Colorimetric recognition of DNA intercalator with unmodified gold nanoparticles

Aiping Xin, Qiupeng Dong, Cen Xiong, Liansheng Ling*

State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry

and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P.R.China

Experimental Section

Materials. All oligodeoxyribonucleotides were purchased from Beijing SBS Genetech Co.,Ltd. (Beijing, China). HAuCl₄·3H₂O was purchased from Aldrich Co.. Trisodium citrate, sodium chloride, sodium acetate and sodium phosphate monobasic dehydrate were purchased from tianjin fuchen chemistry reagent factory. Ru(phen)₃Cl₂ and Ethidium bromide was purchased from aldrich-sigma Co., Ru(bipy)₂(dppz)(BF₄)₂·1.5H₂O, Ru(phen)₂(dppz) (BF₄)₂·3.5H₂O and Ru(bipy)₂(dppx) (BF₄)₂·2H₂O was home made. The store solution of 1.0×10^{-4} M Ru(phen)₃²⁺ was prepared by dissolving 7.1mg Ru(phen)₃Cl₂ in 100ml water; 1.0×10^{-4} M Ru(bipy)₂(dppz)²⁺ was prepared by dissolving 4.0mg Ethidium bromide in 100ml water; 1.0×10^{-4} M Ru(bipy)₂(dppz)²⁺ was prepared by dissolving 9.0mg Ru(bipy)₂(dppz)(BF₄)₂·1.5H₂O in 100ml water; 1.0×10^{-4} M Ru(phen)₂(dppz)²⁺ was prepared by dissolving 9.0mg Ru(bipy)₂(dppz)(BF₄)₂·2.5H₂O in 100ml water; 1.0×10^{-4} M Ru(bipy)₂(dppz)²⁺ was prepared by dissolving 9.0mg Ru(bipy)₂(dppz)(BF₄)₂·2.5H₂O in 100ml water; 1.0×10^{-4} M Ru(bipy)₂(dppz) (BF₄)₂·2.5H₂O in 100ml water; 1.0×10^{-4} M Ru(bipy)₂(dppz)(BF₄)₂·2.5H₂O in 100ml water; 1.0×10^{-4} M Ru(bipy)₂(dppz) (BF₄)₂·2.2H₂O in 100ml water.

Ultraviolet-visible absorption spectra were recorded on TU 1901UV-visiable absorption spectrometer (Beijing Pukinje General Instrument Co.,Ltd) using 1 cm path length quartz cells. Nano-pure water (18.1 M Ω) that obtained from a 350 Nano-pure water system (Guangzhou Crystalline Resdurce Desalination of Sea Water and Treatment Co.,Ltd.) was used in all experiments.

Preparation of Au nanoparticles

Au nanoparticles were prepared with the method of reduction of HAuCl₄ with citrate [Grabar, K.C., Freeman, R.G., Hommer, M.B., Natan, M. J. Anal. Chem. 1995, 67, 735-743.]. The average particle size was about 13 nm in diameter by TEM.

Procedure

300 µL gold colloid was diluted with 300ul water, then was mixed with 150ul 1350pmol

oligo-a (or oligo-b), then those intercalative (or non- intercalative) molecule were added into separately, and then with 300 μ L of 10 mM PBS containing 0.35 M NaCl was added.

Measurement of melting temperature

The melting curve of oligo-a with and without $Ru(phen)_3^{2^+}$ was obtained with TU 1901UV-visiable absorption spectrometer (Beijing Pukinje General Instrument Co.,Ltd) using 1 cm path length quartz cells. The melting curve of oligo-a in the presence of EB, $Ru(bipy)_2dppz^{2^+}$, $Ru(phen)_2dppz^{2^+}$ or $Ru(bipy)_2dppx^{2^+}$ was recorded with RF-5301(Shimadazu, Japan) spectrofluorometer with a quartz cell (1×1 cm cross-section).

DNA binder	Tm (°C)
Oligo-a (no binder)	25
$\operatorname{Ru}(\operatorname{phen})_{3}^{2^{+}}$	26
EB	33
Ru(bipy) ₂ dppz ²⁺	44

44

42

Ru(phen)₂dppz²⁺

 $Ru(bipy)_2dppx^{2+}$

S-Table 1 melting temperature of oligo-a in the presence of different ligand

S-Figure-1 Melting curve of oligo-a(Oligo-a: 7.0µM, NaCl: 0.10M)

S-Figure-2 Melting curve of oligo-a in the presence of $Ru(phen)_3^{2+}$ (Oligo-a: 7.0µM, NaCl: 0.10M, $Ru(phen)_3^{2+}$:5.0µM)

S-Figure-3 Melting curve of oligo-a in the presence of EB (EB:3.3 μ M, NaCl:0.1M, oligo-a:4.0 μ M, λ_{ex} :542nm λ_{em} :602nm),slit width(EX:3.0nm, EM:5.0nm)

S-Figure-4 Melting oligo-a in $Ru(bipy)_2dppz^{2+}$ curve of the presence of(Ru(bipy)₂dppz²⁺:3.3µM ,NaCl:0.1M , oligo-a:1.3µM, λ_{ex} :455nm, λ_{em} :630nm), slit width(EX:5.0nm, EM:10.0nm)

S-Figure-5 Melting curve of oligo-a in the presence of Ru(phen)₂dppz²⁺ (Ru(phen)₂dppz²⁺:3.3 μ M, NaCl:0.1M, oligo-a:4.0 μ M, λ_{ex} :449nm, λ_{em} :617nm), slit width (EX: 5.0nm, EM: 10.0nm)

Ru(bipy)₂dppx²⁺ S-Figure-6 Melting curve of oligo-a in the presence of $(Ru(bipy)_2dppx^{2+}:3.3\mu M,$ NaCl:0.1M , oligo-a:4.0µM, λ_{ex} :460nm, λ_{em} :613nm), slit width(EX:5.0nm, EM:10.0nm)

1. $Ru(phen)_3^{2+}$:

S-Figure-7 Effect of $Ru(phen)_3^{2+}$ on the naked gold nanoparticles. A. 3.0nM gold nanoparticles B. A+0.05 μ M Ru(phen)₃²⁺

C. A+0.10 μ M Ru(phen)₃²⁺; E. A+0.21 μ M Ru(phen)₃²⁺

G. A+0.31 μ M Ru(phen)₃²⁺

B. A+0.05 μ M Ru(phen)₃²⁺ D. A+0.16 μ M Ru(phen)₃²⁺ F. A+ 0.26 μ M Ru(phen)₃²⁺

S-Figure-9 Effect of Ebon the naked gold nanoparticles

A.3.0 nM Au nanoparticles	B. A+0.10 μM EB
C. A+0.21 µM EB	D. A+0.42 µM EB
E. A+0.63 µM EB	F. A+0.84 µM EB

S-Figure-10 Effect of EB on the oligo-b adsorbed gold nanoparticles A. 3.0 nM Au nanoparticles+1.13 µM oligo-b B. A+1.04 µM EB

C. A+2.08 µM EB	D. A+4.00 µM EB
E. A+16.67 µM EB	F. A+33.33 μM

3. $Ru(bipy)_2dppz^{2+}$

S-Figurre-11 Effect of Ru(bipy)₂dppz²⁺on the naked gold nanoparticles

A. 3.0 nM Au nanoparticles C. A+0.06 µM Ru(bipy)₂dppz²⁺ E. A+0.13 μ M Ru(bipy)₂dppz²⁺ G. A+0.21 μ M Ru(bipy)₂dppz²⁺

S-Figure-12 Effect of Ru(bipy)₂dppz²⁺on the oligo-b adsorbed gold nanoparticles A. 3.0 nM Au nanoparticles+1.13 µM oligo-b B. A+4.0 μ M Ru(bipy)₂dppz²⁺ C. A+5.21 µM Ru(bipy)₂dppz²⁺ D. A+8.33 μ M Ru(bipy)₂dppz²⁺ E. A+16.67 µM Ru(bipy)₂dppz²⁺

4. $Ru(phen)_2 dppz^{2+}$:

S-Figure-13 Effect of Ru(phen)₂dppz²⁺on the naked gold nanoparticles

A. 3.0 nM Au nanoparticles

C. A+0.06 μM Ru(phen)₂dppz²⁺ E. A+0.13 μM Ru(phen)₂dppz²⁺ D. A+0.09 μM Ru(phen)₂dppz²⁺ F. A+0.21 μM Ru(phen)₂dppz²⁺

B. A+0.03 μ M Ru(phen)₂dppz²⁺

G. A+0.27 μ M Ru(phen)₂dppz²⁺

H. A+0.31 μ M Ru(phen)₂dppz²⁺

.S-Figure-14 Effect of Ru(phen)₂dppz²⁺on the oligo-b adsorbed gold nanoparticles

A. 3.0 nMAu nanoparticles+1.13 μ M oligo-b C. A+3.13 μ M Ru(phen)₂dppz²⁺ E. A+8.33 μ M Ru(phen)₂dppz²⁺ B. A+2.20 μ M Ru(phen)₂dppz²⁺ D. A+4.17 μ M Ru(phen)₂dppz²⁺

5. $Ru(bipy)_2dppx^{2+}$:

S-Figure -15 Effect of Ru(bipy)₂dppx²⁺on the naked gold nanoparticles

S-Figure-16 Effect of Ru(bipy)₂dppx²⁺on the oligo-b adsorbed gold nanoparticles

A. 3.0 nM Au nanoparticles+1.13 μ M oligo-b C. A+0.33 μ M Ru(bipy)₂dppx²⁺

D. A+2.08 µM Ru(bipy)₂dppx²⁺

B. A+0.17 μ M Ru(bipy)₂dppx²⁺

E. A+2.40 µM Ru(bipy)₂dppx²⁺

F. A+2.50 µM Ru(bipy)₂dppx²⁺

G. A+2.71 μ M Ru(bipy)₂dppx²⁺

400

500

700

800

H. A+3.13 μM Ru(bipy)₂dppx²⁺

S-Figure-17 Effect of incubation time on the absorption spectra of AuNPs-oligo a $1.3\mu M$ oligo a, 3.0nM AuNPs, 0.1 M NaCl

600 Wavelength/nm

Intercalators	Linear regression	Linear range	r(Correlation	Precision at
	equation(C,µmol/L)	(µmol/L)	coefficient)	0.5µmol/L
				(RSD, %)
EB	A=0.181+0.0477C	2.0-7.0	0.9969	2.86
$Ru(bipy)_2dppz^{2+}$	A=0.193+0.127C	0.5-3.5	0.9973	3.55
$Ru(phen)_2dppz^{2+}$	A=0.078+0.169C	1.0-4.0	0.9955	3.34
Ru(bipy) ₂ dppx ²⁺	A=0.126+0.177C	1.0-3.5	0.9958	2.84

S-Table 2 Analytical parameters for detection intercalators

S-Figure 19 Effect of EB concentration on the absorbance of AuNPs-oligo a.

oligo-a: 1.30 μ M; gold nanoparticles:3.0 nM

S-Figure 20 Effect of $Ru(bipy)_2ddpz^{2+}$ concentration on the absorbance of AuNPs-oligo a.

S-Figure 21 Effect of Ru(phen)₂ddpz²⁺ concentration on the absorbance of AuNPs-oligo a.

oligo-a: 1.30 µM; gold nanoparticles: 3.0 nM

S-Figure 22 Effect of Ru(bipy)₂ddpx²⁺ concentration on the absorbance of AuNPs-oligo a. oligo-a: 1.30 µM; gold nanoparticles:3.0 nM

S-Figure 23 Effect of $Ru(phen)_3^{2+}$ concentration on the absorbance of AuNPs-oligo a. oligo-a: 1.30 μ M; gold nanoparticles:3.0 nM