_3(CH_2Ph)^+$	1,4-phenylenediamine	$(2.0 \pm 0.3) \ge 10^8$
	3-trimethylsilylpropionic acid	$(3.0 \pm 0.4) \times 10^8$ $(2.7 \pm 0.9) \times 10^8$
	$N(CH_2CH_3)_4^+$	$(2.7 \pm 0.9) \times 10^8$
	$P(CH_3)_4^+$	$(1.2 \pm 0.2) \ge 10^8$

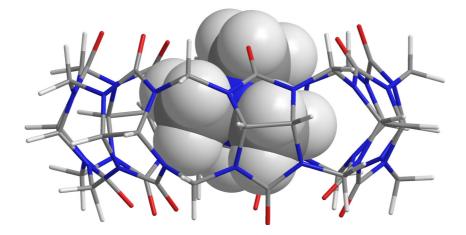


Figure S1 Energy-minimized structure of $\{NMe_4 \cdot CB[7]\}^+$ with the CB[7] shown as sticks and the guest as space-filling atoms.

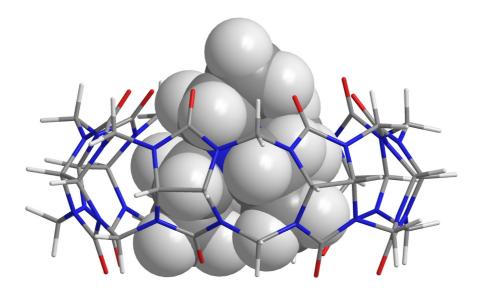


Figure S2 Energy-minimized structure of $\{NEt_4 \cdot CB[7]\}^+$ with the CB[7] shown as sticks and the guest as space-filling atoms.

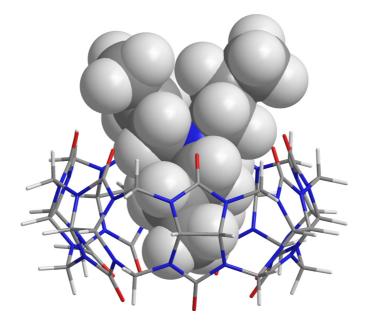


Figure S3 Energy-minimized structure of $\{N^n Pr_4 \cdot CB[7]\}^+$ with the CB[7] shown as sticks and the guest as space-filling atoms.

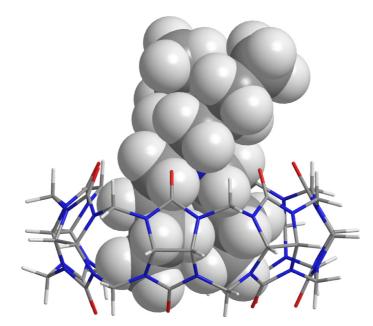


Figure S4 Energy-minimized structure of $\{N^nBu_4 \cdot CB[7]\}^+$ with the CB[7] shown as sticks and the guest as space-filling atoms.