SUPPORTING INFORMATION FOR

The first enantioselective synthesis of Palinurin

Manuel Pérez,^a Daniel I. Pérez,^c Ana Martínez,^b Ana Castro,^c Generosa Gómez ^{a,*} and Yagamare Fall^{a,*}

^a Departamento de Química Orgánica, Facultad de Química, Universidade de Vigo, 36200 Vigo, Spain.
^b NOSCIRA, S.A., Avda, de la Industria 52, 28760 Madrid. Present address: Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.

°NOSCIRA, S.A. Avda, de la Industria 52, 28760 Madrid

ggomez@uvigo.es; yagamare@uvigo.es

Table of Contents

Index

Experimental details.....2-20

¹H and ¹³C NMR Spectra.....21-48

Experimental Procedures

General: Melting points were obtained in open capillary tubes and are not corrected. ¹H- and ¹³C-NMR spectra were recorded in CDCl₃ at 400 and 100 MHz, respectively. All reactions were monitored by thin layer chromatography that was performed on precoated sheets of silica gel 60, and flash column chromatography was done with silica gel 60 (230-400 mesh) of Merck. Eluting solvents are indicated in the text.

Compound 8

To a solution of aldehyde **2** (10.1 g, 104.7 mmol) in THF (280 mL) was added Ph_3PCHCO_2Et (40.2 g, 115.3 mmol) and the mixture refluxed for 2 h and allowed to reach room temperature. The solvent was removed and the residue was purified by column chromatography on silica gel using 30% EtOAc /Hexane as eluent, to afford ester **8** (17.3g, 99%) as a white solid; m.p. = 38-40 °C, Rf = 0.6 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, δ):** 7.58 (1H, s, CH); 7.50 (1H, d, *J*= 15,8 Hz, CH); 7.36 (1H, s, CH-2); 6.52 (1H, s, CH); 6.10 (1H, d, *J*= 15.8 Hz, CH); 4.18 (2H, q, *J*= 7.1 Hz, CH₂-OEt); 1.25 (3H, t, *J*= 7.1 Hz, CH₃-OEt).

¹³**C-NMR (CDCl₃, δ):** 166.8 (C=O); 144.3 (CH); 114.3 (CH); 134.4 (CH); 122.5 (C); 117.9 (CH); 107.3 (CH); 60.2 (CH₂-OEt); 14.2 (CH₃-OEt).

IR (film): v = 1710, 1610 cm⁻¹

MS (EI⁺) [m/z, (%)]: 166.06 ([M]⁺, 67); 121.03 ([M-OEt]⁺, 100); 93.03 (30); 64.99 (28).

HRMS (EI⁺): Calcd. For C₉H₁₀O₃ 166.0630, found 166.0632.

Compound 9

To a solution of ester **8** (17.3 g, 104 mmol) in Et₂O (61 mL) at 0°C was added portionwise LiAlH₄ (11.9 g, 313 mmol). At the end of the addition the cooling bath was removed and the mixture stirred at room temperature for 1 h. The reaction was quenched with drops of H₂O at 0°C and stirred for 30 mn. Na₂SO₄ was added and the solids removed by filtration. The filtrate was concentrated under reduced pressure affording virtually pure allylic alcohol **9** (12.3 g, 95%) as a yellowish liquid; Rf = 0,31 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, δ):** 7.40 (1H, s, CH); 7.35 (1H, s, CH); 6.51 (1H, s, CH); 6.46 (1H, d, *J*= 15.9 Hz, CH); 6.09 (1H, td, *J*= 13.8 Hz, *J*= 5.9 Hz, CH); 4.25 (2H, d, *J*= 5.9 Hz, CH₂).

¹³**C-NMR (CDCl₃, δ):** 143.6 (CH); 140.5 (CH); 128.1 (CH); 123.6 (C); 121.2 (CH); 107.5 (CH); 63.6 (CH₂).

IR (film): v = 3365 (br) cm⁻¹

MS (EI⁺) [m/z, (%)]: 124.13 ([M]⁺, 4); 123.12 ([M-1]⁺,9); 97.10 (22); 83.07 (26); 81.06 (36); 71.05 (32); 69.03 (68); 68.96 ([M-C₃H₃O]⁺, 100).

HRMS (EI⁺): Calcd. For C₇H₈O₂ 123.0810, found 123.0802.

Compound 10

A suspension of allylic alcohol **9** (4.1 g, 33 mmol) and Pd/C (10%) (0.32 g, 0.3 mmol) in MeOH (30 mL) was vigorously stirred under H₂ atmosphere for 7 h. At the end of the reaction (TLC), the mixture was filtered through celite and the filtrate was concentrated under reduced pressure affording virtually pure alcohol **10** (4.1 g, 98%) as a colorless oil, Rf = 0,31 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, δ):** 7.34 (1H, s, CH); 7.23 (1H, s, CH); 6.27 (1H, s, CH); 3.68 (2H, t, *J*= 6.3 Hz, CH₂); 2.51 (2H, t, *J*= 7.7 Hz, CH₂); 1.82 (2H, q, *J*= 7.1 Hz, CH₂); 1.57 (1H, br s, -OH).

¹³**C-NMR (CDCl₃, δ):** 142.8 (CH); 138.9 (CH); 124.4 (C); 110.9 (CH); 62.3 (CH₂); 32.8 (CH₂); 21.0 (CH₂).

IR (film): v = 3350 (br) cm⁻¹

MS (EI⁺) [m/z, (%)]:126.07 ([M]⁺, 20); 125.06 ([M-1]⁺,100); 113.06 (36); 112.05 (20); 111.05 (21); 109.7 ([M-OH]⁺, 15); 97.06 (20); 95.05 ([M-CH₃O]⁺, 20); 82.03 (28); 81.02 ([M-C₂H₅O]⁺, 39); 79.04 (25); 67.02 ([M-C₃H₇O]⁺, 31).

Compound 11

11 is a known compound (Mihelcic, J.; Moeller, K. D. *Journal of the American Chemical Society*, 2004, 126, 9106.)

To a solution of alcohol **10** (0.87 g, 6.9 mmol) in THF (50 mL) were added PPh₃ (2.16 g, 8.25 mmol) and imidazole (1.4 g, 20.6 mmol) and the mixture was stirred at room temperature till complete dissolution of the reagents. It was then cooled to -20°C and I₂ (2.26 g, 8.9 mmol) was added . After stirring at this temperature for 15 mn, the cooling bath was removed and the mixture stirred at room temperature for 30 mn. The reaction was quenched at 0°C with an aqueous saturated solution of NaHCO₃ (49 mL), and the resulting white precipitate was removed by filtration. The aqueous phase was extracted with *tert*-butylmethylether (TBME) (3 x 50 mL) and the combined organic phases were washed with 10% aqueous solution of Na₂SO₃ (150 mL) and H₂O (150 mL), dried over Na₂SO₃, filtered and the solvent evaporated to give a residue which was chromatographed on silica gel using dichloromethane as eluent, affording iodide **11** (1.3 g, 80%) as a yellow oil; Rf = 0,80 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, δ):** 7.35 (1H, t, J= 1.5 Hz, CH); 7.25 (1H, s, CH); 6.26 (1H, s, CH); 3.18 (2H, t, J= 6.7 Hz, CH₂); 2.54 (2H, t, J= 7.2 Hz, CH₂); 1.08 (2H, q, J= 6.9 Hz, CH₂) ¹³**C-NMR (CDCl₃, δ):** 143.0 (CH); 139.3 (CH); 123.0 (C); 110.8 (CH); 33.4 (CH₂); 25.3 (CH₂); 6.3 (CH₂).

MS(FAB⁺) [m/z, (%)]: 235.98 ([M]⁺, 36); 221.11 (37); 219.17 (26); 217.16 (21); 207.11 (34); 205.17 (28); 203.17 (27); 202.17 (20); 193.17 (29); 191.18 (40); 181.18 (28); 177.22 (36); 169.12 (35); 167.20 (40); 165.22 (65); 163.25 (54); 161.24 (47); 159.23 (52); 155.22(64); 154.20 (100); 151.33 (43); 151.17 (50); 151.07 (54). **HRMS (EI⁺):** Calcd. For C₇H₉OI 235.9698, found 235.9759.

Compound 12

To a solution of iodide **11** (1.1 g, 4.6 mmol) in DMSO (12 mL) was added NaCN (324 mg, 6.5 mmol) and the mixture was stirred at 90°C for 1 h and allowed to reach room temperature. H_2O (50 mL) was added and the product extracted with TBME (3 x 50 mL). The combined organic phases were dried, filtered and evaporated to afford

virtually pure nitrile **12** (625 mg, 99%) as a colorless liquid; Rf = 0,70 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, \delta):** 7.37 (1H, t, *J*= 1.7 Hz, CH); 7.26 (1H, dd, *J*= 1.6 Hz, *J*= 0.9 Hz, CH); 6.25 (1H, s, CH-2); 2.60 (2H, t, *J*= 7.3 Hz, CH₂); 2.33 (2H, t, *J*= 7.1 Hz, CH₂); 1.91 (2H, q, *J*= 7.3 Hz, CH₂) ¹³**C-NMR (CDCl₃, \delta):** 134.3 (CH); 139.4 (CH); 122.5 (C); 119.4 (C); 110.5 (CH); 25.7 (CH₂); 23.5 (CH₂); 16.4 (CH₂) **IR (film):** v= 2258 cm⁻¹ **MS (EI⁺) [m/z, (%)]:** 135.07 ([M]⁺, 29); 95.05 ([M-C₂H₂N]⁺, 5); 82.04 (30); 81.03 ([M-C₃H₄N]⁺, 100). **HRMS (EI⁺):** Calcd. For C₈H₉NO 135.0684, found 135.0685.

Compound 3

3 is a known compound (W. H. Miles, C. J. Berreth, P. M. Smiley, Tetrahedron Lett. 1993, 34, 5221)

To a solution of nitrile **12** (3.58 g, 25.8 mmol) in Et₂O (60 mL) at 0°C was added MeLi (51.6 mL of a 1.5M solution in Et₂O, 77.46 mmol) and the mixture was stirred for 30 mn. The reaction was quenched by adding an aqueous saturated solution of NH₄Cl and the product extracted with EtOAc (3 x 50 mL). The combined organic phases were washed with an aqueous saturated solution of NaHCO₃ (100 mL), dried, filtered and evaporated to give a residue which was chromatographed on silica gel using 5% EtOAc /Hexane as eluent, affording ketone **3** (3.92 g, 80%) as a colorless liquid; Rf = 0,65 (50% EtOAc/Hexane).

¹**H-NMR (CDCl₃, δ):** 7.32 (1H, s, CH); 7.18 (1H, s, CH); 6.23 (1H, s, CH); 2.40 (4H, c, *J*= 7.1 Hz, CH₂-3, CH₂); 2.09 (3H, s, CH₃); 1.80 (2H, q, *J*= 7.4 Hz, CH₂).

¹³C-NMR (CDCl₃, δ): 208.6 (C=O); 142.8 (CH); 138.9 (CH); 124.2 (C); 110.8 (CH); 42.8 (CH₂); 29.9 (CH₃); 23.9 (CH₂); 23.8 (CH₂).

IR (film): $v = 1720 \text{ cm}^{-1}$

MS (EI⁺) [m/z, (%)]: 152.08 ([M]⁺, 6); 134.07 ([M-H₂O]⁺,12); 94.04 ([M-C₃H₆O]⁺, 100).

HRMS (EI⁺): Calcd. For C₉H₁₂O₂ 152.0837, found 152.0832.

Compound 14

To a mixture of NaH (2.8 g, 70.8 mmol) in THF (70 mL) at 0°C was added $(EtO)_2P(O)CH_2CO_2Et$ (16.5 mL, 82.9 mmol). The cooling bath was then removed and the mixture stirred at room temperature for 18 h. A solution of ketone **3** (1.8 g, 11.8 mmol) in THF (10 mL) was added and stirring was continued at room temperature for 24 h. The reaction was quenched with an aqueous saturated solution of NH₄Cl and the product extracted with EtOAc (3 x 100 mL). The combined organic phases were dried, filtered and evaporated to give a residue which was chromatographed on silica gel using 10% EtOAc/Hexane as eluent, affording ester **14** (2.6 g, 99%) as a colorless liquid; Rf = 0,73 (100% AcOEt).

¹**H-NMR (CDCl₃, δ):** 7.34 (1H, s, CH); 7.20 (1H, s, CH); 6.24 (1H, s, CH); 5.65 (1H, s, CH); 4.13 (2H, q, J= 6.9 Hz, CH₂-OEt); 2.44 (2H, td, J= 20.0 Hz, J= 7.6 Hz, CH₂); 2.14 (5H, m, CH₃ and CH₂); 1,72 (2H, q, J= 7.5 Hz, CH₂); 1.26 (3H, t, J= 7.2 Hz, CH₃-OEt) ¹³**C-NMR (CDCl₃, δ):** 166.8 (C=O); 159.5 (C); 142.8 (CH); 138.9 (CH); 124.4 (C); 115.8 (CH); 110.8 (CH); 59.5 (CH₂-OEt); 40.3 (CH₂); 27.6 (CH₂); 24.2 (CH₂); 18.7 (CH₃); 14.3 (CH₃-OEt)

IR (film): $v = 1709 \text{ cm}^{-1}$

MS (FAB⁺) [m/z, (%)]: 223.16 ([M+1]⁺,44); 222.14 ([M]⁺,25); 221.15 (39); 219.18 (22); 217.16 (22); 215.13 (24); 209.14 (30); 207.15 (34); 203.17 (25); 202.16 (26); 193.16 (100); 192.15 (34); 191.17 (50); 177.21 (63); 163.24 (67); 155.23 (43); 154.21 (66); 151.36 (51); 151.16 (59).

HRMS (FAB⁺): Calcd. For C₁₃H₁₉O₃ 223.1334, found 223.1340.

Compound 15

To a solution of ester 14 (684 mg, 3.1 mmol) in dichloromethane (20 mL) at -78°C was added Dibal (7.7 mL of a 1.0 M solution in hexane, 7.7 mmol) and the mixture was stirred at this temperature for 30 mn. TBME (4 mL) and H₂O (0.5 mL) were added and the cooling bath was removed and stirring continued until formation of a white gel. H₂O (0.5 mL) and an aqueous 4.0 M solution of NaOH (0.5 mL) were added and the stirring continued until formation of a white precipitate. Na₂SO₄ was added and the salts were filtered under reduced pressure affording virtually pure allylic alcohol 15 (589 mg, 99%) as a colorless liquid; Rf = 0,65 (50% EtOAc/Hexane).

¹**H-NMR (CDCl₃, δ):** 7.33 (1H, s, CH); 7.20 (1H, s, CH); 6.25 (1H, s, CH); 5.41 (1H, qt, *J*= 1.2 Hz, *J*= 6.9 Hz, CH); 4.15 (2H, d, *J*= 6.9 Hz, CH₂); 2.39 (2H, t, *J*= 7.6 Hz, CH₂); 2.05 (2H, t, *J*= 7.7 Hz, CH₂); 1.69 (2H, t, *J*= 7.5 Hz, CH₂); 1.66 (3H, s, CH₃).

¹³C-NMR (CDCl₃, δ): 142.8 (CH); 139.5 (C); 138.8 (CH); 124.9 (C); 123.6 (CH); 110.9 (CH); 59.4 (CH₂); 39.0 (CH₂); 27.9 (CH₂); 24.3 (CH₂); 16.2 (CH₃).

IR (film): v = 3333 (br) cm⁻¹

MS (EI⁺) [m/z, (%)]: 180.11 ([M]⁺, 4); 95.03 (30); 94.02 ([M-C₅H₁₀O]⁺, 91); 82.00 ([M-C₆H₁₂O]⁺, 100); 71.00 (24).

HRMS (EI⁺): Calcd. For $C_{11}H_{16}O_2$ 180.1150, found 180.1145.

Compound 4

To a cooled (-20°C) solution of allylic alcohol **15** (390 mg, 1.75 mmol) in Et₂O (2.5 mL) was added dropwise PBr₃ (85 μ L, 0.87 mmol). The mixture was stirred for 2 h, quenched with H₂O (10 mL) and extracted with Et₂O (3 x 10 mL). The combined organic phases were washed with aqueous saturated solutions of NaHCO₃ (2 X10 mL) and NaCl (10 mL). Drying and solvent evaporation afforded the corresponding allylic bromide (429 mg, 89%) as an unstable colorless oil; Rf = 0,75 (50% EtOAc/Hexane). This allylic bromide will be used in the next step without further purification.

A solution of PPh₂H (250 μ L; 1,44 mmol) in THF (6 mL) was cooled to 0°C and *n*-BuLi (576 mL of a 2.5 M solution in hexane, 1.44 mmol) was added. The bright red solution was stirred for 30 mn and cooled to -78°C before adding a solution of the previously obtained allylic bromide (191 mg; 0,79 mmol) in THF (4 mL). The mixture was stirred at this temperature for 1 h, allowed to reach 0°C before adding a solution of 5% H₂O₂ (8 mL). Stirring was continued for 30 mn and the product extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried, filtered and evaporated to give a residue which was chromatographed on silica gel using 50% EtOAc/Hexane as eluent, affording phosphine oxide 4 (268 mg, 93%) as a white solid; m.p. = 67-69 °C, Rf = 0,12 (50% EtOAc/Hexane).

¹**H-NMR (CDCl₃, δ):** 7.69 (4H, m, CH₀-Ph); 7.48 (6H, m, CH_{p,m}-Ph); 7.31 (1H, s, CH-5 furyl); 7.15 (1H, s, CH-2 furyl); 7.10 (1H, s, CH-2 furyl); 6.21 (1H, s, CH-4 furyl); 6.18 (1H, s, CH-4 furyl); 5.25 (1H, c, J= 6.5 Hz, CH-2); 3.09 (2H, dd, J= 14.7 Hz, J= 7.6 Hz, CH₂-1); 3.02 (2H, dd, J= 14.69 Hz, J= 7.63 Hz, CH₂-1); 2.29 (2H, t, J= 7.63 Hz, CH₂-6); 2.22 (2H, t, J= 7.6 Hz, CH₂-6); 1.97 (2H, m, CH₂-4); 1.87 (2H, t, J= 7.9 Hz, CH₂-4); 1.65 (2H, d, J= 3.4 Hz, CH₂-5); 1.52 (2H, q, J= 7.6 Hz, CH₂-5); 1.44 (3H, s, CH₃-3) ¹³C-NMR (CDCl₃, δ): 142.6 (CH-5 furyl); 140.8 (C-3); 138.8 (CH-2 furyl); 134.0 (C-Ph); 122.4 (C-Ph); 131.7 (CH_p-Ph); 131.7 (CH_p-Ph); 131.1 (CH_o-Ph); 131.0 (CH_o-Ph); 128.5 (CH_m-Ph); 128.4 (CH_m-Ph); 124.8 (C-3 furyl); 112.7 (CH-2 furyl); 110.9 (CH-4 furyl); 39.1 (CH₂-4); 31.1 y 30.4 (CH₂-1); 27.8 (CH₂-5); 23.9 (CH₂-6); 16.2 (CH₃-3). **IR (film):** v= 1190 (br) cm⁻¹ **MS (FAB**⁺) [m/z, (%)]: 366.10 ([M+2]⁺, 26); 365.10 ([M+1]⁺, 100); 202.08 (34);

MS (FAB⁺) [m/z, (%)]: 366.10 ($[M+2]^+$, 26); 365.10 ($[M+1]^+$, 100); 202.08 (34); 201.08 (45).

HRMS (FAB⁺): Calcd. For C₂₃H₂₆O₂P 365.1670, found 365.1672.

Compound 16

16 is a known compound (J.M. Clough; H. Dube; B. J. Martin; G. Pattenden; K. S. Reddy; I. R. Waldron, *Organic & Biomolecular Chemistry* 2006, 4, 2906)

To a solution of alcohol **5** (0,96 g; 8,12 mmol) in DMF (30 mL), were added imidazole (1,1 g; 16,24 mmol), DMAP (catalytic) and TBDPSCl (2,3 mL; 8,94 mmol). The mixture was srirred at room temperature for 12 h, quenched with water and the product extracted with TBME (3 x 50 mL). The combined organic phases were washed with brine (2 x 75 mL), dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 3% EtOAc/Hexane as eluent, affording **16** (3.2 g, 99%) as a colorless liquid, Rf: 0,30 (10% EtOAc/Hexane); $[\alpha]_D^{20} = -18.3$ (C=1.6 , CHCl₃)

¹**H-NMR (CDCl₃, \delta):** 7.65 (4H, dd, *J*= 7.7 Hz, *J*= 1.7 Hz, CH₀-Ph); 7.38 (6H, m, CH_{p,m}-Ph); 3.82 (1H, dd, *J*= 9.7 Hz, *J*= 6.9 Hz, CH-3); 3.72 (1H, dd, *J*= 9.8 Hz, *J*= 5.9 Hz, CH-3); 3.68 (3H, s, -OCH₃); 2.71 (1H, sex., *J*= 6.8 Hz, CH-2); 1,15 (3H, d, *J*= 7.1 Hz, CH₃-2); 1.02 (9H, s, CH₃-tert-BuSi).

¹³C-NMR (CDCl₃, δ): 175.4 (C=O); 135.6 (CH_o-Ph); 133.5 (C-Ph); 129.6 (CH_p-Ph); 127.6 (CH_m-Ph); 65.9 (CH₂-3); 51.5 (CH₃O); 42.4 (CH-2); 26.7 (CH₃-*tert*-BuSi); 19.2 (C-Si); 13.5 (CH₃-2).

IR (film): $v = 1741 \text{ cm}^{-1}$

MS (FAB⁺) [m/z, (%)]: 357.16 ([M+1]⁺, 5); 300.08 (25); 299.31 ([M-*tert*-Bu]⁺, 100); 279.11 (48); 213.10 (26).

HRMS (FAB⁺): Calcd. For C₂₁H₂₉O₃Si 357.1886, found 357.1897.

Compound 17

17 is a known compound (J.M. Clough; H. Dube; B. J. Martin; G. Pattenden; K. S. Reddy; I. R. Waldron, *Organic & Biomolecular Chemistry* 2006, **4**, 2906)

To a solution of ester **16** (1,6 g; 4,55 mmol) in CH₂Cl₂ (30 mL) at -78°C, was added Dibal (9.1 mL of a 1.0 M solution in hexane, 9.1 mmol) and the mixture stirred for 2 h. TBME (8,5 mL) and H₂O (1,3 mL) were added and the mixture allowed to reach room temperature, stirring vigorously until formation of a white gel. H₂O (1,3 mL) and a 4,0 M solution of NaOH (1,3 mL) were added and stirring continued until formation of a white precipitate. Na₂SO₄ was added and the solids removed by filtration. After solvent evaporation the residue was chromatographed on silica gel using 10% EtOAc/Hexane as eluent, affording alcohol **17** (1.6 g, 99%) as a colorless liquid, Rf = 0,15 (10% EtOAc/Hexane); [α] $_{D}^{20}$ = -8.0 (C=0.6, CHCl₃)

¹**H-NMR (CDCl₃, \delta):** 7.67 (4H, dd, *J*= 7.8 Hz, *J*= 1.6 Hz, CH₀-Ph); 7.41 (6H, m, CH_{p,m}-Ph); 3.72 (1H, dd, *J*= 10.0 Hz, *J*= 4.4 Hz, CH-3); 3.67 (2H, s.a., CH₂-1); 3.59 (1H, dd, *J*= 10.0 Hz, *J*= 7.6 Hz, CH-3); 2.49 (1H, s.a., -OH); 1.99 (1H, sex., *J*= 6.4 Hz, CH-2); 1.05 (9H, s, CH₃-tert-Bu); 0.82 (3H, d, *J*= 6.9 Hz, CH₃-2).

¹³C-NMR (CDCl₃, δ): 135.6 (CH_o-Ph); 133.2 (C-Ph); 129.8 (CH_m-Ph); 127.8 (CH_p-Ph); 68.7 (CH₂-3); 67.7 (CH₂-1); 37.3 (CH-2); 26.8 (CH₃-*tert*-Bu); 19.1 (C-Si); 13.1 (CH₃-2).

IR (film): v = 3364 (br) cm⁻¹

MS (FAB⁺) [m/z, (%)]:329.11 ([M+1]⁺, 43); 311.11 ([M-OH]⁺, 21); 271.05 ([M-*terc*-Bu]⁺, 38); 199.10 (100); 197.12 (30); 193.12 (26).

HRMS (FAB⁺): Calcd. For C₂₀H₂₉O₂Si 329.1937, found 329.1935.

Compound 18

To a solution of alcohol 17 (2,5 g; 7,69 mmol) in THF (33 mL) were added PPh₃ (2,4 g; 9,28 mmol) and imidazole (1,6 g; 23,07 mmol) and the mixture was stirred at room temperature till complete disolution of the reagents. It was then cooled to -20° C and I₂ (2,2 g; 8,46 mmol) was added. After stirring at this temperature for 15 mn, the cooling bath was removed and the mixture stirred at room temperature for 30 mn. The reaction was quenched at 0°C with an aqueous saturated solution of NaHCO₃ (50 mL), and the resulting white precipitate was removed by filtration. The aqueous phase was extracted

with *tert*-butylmethylether (TBME) (3 x 50 mL) and the combined organic phases were washed with 10% aqueous solution of Na₂SO₃ (100 mL) and H₂O (100 mL), dried over Na₂SO₃, filtered and the solvent evaporated to give a residue which was chromatographed on silica gel using 10% EtOAc/Hexane as eluent, affording iodide **18** (3 g, 90%) as a yellow liquid; Rf = 0.85 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, δ):** 7.68 (4H, m, CH_o-Ph); 7.43 (6H, m, CH_{p,m}-Ph); 3.60 (1H, dd, J= 10.1 Hz, J= 4.9 Hz, CH-1); 3.48 (1H, dd, J= 10.0 Hz, J= 6.9 Hz, CH-1); 3.41 (1H, dd, J= 9.5 Hz, J= 5.1 Hz, CH-3); 3.34 (1H, dd, J= 9.5 Hz, J= 5.8 Hz, CH-3); 1.74 (1H, sex., J= 5.9 Hz, CH-2); 1.08 (9H, s, CH₃-tert-BuSi); 0.98 (3H, d, J= 6.7 Hz, CH₃-2).

¹³C-NMR (CDCl₃, δ): 135.6 (CH_o-Ph); 133.6 (C-Ph); 129.7 (CH_m-Ph); 127.7 (CH_p-Ph); 67.3 (CH₂-1); 37.5 (CH-2); 26.8 (CH₃-*tert*-BuSi); 19.3 (C-Si); 17,31 (CH₂-3); 13.5 (CH₃-2).

MS (FAB⁺) [m/z, (%)]: 439.05 ([M+1]⁺, 3); 380.97 ([M-*tert*-Bu]⁺, 41); 308.91 (100); 246.92 (34); 199.09 (26); 197.11 (38).

HRMS (FAB⁺): Calcd. For C₂₀H₂₈OSiI 439.0954, found 439.0967.

Compound 19

To a solution of NaH (0,55 g; 13,6 mmol) in DMF (1,5 mL) and THF (10 mL) was added dimethyl malonate (1,6 mL; 13,6 mmol) and the resulting white foam was stirred for 15 mn. Iodide **18** (3 g; 6,9 mmol) in THF (20 mL) was added and the mixture stirred for 18 h and allowed to reach room temperature. EtOAc (100 mL) was added and the mixture washed with brine (2 x 100 mL) and H₂O (2 x 100 mL), dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 6% EtOAc/Hexane as eluent, affording diester **19** (2.8 g, 91%) as a colorless oil, Rf = 0,50 (30% EtOAc/Hexane).

¹**H-NMR (CDCl₃, \delta):** 7.64 (4H, dd, *J*= 7.8 Hz, *J*= 1.5 Hz, CH₀-Ph); 7.39 (6H, m, CH_{p,m}-Ph); 3.71 (6H, s,-OCH₃); 3.52 (1H, t, *J*= 7.7 Hz, CH-2); 3.49 (2H, d, *J*= 5.7 Hz, CH₂-5); 2.11 (1H, m, CH-3); 1.76 (1H, m, CH-3); 1.67 (1H, m, CH-4); 1.05 (9H, s, CH₃-tert-BuSi); 0.92 (3H, d, *J*= 6.5 Hz, CH₃-4).

¹³C-NMR (CDCl₃, δ): 170.1 (C=O); 170.0 (C=O); 135.6 (CH₀-Ph); 133.7 (C-Ph); 129.6 (CH_m-Ph); 127.6 (CH_p-Ph); 68.4 (CH₂-5); 52.4 (CH₃O); 49.7 (CH-2); 33.7 (CH-4); 32.6 (CH₂-3); 26.8 (CH₃-tert-BuSi); 19.3 (C-Si); 16.6 (CH₃-4).

IR (film): $v = 1737 \text{ cm}^{-1}$

MS (FAB⁺) [m/z, (%)]: 443.33 ([M+1]⁺, 8); 386.23 (29); 385.22 ([M-*tert*-Bu]⁺, 100); 365.24 (36); 213.17 (40).

HRMS (FAB⁺): Calcd. For C₂₅H₃₅O₅Si 443.2254, found 443.2254.

Compounds 20 and 21

To a solution of diester **19** (2,6 g; 5,77 mmol) in DMSO (120 mL), was added NaCl (1,2 g; 20,2 mmol) and H₂O (415,5 mL) and the mixture heated at 160°C while stirring, for 4 h. It was then allowed to reach room temperature. EtOAc (100 mL) was added and the mixture washed with brine (2 x 100 mL) and H₂O (2 x 100 mL). The organic phase was dried, filtered and rotatory evaporated. The residue was dissolved in Et₂O (44 mL) in a round bottom flask fitted with a reflux condenser and ice-cooled. LiAlH₄ (0,64 g; 16,95 mmol) was added portionwise. At the end of the addition, the cooling bath was removed and the mixture stirred at room temperature for 30 mn then recooled. H₂O was added dropwise until complete destruction of excess LiAlH₄ and the mixture stirred for 30 mn before adding Na₂SO₄. The solids were removed by filtration and the filtrate concentrated to afford a residue which was chromatographed on silica gel using 10% EtOAc/Hexane as eluent, affording diol **20** (300 mg, 16%) as a colorless liquid, Rf = 0,15 (50% EtOAc/Hexane) and alcohol **21** (1,47 g, 73%) as colorless liquid, Rf = 0,60 (50% EtOAc/Hexane)

Diol 20.

¹**H-NMR (CDCl₃, \delta):**): 7.64 (4H, d, *J*= 6.8 Hz, CH₀-Ph); 7.39 (6H, m, CH_{p,m}-Ph); 3.75 (2H, dt, *J*= 10.8 Hz, *J*= 3.5 Hz, CH₂-1); 3.59 (2H, m, CH₂-1); 3.47 (2H, d, *J*= 5.7 Hz, CH₂-5); 1.92 (1H, s, -OH); 1.81 (1H, s, -OH); 1.69 (1H, sex., *J*= 6.6 Hz, CH-4); 1.35 (1H, q, *J*= 6.8 Hz, CH-2); 1.05 (9H, s, CH₃-*tert*-BuSi); 0.98 (2H, dd, *J*= 13.9 Hz, *J*= 6.8 Hz, CH₂-3); 0.92 (3H, d, *J*= 6.8 Hz, CH₃-4).

¹³C-NMR (CDCl₃, δ): 135.6 (CH₀-Ph); 133.9 (C-Ph); 129.6 (CH_m-Ph); 127.6 (CH_p-Ph); 68.9 (CH₂-5); 67.3 (CH₂-1); 66.5 (CH₂-1); 39.4 (CH-2); 33.3 (CH-4); 31.2 (CH₂-3); 26.7 (CH₃-*tert*-BuSi); 19.3 (C-Si); 17.2 (CH₃-4).

IR (film): v = 3353 (br) cm⁻¹

MS (FAB⁺) [m/z, (%)]: 387.23 ([M+1]⁺, 14); 199.11 (100); 197.13 (52). **HRMS (FAB⁺):** Calcd. For $C_{23}H_{35}O_3Si$ 387.2355, found 387.2351.

Alcohol 21.

¹**H-NMR (CDCl₃, \delta):** 7.66 (4H, dd, *J*= 7.9 Hz, *J*= 1.6 Hz, CH₀-Ph); 7.39 (6H, m, CH_{p,m}-Ph); 3.59 (2H, t, *J*= 6.7 Hz, CH₂-1); 3.51 (1H, dd, *J*= 9.9 Hz, *J*= 5.9 Hz, CH-5); 3.46 (1H, dd, *J*= 9.86 Hz, *J*= 6.20 Hz, CH-5); 1.66 (1H, sex., *J*= 6.4 Hz, CH-4); 1.61-

1.39 (4H, m, -OH, CH₂-2, CH-3); 1.16 (1H, m, CH-3); 1.05 (9H, s, CH₃-*tert*-BuSi); 0.92 (3H, d, *J*= 6.7 Hz, CH₃-4).

¹³C-NMR (CDCl₃, δ): 135.6 (CH_o-Ph); 134.0 (C-Ph); 129.5 (CH_m-Ph); 127.6 (CH_p-Ph); 68.8 (CH₂-5); 63.3 (CH₂-1); 35.5 (CH-4); 30.2 (CH₂-2); 29.2 (CH₂-3); 26.9 (CH₃-*tert*-BuSi); 19.3 (C-Si); 16.8 (CH₃-4).

IR (film): v=3363 (br) cm⁻¹

MS (FAB⁺) [m/z, (%)]: 357.15 ([M+1]⁺, 14); 299.07 ([M-*tert*-Bu]⁺, 14); 199.09 (100); 197.11 (42).

HRMS (FAB⁺): Calcd. For C₂₂H₃₃O₂Si 357.2250, found 357.2264.

Compound 22

To a solution of alcohol **21** (566 mg; 1,6 mmol) in CH₂Cl₂ (12 mL) were added 4Å molecular sieves (362 mg), 4-methylmorpholine N-oxide (NMO, 373 mg, 3,2 mmol) and a catalytic amount of TPAP. The mixture was stirred at room temperature for 3 h, filtered through celite and the solvent rotatory evaporated to give a residue which was dissolved in THF (100 mL). Ph₃PCCH₃CO₂Et (575 mg; 1,6 mmol) was added and the mixture refluxed for 18 h, allowed to reach room temperature and the solvent removed. The residue which was chromatographed on silica gel using 5% EtOAc/Hexane as eluent, affording diol **22** (696 mg, 60%) as a colorless oil, Rf = 0,45 (10% EtOAc/Hexane).

¹**H-NMR (CDCl₃, δ):** 7.65 (4H, d, J= 7.6 Hz, CH₀-Ph); 7.39 (6H, m, CH_{p,m}-Ph); 6.73 (1H, t, J= 7.2 Hz, CH-3); 4.18 (2H, c, J= 7.0 Hz, CH₂-OEt); 3.48 (2H, dd, J= 5.4 Hz, J= 3.9 Hz, CH₂-7); 2.14 (1H, q, J= 7.4 Hz, CH-6); 1.64 (3H, s, CH₃-2); 1.27 (5H, m, CH₃-OEt, CH₂-5); 1.04 (9H, s, CH₃-tert-BuSi); 0.93 (3H, d, J= 6.5 Hz, CH₃-6).

¹³C-NMR (CDCl₃, δ): 168.3 (C=O); 142.4 (CH-3); 135.6 (CH₀-Ph); 134.0 (C-Ph); 129.6 (CH_p-Ph); 127.7 (C-2); 127.6 (CH_m-Ph); 68.5 (CH₂-7); 60.3 (CH₂-OEt); 35.4 (CH-6); 32.0 (CH₂-5); 26.9 (CH₃-tert-BuSi); 26.2 (CH₂-4), 19.3 (C-Si); 16.7 (CH₃-6); 14.3 (CH₃-OEt); 12.3 (CH₃-2).

IR (film): $v = 1709 \text{ cm}^{-1}$

MS (FAB⁺) [m/z, (%)]: 381.16 ([M-*tert*-Bu]⁺, 94); 199.08 ([M-C₁₅H₂₇O₂]⁺, 100). **HRMS (FAB⁺):** Calcd. For $C_{23}H_{29}O_3Si$ 381.1886, found 381.1894.

Compound 23

To a solution of ester **22** (0,83 g; 1,89 mmol) in CH₂Cl₂ (12 mL) at -78°C was added Dibal (5.7 mL of a 1.0 M solution in hexane, 5.7 mmol) and the mixture was stirred at this temperature for 30 mn. TBME (2.6 mL) and H₂O (0.4 mL) were added and the cooling bath was removed and stirring continued until formation of a white gel. H₂O (0.4 mL) and an aqueous 4.0 M solution of NaOH (0.4 mL) were added and the stirring continued until formation of a white precipitate. Na₂SO₄ was added and the salts were filtered under reduced pressure to give a residue which was chromatographed on silica gel using 8% EtOAc/Hexane as eluent, affording allylic alcohol **23** (0,72 g, 96%) as a colorless liquid, Rf = 0,60 (30% EtOAc/Hexane); [α] $_D^{20}$ =-1.0 (C=3.4, CHCl₃).

¹**H-NMR (CDCl₃, δ):** 7.66 (4H, dd, J= 7.8 Hz, J= 1.5 Hz, CH₀-Ph); 7.39 (6H, m, CH_{p,m}-Ph); 5.37 (1H, t, J= 7.0 Hz, CH-3); 3.98 (2H, s, CH₂-1); 3.52 (1H, dd, J= 9.8 Hz, J= 5.6 Hz, CH-7); 3.46 (1H, dd, J= 9.9 Hz, J= 6.1 Hz, CH-7); 2.02 (2H, sept., J= 7.9 Hz, CH₂-4); 1.67 (1H, m, CH-5); 1.64 (3H, s, CH₃-2); 1.51 (1H, m, CH-5); 1.37(1H, s.a., -OH); 1,18 (1H, m, CH-5); 1.05 (9H, s, CH₃-*tert*-BuSi); 0.94 (3H, d, J= 6.7 Hz, CH₃-6).

¹³C-NMR (CDCl₃, δ): 135.6 (CH_o-Ph); 134.6 (C-2); 134.1 (C-Ph); 129.5 (CH_p-Ph); 127.6 (CH_m-Ph); 126.6 (CH-3); 69.5 (CH₂-7); 68.7 (CH₂-1); 35.4 (CH-6); 32.9 (CH₂-5); 26.9 (CH₃-*tert*-BuSi); 25.3 (CH₂-4), 19.3 (C-Si); 16.8 (CH₃-6); 13.3 (CH₃-2). **IR (film):** v= 3333 (br) cm⁻¹

MS (FAB⁺) [m/z, (%)]: 321.12 ([M-*tert*-Bu-OH]⁺, 4); 199.08 ([M-C₁₃H₂₆O]⁺, 100). **HRMS (FAB⁺):** Calcd. For C₂₁H₂₅OSi 321.1675, found 321.1664.

Compound 6

To a solution of allylic alcohol **23** (0,52 g; 1,31 mmol) in CH₂Cl₂ (12,5 mL) at 0°C, were added CBr₄ (0,52 g; 1,57 mmol) and PPh₃ (450 mg; 2,09 mmol) and the mixture stirred for 1 h. Hexane (40 mL) was added and the resulting white precipitate was removed by filtration through celite. The filtrate was concentrated till formation of the same white precipitate which was again removed by filtration through celite. The solvent was removed affording virtually pure allylic bromide **6** (0,6 g, 99%) as a colorless liquid, Rf = 0,70 (30% EtOAc/Hexane).

¹**H-NMR** (CDCl₃, δ): 7.66 (4H, dd, J= 7.8 Hz, J= 1.6 Hz, CH₀-Ph); 7.40 (6H, m, CH_{p,m}-Ph); 5.57 (1H, t, J= 7.1 Hz, CH-3); 3.96 (2H, s, CH₂-1); 3.51 (1H, dd, J= 9.8 Hz, J= 5.8 Hz , CH-7); 3.46 (1H, dd, J= 9.8 Hz, J= 5.9 Hz, CH-7); 2.01 (2H, sex., J= 6.3 Hz, CH₂-4); 1.73 (3H, s, CH₃-2); 1.65 (1H, sex., J= 6.4 Hz, CH-5); 1.53 (1H, m, CH-5); 1.19 (1H, m, CH-6); 1.06 (9H, s, CH₃-tert-BuSi); 0.93 (3H, d, J= 6.7 Hz, CH₃-6). ¹³C-NMR (CDCl₃, δ): 135.6 (CH₀-Ph); 134.0 (C-Ph); 131.8 (CH-3); 129.5 (CH_p-Ph); 127.6 (CH_m-Ph); 68.6 (CH₂-7); 41.9 (CH₂-1); 35.3 (CH-6); 32.5 (CH₂-4); 26.9 (CH₃-tert-BuSi); 25.8 (CH₂-5), 19.3 (C-Si); 16.8 (CH₃-6); 14.6 (CH₃-2). **MS (FAB⁺) [m/z, (%)]:** 459.06 ([M+1]⁺, 8); 401.23 ([M-tert-BuSi]⁺, 50). **HRMS (FAB⁺):** Calcd. For C₂₅H₃₆BrOSi 459.1719, found 459.1523.

Compound 25

25 is a known compound (S. Hanessian, A. Tehim, P. Chen, J. Org. Chem. 1993, 58, 7768)

To a solution of acid **24** (15,4 g; 202,3 mmol) in Et₂O (500 mL) at 0°C was added BF₃·OEt₂ (38,5 mL; 303,5 mmol) and freshly distilled cyclohexanone (21 mL; 202,3 mmol). The mixture was stirred at this temperature for 1 h, the cooling bath was removed and stirring was continued at room temperature for 2 days. An aqueous solution of 10% AcNa (1000 mL) was added and the mixture stirred for 20 mn and extracted with TBME (3 x 750 mL). The combined organic phases were dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 1% EtOAc/Hexane as eluent, affording **25** (23.1 g, 73%) as a white solid ; m.p. = 38-40 °C, Rf = 0.6 (50% EtOAc /Hexane).

¹H-RMN (CDCl₃, δ): 4,32 (2H, s, CH₂-2); 1,82 (2H, m, CH_{ec}.-2', CH_{ec}.-6'); 1,78-1,61 (6H, m, CH_{ax}.-2', CH_{ax}.-6', CH₂-3', CH₂-5'); 1,45 (2H, m, CH₂-4'). ¹³C-RMN (CDCl₃, δ): 171.5 (C=O); 113.5 (C-1'); 63.3 (CH₂-2); 35.3 (CH₂-6', CH₂-2'); 24.4 (CH₂-4'); 23.0 ((CH₂-5', CH₂-3'). IR (film): v= 1710 cm⁻¹ MS (EI⁺) [m/z, (%)]: 156.08 ([M]⁺, 23); 113.02 ([M-C₂H₃O]⁺, 56); 98.07 ([M-C₂H₂O₂]⁺, 100); 70.04 (23). HRMS (EI⁺): Calcd. For C₈H₁₂O₃ 156.0786, found 156.0789.

Compound 26

26 is a known compound (R. Ramage, G. J. Griffiths, F. E. Shut, J. N. Sweeney, J. Chem. Soc. Perkin Trans 1. 1984, 7, 1539)

To a solution of diisopropylamine (9,2 mL; 65,6 mmol) in THF (66 mL) at -78°C was added dropwise *n*-BuLi (25 mL of a 2.5 M solution in hexane, 62.5 mmol) and the mixture was stirred at this temperature for 25 mn. Methyl propionate (6 mL; 62,5 mmol) in THF (62,5 mL) was then added and stirring was continued for 25 mn. Compound **25** (3,9 mg; 25 mmol) in THF (62,5 mL) was added to the mixture at -78°C. The cooling bath was removed and the mixture stirred at room temperature overnight. The organic solvent was removed under vacuum, Et₂O (10 mL) and H₂O (10 mL) were added and the mixture acidified to pH=1 with HCl. The aqueous phase was saturated with NaCl and extracted with 10% MeOH/CH₂Cl₂ (15 x 100 mL). The combined organic phases were dried and rotatory evaporated to give a solid residue which was washed several times with Et₂O affording **26** (1,46 g, 51%).as a white solid ; m.p. = 180-182 °C, Rf = 0.05 (50% EtOAc /Hexane).

¹**H-NMR (DMSO, δ):** 4.55 (2H, t, J= 1.2 Hz, CH₂-5); 1.57 (3H, q, J= 1.2 Hz, CH₃-3) ¹³**C-NMR (DMSO, δ):** 175.2 (C-4); 172.9 (C-2); 94.4 (C-3); 66.5 (CH₂-5); 5.9 (CH₃-3). **IR (film):** v= 3345 (br), 1762, 1678 cm⁻¹ **MS (EI⁺) [m/z, (%)]:** 114.03 ([M]⁺, 100). **HRMS (EI⁺):** Calcd. For C₅H₆O₃ 114.0317, found 114.0305.

Compound 28

To a solution of **26** (332 mg; 2,9 mmol) in C_6H_6 (8 mL) was added (*R*)-2methoxymethylpyrrolidine (0,36 mL; 2,9 mmol) and a catalytic amount of p-TsOH. The reaction flask was fitted with a Dean-Stark and the mixture heated at 130°C for 24 h. The solvent was then removed under vacuum and the residue was chromatographed on silica gel using 20% EtOAc/Hexane as eluent, affording **28** (493 mg, 80%) as a yellow oil, Rf: 0,25 (100% EtOAc). ¹**H-NMR (CDCl₃, δ):** 4.68 (1H, d, *J*=14.6 Hz, CH-5); 4.53 (1H, d, *J*= 14.5 Hz, CH-5); 3.98 (1H, m, CH-2'); 3.57 (1H, q, *J*= 5.3 Hz, CH₂-5'); 3.43 (1H, q, *J*= 8.5 Hz, CH-5'); 3.33 (1H, m, CH-1''); 3.30 (3H, s, -OCH₃); 3.25 (1H, dd, *J*= 6.7 Hz, *J*= 9.4 Hz ,CH-1''); 1.95 (4H, m, CH₂-3',CH₂-4'); 1.92 (3H, s, CH₃-3).

¹³C-NMR (CDCl₃, δ): 177.2 (C=O); 160.3 (C-4); 88.9 (C-3); 77.5 (CH₂-1''); 66.7 (CH₂-5); 59.3 (CH-2'); 58.8 (-OCH₃); 48.7 (CH₂-5'); 28.1 (CH₂-3'); 23.0 (CH₂-4'); 9.0 (CH₃-3).

IR (film): v = 1731, 1621 cm⁻¹

MS (**FAB**⁺) [**m**/**z**, (%)]: 213.22 ($[M+1]^+$,100); 212.22 ($[M]^+$,18); 166.27 (23). **HRMS** (**FAB**⁺): Calcd. For C₁₁H₁₈NO₃ 212.1287, found 212.1287

Compound 29

To a solution of diisopropylamine (110 µL; 0,78 mmol) in THF (2 mL) and HMPA (272 µL) at -78°C was added dropwise *n*-BuLi (314 µL of a 2.5 M solution in hexane, 0.78 mmol) and the mixture was stirred at this temperature for 25 mn. Compound **28** (61 mg; 0,32 mmol) in THF (2 mL) was added and the mixture stirred for 1 h, before adding bromide **6** (96 mg; 0,21 mmol) in THF (2 mL). Stirring was continued overnight at -78°C. The reaction was quenched with aqueous saturated solution of NH₄Cl (10 mL) and the product extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phases were dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 15% EtOAc/Hexane as eluent, affording **29** (90 mg, 75%) as a yellowish oil, Rf = 0.40 (50% EtOAc /Hexane); $[\alpha]_D^{20} = -13.1$ (C=1.0, CHCl₃)

¹**H-NMR (CDCl₃, δ):** 7.65 (4H, m, CH_o-Ph); 7.37 (6H, m, CH_{p,m}-Ph); 5.20 (1H, s, CH-3'''); 4.79 (1H, d, J= 4.7 Hz, CH-5); 4.73 (1H, d, J= 4.7 Hz, CH-5); 4.16 (1H, m, CH-2'); 3.62-3.14 (6H, m, CH₂-7'', CH₂-1'', CH₂-5'); 3.32 (3H, s, -OCH₃); 3.31 (3H, s, -OCH₃); 2.65 (1H, d, J= 13.9 Hz, CH-1'''); 2.51 (1H, d, J= 13.9 Hz, CH-1'''); 2.17-1.82 (6H, m, CH₂-4''', CH₂-3', CH₂-4'); 1.90 (3H, s, CH₃-3); 1.88 (3H, s, CH₃-3); 1.66 (3H, s, CH₃-2'''); 1.65 (3H, s, CH₃-2'''); 1.67-1.58 (1H, m, CH-6'''); 1.54-1.40 (1H, m, CH-5'''); 1.22- 1.08 (1H, m, CH-5'''); 1.04 (9H, s, CH₃-*tert*-BuSi); 0.91 (3H, d, J= 6,8 Hz, CH₃-6''').

¹³C-NMR (CDCl₃, δ): 175.8 (C=O); 163.0 and 162.2 (C-4); 135.3 (CH₀-Ph); 134.0 (C-Ph); 129.6 and 129.6 (C-2^{'''}); 129.3 (CH_p-Ph); 128.9 and 128.5 (CH-3^{'''}); 127.3 (CH_m-Ph); 90.5 and 89.1 (C-3); 76.8 and 77.8 (CH-5); 74.3 and 72.8 (CH₂-1^{''}); 68.5 (CH₂-

7^{'''}); 59.2 and 59.1 (-OCH₃); 58.4 (CH-2'); 48.9 (CH₂-5'); 44.0 and 42.2 (CH₂-1^{'''}); 35.2 (CH-6^{'''}); 32.7 (CH₂-5^{'''}); 28.1 and 27.6 (CH₂-3'); 26.6 (CH₃-*tert*-BuSi); 25.3 and 25.2 (CH₂-4^{'''}); 23.3 (CH₂-4'); 19.0 (C-Si); 16.5 and 16.4 (CH₃-6^{'''}); 9.2 and 9.1 (CH₃-3). **IR (film):** v= 1736, 1619 cm⁻¹ **MS (FAB⁺) [m/z, (%)]:** 590.28 ([M+1]⁺, 16); 533.21 (32); 532.21 (79); 513.25 (38); 512.24 (100).

HRMS (FAB⁺): Calcd. For C₃₆H₅₂NO₄Si 590.3666, found 590.3676.

Compound 30

To a solution of **29** (85 mg; 0.15 mmol) in THF (2 mL) was added TBAF (150 μ L of 1.0 M in THF, 0.15 mmol) and the mixture stirred for 3 h. H₂O (5 mL) was added and the product extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phases were dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 30% EtOAc/Hexane as eluent, affording alcohol **30** (51 mg, 89%) as a yellowish oil, Rf = 0.12 (50% EtOAc /Hexane).

¹**H-NMR (CDCl₃, δ):** 5.20 (1H, s, CH-3^{'''}); 4.83 (1H, d, *J*= 4,8 Hz, CH-5); 4.76 (1H, d, *J*= 4.8 Hz, CH-5); 4.25-4.05 (1H, m, CH-2'); 3.69-3.11 (6H, m, CH₂-7^{''}, CH₂-1^{''}, CH₂-5'); 3.31 (3H, s, -OCH₃); 2.65 (1H, d, *J*= 14.9 Hz, CH-1^{'''}); 2.55 (1H, d, *J*= 14.9 Hz, CH-1^{'''}); 2.22-1.77 (6H, m, CH₂-4^{''}); CH₂-3', CH₂-4'); 1.88 (3H, s, CH₃-3); 1.85 (3H, s, CH₃-3); 1.65 (3H, s, CH₃-2^{'''}); 1.63 (3H, s, CH₃-2^{'''}); 1.60-1.38 (1H, m, CH-6^{'''}, CH-5^{'''}); 1.12 (1H, m, CH-5^{'''}); 0.88 (3H, dd, *J*= 6.5 Hz, *J*= 1,7 Hz, CH₃-6^{'''}). ¹³C-NMR (CDCl₃, δ): 176.3 and 176.2 (C=O); 163.2 and 162.5 (C-4); 129.7 and 129.3 (C-2^{'''}); 129.5 and 129.1 (CH-3^{'''}); 89.4 and 89.1 (C-3); 76.5 (CH-5); 74.5 and 72.5 (CH₂-1^{'''}); 68.1 (CH₂-7^{'''}); 59.4 and 59.3 (-OCH₃); 58.6 and 58.3 (CH-2'); 49.3 and 49.2 (CH₂-5'); 43.6 and 42.7 (CH₂-1^{'''}); 35.0 and 34.8 (CH-6^{'''}); 32.7 (CH₂-5^{'''}); 28.3 and 27.8 (CH₂-3'); 25.3 and 25.1 (CH₂-4^{'''}); 23.5 and 22.3 (CH₂-4[']); 16.7 and 16.4 (CH₃-6^{'''}); 9.4 and 9.2 (CH₃-3). **IR (film):** v= 3376 (br), 1736, 1619 cm⁻¹ **MS (FAB⁺) [m/z, (%)]:** 352.23 ([M+1]⁺, 13). **HRMS (FAB⁺):** Calcd. For C₂₀H₃₄NO₄ 352.2488, found 352.2377.

Compound 31

To a solution of alcohol **30** (103 mg; 0,29 mmol) in THF (10 mL) was added 10% HCl (3 mL) and the mixture heated at 50°C for 48 h, before adding H₂O (15 mL) and extracting with CH₂Cl₂ (3x 10 mL). The combined organic phases were dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 40% EtOAc/Hexane as eluent, affording diol **31** (36 mg, 90%) as a colorless oil, Rf = 0.10 (100% EtOAc).

¹**H-NMR (CDCl₃, δ):** 5.24 (1H, t, *J*= 7.3 Hz, CH-3'); 4.76 (1H, brs., CH-5); 3.42 (2H, dd, *J*= 6.4 Hz, *J*= 3.3 Hz, CH-7'); 2.62 (1H, dd, *J*= 14.5 Hz, *J*= 3.2 Hz, CH-1'); 2.27 (1H, dd, *J*= 14.3 Hz, *J*= 7.1 Hz, CH-1'); 2.08-1.88 (2H, m, CH₂-4'); 1.67 (3H, s, CH₃-3); 1.58 (1H, m, CH-6'); 1.55 (3H, s, CH₃-2'); 1.44 (1H, m, CH-5'); 1.14 (1H, m, CH-5'); 0.87 (3H, d, *J*= 6.7 Hz, CH₃-6').

¹³C-NMR (CDCl₃, δ): 177.2 (C-4); 175.9 (C=O); 129.3 (C-2'); 129.2 (CH-3'); 97.0 (C-3); 78.1 (CH-5); 68.7 (CH₂-7'); 41.8 (CH₂-1'); 34.9 (CH-6'); 33.0 (CH₂-5'); 25.4 (CH₂-4'); 17.1 (CH₃-2'); 16.7 (CH₃-6'); 6.3 (CH₃-3).

IR (film): v= 3331 (br), 1756, 1672 cm⁻¹

MS (FAB⁺) [m/z, (%)]: 256.23 ([M+1]⁺, 67); 255.10 ([M]⁺, 22); 155.25 (33); 154.25 (100).

HRMS (FAB⁺): Calcd. For C₁₄H₂₂O₄ 254.1518, found 254.1608.

Compound 32

To a solution of diol **31** (38 mg; 0,15 mmol) in THF (1 mL) at 0°C was first added MeOH (6,1 μ L; 0,15 mmol) then PPh₃ (39 mg; 0,15 mmol) and DIAD (30 μ L; 0,15 mmol). The resulting mixture was stirred at 0°C for 16 h. The solvent was then removed under vacuum and the residue was chromatographed on silica gel using 20%

EtOAc/Hexane as eluent, affording **32** (36 mg, 90%) as a yellow liquid, Rf = 0,40 (100% EtOAc); $[\alpha]_D^{20} = 29.3$ (C=0.85, CHCl₃)

¹**H-NMR (CDCl₃, δ):** 5.23 (1H, q, *J*= 6.6 Hz, CH-3'); 4.65 (1H, d, *J*= 7.8 Hz, CH-5); 4.07 (3H, s, -OCH₃); 3.42 (2H, m, CH-7'); 2.55 (1H, d, *J*= 14.5 Hz, CH-1'); 2.15 (1H, dd, *J*= 14.4 Hz, *J*= 7.4 Hz, CH-1'); 2.07-1.90 (2H, m, CH₂-4'); 1.94 (3H, s, CH₃-3); 1.63 (3H, s, CH₃-2'); 1.61 (1H, m, CH-6'); 1.44 (1H, m, CH-5'); 1.14 (1H, m, CH-5'); 0.90 (3H, m, CH₃-6').

¹³C-NMR (CDCl₃, δ): 175.1 (C-4); 173.3 (C=O); 129.5 (CH-3'); 129.1 (C-2'); 97.6 (C-3); 76.9 (CH-5); 68.2 (CH₂-7'); 58.6 (CH₃-O); 41.7 (CH₂-1'); 35.1 (CH-6'); 32.9 (CH₂-5'); 25.3 (CH₂-4'); 16.8 (CH₃-2'); 16.4 (CH₃-6'); 8.3 (CH₃-3).

IR (film): v=3357 (br), 1757, 1672 cm⁻¹

MS (FAB⁺): 269.17 ([M+1]⁺, 100); 268.15 ([M]⁺, 22); 207.13 (25); 185.20 (32); 155.25 (23); 154.25 (63).

HRMS (FAB⁺): Calcd. For C₁₅H₂₅O₄ 269.1753, found 269.1757.

Compound 7

To a solution of oxalyl chloride (0,61 mL of a 2. M solution in CH_2Cl_2 , 1,22 mmol) in CH_2Cl_2 (0,5 mL) at -78°C was added dropwise a solution of DMSO (0,61 mL; 2,44 mmol) in CH_2Cl_2 (0,9 mL) and the mixture stirred for 20 mn before adding alcohol **32** (163 mg; 0,61 mmol) in CH_2Cl_2 (0,87 mL). After stirring for 20 mn, Et₃N (0,61 mL) was added, the cooling bath was removed and the mixture stirred at room temperature for 30 mn. H₂O (20 mL) was added and the product extracted with EtOAc (3 x 20 mL). The combined organic phases were dried and rotatory evaporated to afford virtually pure aldehyde **7** (161 mg, 99%) as a colorless liquid, Rf = 0,65 (100% EtOAc).

¹**H-NMR (CDCl₃, δ):** 9.60 (1H, s, CHO); 5.23 (1H, q, *J*= 7.1 Hz, CH-3'); 4.65 (1H, d, *J*= 7.9 Hz, CH-5); 4.08 (3H, s, -OCH₃); 2.55 (1H, d, *J*= 15.5 Hz, CH-6'); 2.33 (1H, m, CH-1'); 2.15 (1H, dd, *J*= 14.9 Hz, *J*= 7.9 Hz, CH-1'); 2.05 (2H, q, *J*= 7.3 Hz, CH₂-4'); 1.96 (3H, s, CH₃-3); 1.75 (1H, m, CH-5'); 1.64 (3H, s, CH₃-2'); 1.58 (1H, m, CH-6'); 1.39 (1H, m, CH-5'); 1.08 (3H, d, *J*= 7,1 Hz, CH₃-6').

¹³C-NMR (CDCl₃, δ): 205.0 (C=O); 174.8 (C-4); 173.1 (C=O); 130.6 (C-2'); 127.8 (CH-3'); 97.7 (C-3); 76.8 (CH-5); 58.7 (-OCH₃); 45.7 (CH-6'); 41.7 (CH₂-1'); 30.2 (CH-5'); 32.9 (CH₂-5'); 25.3 (CH₂-4'); 16.7 (CH₃-2'); 13.0 (CH₃-6'); 8.4 (CH₃-3). **IR (film):** v= 1757, 1738, 1672 cm⁻¹

MS (FAB⁺) [m/z, (%)]: 267.17 ([M+1]⁺, 27); 266.15 ([M]⁺, 7); 251.17 (32); 155.25 (43); 154.25 (100).

HRMS (FAB⁺): Calcd. For C₁₅H₂₂O₄ 266.1518, found 266.1458.

Compound 33

To phosphine oxide 4 (4 mL of a 0,086 M solution in THF, 0.35 mmol) at -78°C was added *n*-BuLi (111 μ L of a 2.5 M solution in hexane, 0.28 mmol) and the resulting deep red solution was stirred for 1 h before adding aldehyde 7 (37 mg; 0,14 mmol) in THF (3 mL). After stirring for 30 mn the mixture was allowed to reach room temperature overnight. The mixture was quenched with an aqueous saturated solution of NH₄Cl (5 mL) and extracted with con EtOAc (3 x 10 mL). The organic phases were washed with brine (20 mL), dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 5% EtOAc/Hexane as eluent, affording compound **33** [57 mg, 40%, E;E / E;Z (8/1)] as a colorless oil, Rf = 0.30 (30% EtOAc/Hexane).

¹**H-NMR (CDCl₃, δ):** 7.33 (1H, s, CH-5 furyl); 7.19 (1H, s, CH-2 furyl); 6.25 (1H, s, CH-4 furyl); 6.18 (1H, dd, *J*= 15.0 Hz, *J*= 10.9 Hz, CH-8'); 5.78 (1H, d, *J*= 11.1 Hz, CH-9'); 5.42 (1H, dq, *J*= 7.8 Hz, *J*= 2.8 Hz, CH-7'); 5.22 (1H, t, *J*= 6.7 Hz, CH-3'); 4.64 (1H, d, *J*= 6.7 Hz, CH-5); 4.07 (3H, s, CH₃-4); 2.53 (1H, d, *J*= 14.4 Hz, CH-1'); 2.39 (2H, t, *J*= 7.5 Hz, CH-13'); 2.15 (2H, m, CH-1', CH-6'); 2.06 (2H, t, *J*= 7.5 Hz, C-11'); 1.96 (3H, s CH₃-3); 1.66 (8H, m, CH₃-10', CH₃-2', CH₂-4'); 1.28 (4H, m, CH₂-12', CH₂-5'); 0.99 (3H, d, *J*= 6.4 Hz, CH₃-6').

¹³C-NMR (CDCl₃, δ): 174.9 (C-4); 173.3 (C=O); 142.6 (CH-5 furyl); 138.9 (CH-2 furyl); 138.1 (CH-7'); 136.1 (C-10'); 129.3 (C-2'); 129.2 (CH-3'); 126.0 (CH-9'); 125.1 (CH-8'); 125.0 (C-3 furyl); 111.0 (CH-4 furyl); 97.5 (C-3); 77.1 (CH-5); 58.6 (CH₃-O); 41.9 (CH₂-1'); 39.3 (CH₂-11'); 36.9 (CH₂-5'); 36.6 (CH-6'); 28.1 (CH₂-12'); 25.9 (CH₂-4'); 24.4 (CH₂-13'); 20.8 (CH₃-6'); 16.8 (CH₃-10');16.5 (CH₃-2'); 8.4 (CH₃-3). **IR (film):** v = 1752, 1665 cm⁻¹

MS (**FAB**⁺) [**m**/**z**, (%)]: 414.29 (20); 413.29 ([M+1]⁺, 67); 412.27 ([M]⁺, 32); 411.27 (20); 285.23 (27); 209.20 (37); 203.23 (29); 195.21 (22); 189.23 (33); 183.24 (22); 178.23 (29); 175.27 (45); 173.28 (31); 169.25 (20); 167.26 (20); 165.26 (37); 163.29 (20); 161.30 (33); 159.30 (34); 155.28 (20); 154.27 (100); 151.44 (22).

HRMS (FAB⁺): Calcd. For C₂₆H₃₇O₄ 413.2692, found 413.2694.

Compound 1

To a solution of triene **33** (23 mg; 56 µmol) in HMPA (200 µL) was added *n*-C₃H₇SLi (224 µL of a 0.5 M solution in HMPA, 0.11 mmol) and the mixture was stirred at room temperature for 2 h; 10% HCl (2 mL) was added and the product extracted with CH₂Cl₂ (3 x 5 mL). The combined organic phases were dried and rotatory evaporated to give a residue which was chromatographed on silica gel using 15% EtOAc/Hexane as eluent, affording palinurin **1** (20 mg, 90%) as a colorless oil, Rf = 0.25 (100% EtOAc); $[\alpha]_D^{20} = 28.8$ (C=0.12, CHCl₃).

¹**H-NMR (CDCl₃, \delta):** 7.33 (1H, d, *J*= 1.4 Hz, CH-5 furilo); 7.19 (1H, s, CH-2 furilo); 6.25 (1H, s, CH-4 furilo); 6.18 (1H, dd, *J*= 14.9 Hz, *J*= 10.9 Hz, CH-8'); 5.78 (1H, d, *J*= 10.4 Hz, CH-9'); 5.42 (1H, dd, *J*= 15.2 Hz, *J*= 7.9, CH-7'); 5.28 (1H, t, *J*= 6.8 Hz, CH-3'); 4.74 (1H, c, *J*= 3.7 Hz, CH-5); 2.59 (1H, dd, *J*= 14.3 Hz, *J*= 3.7 Hz, CH-1'); 2.38 (2H, t, *J*= 7.6 Hz, CH₂-13'); 2.25 (1H, dd, *J*= 14.1 Hz, *J*= 7.9 Hz, CH-1'); 2.15 (1H, m, CH-6'); 2.05 (2H, t, *J*= 7.6 Hz, CH₂-11'); 1.97 (2H, q, *J*= 7.2 Hz, CH₂-4'); 1.72 (3H, s, CH₃-10'); 1.70 (3H, s, CH₃-2'); 1.66 (3H, s, CH₃-3); 1.30 (4H, m, CH₂-12', CH₂-5'); 0.99 (3H, d, *J*= 6.8 Hz, CH₃-6').

¹³C-NMR (CDCl₃, δ): 177.1 (C-4); 176.4 (C=O); 142.6 (CH-5 furyl); 138.9 (CH-2 furyl); 138.0 (CH-7'); 136.2 (C-10'); 129.8 (CH-2'); 129.3 (C-3'); 125.9 (CH-9'); 125.1 (CH-8'); 124.9 (CH-3 furyl); 111.0 (CH-4 furyl); 96.4 (C-3); 77.6 (CH-5); 41.9 (CH₂-1'); 39.3 (CH₂-11'); 36.9 (CH₂-5'); 36.7 (CH-6'); 28.2 (CH₂-12'); 26.0 (CH₂-4'); 24.4 (CH₂-13'); 20.8 (CH₃-6'); 16.6 (CH₃-10');16.5 (CH₃-2'); 5.9 (CH₃-3).

IR (film): v = 3423 (br), 1755, 1673 cm⁻¹

MS (FAB⁺) [m/z, (%)]: 399.20 ([M+1]⁺, 63); 398.13 ([M]⁺, 72); 356.08 (18); 355.07 (73); 341.02 (37); 326.97 (54); 283.07 (35); 282.05 (31); 281.14 (65); 267.01 (44); 251.05 (19).

HRMS (FAB⁺): Calcd. For C₂₅H₃₅O₄ 399.2535, found 399.2534.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

