Supporting Materials

Iron-catalyzed cross-aldol reactions of ortho-diketones and methyl ketones

Haijun Li,^a Wenjuan Li^a and Zhiping Li^{*a,b} ^a Department of Chemistry, Renmin University of China, Beijing 100872, China. ^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

Email: <u>zhipingli@ruc.edu.cn</u>

Contents

1) Experimental details and characterization data for all compounds2
2) X-ray crystallography data for 4b ······10
3) Copies of ¹ H NMR and ¹³ C NMR spectra for all compounds
4) Standard isotopic distribution for compounds containing chlorine and bromine56
5) Copies of the representative mass spectra

1) Experimental details and characterization data for all compounds

General information: ¹H NMR spectra were recorded on AVANCE 400 MHz, JEOL 400 MHz and JEOL 600 MHz spectrometers and the chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 ppm) for CDCl₃. The peak patterns are indicated as follows: s, singlet; d, doublet; bs, broad singlet; dd, doublet of doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). ¹³C NMR spectra were obtained on AVANCE 100.6 MHz, JEOL 99.5 and JEOL 150.9 MHz and referenced to the internal solvent signals (central peak is 77.0 ppm in CDCl₃). Mass spectra were determined with AEI-MS 50 for EI-MS; APEX II (Bruker Inc.) for HR-MS and ESI-MS. IR spectra were recorded by a Nicolet 5MX-S infrared spectrometer. Flash column chromatography was performed over silica gel 200-300. Xray data collections were performed at 20 °C on a Rigaku RAXIS RAPID IP diffractometer, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out by the Rapid-AUTO (Rigaku 2000) program package. The raw frame data were processed using Crystal Structure (Rigaku/MSC 2000) to yield the reflection data file. The structure was solved by use of SHELXTL program. Refinement was performed on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. (G. M. Sheldrick, SHELXTL 5.10 for Windows NT: Structure Determination Software Programs; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 1997.) All reagents were weighed and handled in air at room temperature. Unless otherwise noted, all reactions were performed under a nitrogen atmosphere. All chemicals were purchased from Alfa, Acros, Aldrich, TCI, and Strem and used without further purification.

General procedure for products 3: To a 2.0 mL solution of 1 (0.5 mmol) in petroleum ether (PE) under N₂ at room temperature was added 2 (0.75 mmol, 1.5 eq). The resulting mixture was stirred for 24h at room temperature. The resulting reaction solution was mixed with few silica gel and evaporated in vacuo. The residue was purified by flash column chromatography using silica gel (ethyl acetate : PE = 1 : 5) to afford the desired products.

General procedure for products 4: An oven-dried Schlenk tube was charged with 3 (0.2 mmol) under N_2 at room temperature. The Schlenk tube was put into a pre-heated oil

bath at 130 $^{\circ}$ C for 40 minutes. The reaction mixture was quenched with saturated NaHCO₃ and washed with 10 mL ether. The resulting aqua phase was acidified by 2 mL 3N HCl and extracted with 15 mL ether. The extract was washed with water and dried over Na₂SO₄. The solvent was evaporated in vacuo to afford the desired products.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-oxo-2-phenylethyl)cyclohexa-2,4-dienone (3a). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.4$). ¹H NMR (ppm) δ 7.86(dd, J = 8.4, 1.2Hz, 2H), 7.62-7.59(m, 1H), 7.48-7.45(m, 2H), 4.17(d, J = 16.8Hz, 1H), 3.96(d, J = 16.8Hz, 1H), 3.60(bs, 1H); ¹³C NMR (ppm) δ 196.1, 189.6, 145.2, 138.3, 135.0, 134.3, 129.8, 128.9, 128.3, 127.6, 76.3, 51.3; MS(EI) *m/z*(%): 366(M⁺), 330, 293, 248, 219,147, 120, 105(100), 91, 77, 51, 36; HRMS(ESI) calcd for C₁₄H₈Cl₄O₃(M⁺+Na): 386.9120; found: 386.9128.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-(4-methoxyphenyl)-2-oxoethyl)cyclohexa-2,4dienone (3b). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.3$). ¹H NMR (ppm) δ 7.79(d, J = 8.8Hz, 2H), 6.87(d, J = 8.8Hz, 2H), 4.06(d, J = 16.8Hz, 1H), 3.85(d, J = 16.8Hz, 1H), 3.82(s, 3H), 3.59(bs, 1H); ¹³C NMR (ppm) δ 194.4, 189.6, 164.4, 144.9, 138.5, 130.7, 129.8, 128.2, 127.4, 114.0, 76.5, 55.6, 51.0; MS(EI) *m/z*(%): 396(M⁺), 256, 248, 223, 177, 169, 149, 135(100), 113, 107, 85, 71, 57, 43, 30; HRMS(ESI) calcd for C₁₅H₁₀Cl₄O₄ (M⁺+Na): 416.9225; found: 416.9229.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-oxo-2-p-tolylethyl)cyclohexa-2,4-dienone (3c). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.4$). ¹H NMR (ppm) δ 7.78(d, J = 8.0Hz, 2H), 7.26(d, J = 8.0Hz, 2H), 4.32(bs, 1H), 4.18(d, J = 17.2Hz, 1H), 3.98(d, J = 17.2Hz, 1H), 2.41(s,3H); ¹³C NMR (ppm) δ 195.9, 189.5, 145.3, 144.8, 138.7, 132.6, 129.7, 129.5, 128.4, 127.2, 76.2, 51.1, 21.7; MS(EI) m/z(%): 380(M⁺), 342, 329, 327, 299, 281, 248, 222, 185, 183, 161, 149, 134, 119(100), 105, 91, 73, 65, 55, 40; HRMS(ESI) calcd for C₁₅H₁₀Cl₄O₃ (M⁺+Na): 400.9276; found: 402.9257.

2,3,4,5-Tetrachloro-6-(2-(4-ethylphenyl)-2-oxoethyl)-6-hydroxycyclohexa-2,4-

dienone (3d). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.4$). ¹H NMR (ppm) δ 7.79(d, J = 8.4Hz, 2H), 7.28(d, J = 8.4Hz, 2H), 4.15(d, J = 17.4Hz, 1H), 3.94(d, J = 17.4Hz, 1H), 3.71(bs, 1H), 2.70(q, J = 7.8Hz, 2H), 1.24(t, J = 7.8Hz, 3H); ¹³C NMR (ppm) δ 195.7, 189.6, 151.5, 145.0, 138.4, 132.7, 129.7, 128.5, 128.3, 127.5, 76.3, 51.2, 29.0, 15.0; MS(EI) m/z(%):394(M⁺), 358, 327, 299, 248, 224, 222, 175, 148, 133(100), 119, 105, 91, 77, 51, 37; HRMS(ESI) calcd for C₁₆H₁₂Cl₄O₃ (M⁺+Na): 414.9433; found: 416.9406.

2,3,4,5-Tetrachloro-6-(2-(4-chlorophenyl)-2-oxoethyl)-6-hydroxycyclohexa-2,4dienone (3e). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.4$). ¹H NMR (ppm) δ 7.76(d, J = 8.8Hz, 2H), 7.39(d, J = 8.8Hz, 2H), 4.07(d, J = 17.2Hz, 1H), 3.88(d, J = 17.2Hz, 1H), 3.68(bs,1H); ¹³C NMR (ppm) δ 195.0, 189.4, 145.1, 140.9, 138.3, 133.3, 129.7, 129.2, 127.5, 76.2, 51.1; MS(EI) *m/z*(%): 400(M⁺), 384, 248, 212, 181, 154, 139(100), 113, 111, 87, 75, 50, 37; HRMS(ESI) calcd for C₁₄H₇Cl₅O₃ (M⁺+Na): 420.8730; found: 420.8726.

6-(2-(4-Bromophenyl)-2-oxoethyl)-2,3,4,5-tetrachloro-6-hydroxycyclohexa-2,4dienone (3f). Isolated by flash column chromatography (ethyl acetate/petroleum ether =

1:5, $R_f = 0.3$). ¹H NMR (ppm) δ 7.73(d, J = 8.8Hz, 2H), 7.62(d, J = 8.8Hz, 2H), 4.10(d, J = 16.8Hz, 1H), 3.91(d, J = 16.8Hz, 1H), 3.50(bs,1H); ¹³C NMR (ppm) δ 195.1, 189.5, 145.2, 138.0, 133.7, 132.2, 129.8, 129.7, 129.6, 127.7, 76.2, 51.1; MS(EI) *m/z*(%): 442(M⁺), 410, 408, 380, 373, 345, 327, 303, 299, 250, 248, 222, 198, 185(100), 169, 155, 131, 119, 104, 76, 63, 50; HRMS(ESI) calcd for C₁₄H₇BrCl₄O₃ (M⁺+Na): 464.8225; found: 464.8236.

2,3,4,5-Tetrachloro-6-(2-(3-chlorophenyl)-2-oxoethyl)-6-hydroxycyclohexa-2,4dienone(3g). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.3$). ¹H NMR (ppm) δ 7.79(s,1H), 7.70(d, J = 7.6Hz, 1H), 7.51(d, J = 7.6Hz, 1H), 7.36(t, J = 7.6Hz, 1H), 4.08(d, J = 17.2Hz, 1H), 3.92(d, J = 17.2Hz, 1H); ¹³C NMR (ppm) δ 195.0, 189.4, 145.2, 138.2, 136.4, 135.2, 134.1, 130.2, 129.7, 128.3, 127.6, 126.4, 76.1, 51.1; MS(EI) *m/z*(%): 400(M⁺), 384, 250, 248, 223, 181, 154, 139(100), 125, 111, 97, 79, 75, 52; HRMS(ESI) calcd for C₁₄H₇Cl₅O₃ (M⁺+Na): 420.8730; found: 420.8732.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-(naphthalen-1-yl)-2-oxoethyl)cyclohexa-2,4dienone (3h). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.3$). ¹H NMR (ppm) δ 8.49(d, J = 8.0Hz, 1H), 7.95(d, J = 8.0Hz, 1H), 7.88(d, J = 7.2Hz, 1H), 7.79(d, J = 8.0Hz, 1H), 7.54-7.40(m, 3H), 4.18(d, J = 17.2Hz, 1H), 4.09(d, J = 17.2Hz, 1H); ¹³C NMR (ppm) δ 199.5, 189.6, 145.0, 138.6, 134.3, 133.8, 132.6, 129.8, 129.7, 129.4, 128.6, 128.4, 127.4, 126.7, 125.4, 124.2, 77.2, 53.9; MS(EI) *m/z*(%): 416(M⁺), 380, 377, 351, 349, 315, 250, 248, 223, 212, 195, 182, 170, 155(100), 147, 127, 111, 101, 81, 77, 59; HRMS(ESI) calcd for C₁₈H₁₀Cl₄O₃ (M⁺+Na):436.9276; found: 438.9244.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-(naphthalen-2-yl)-2-oxoethyl)cyclohexa-2,4dienone (3i). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.3$). ¹H NMR (ppm) δ 8.43(s,1H), 7.96(d, J = 8.0Hz, 1H), 7.87(s,1H), 7.86(d, J = 8.0Hz, 2H), 7.64(t, J = 8.0Hz, 1H), 7.57(t, J = 8.0Hz, 1H), 4.35(d, J = 17.2Hz, 1H), 4.14(d, J = 17.2Hz, 1H), 3.68(bs,1H); ¹³C NMR (ppm) δ 196.1, 189.7, 145.1, 138.4, 135.9, 132.2, 132.1, 130.6, 129.8, 129.7, 129.1, 128.7, 127.8, 127.5, 127.1, 123.2, 76.3, 51.4; MS(EI) *m/z*(%): 416(M⁺), 250, 248, 210, 197, 181, 165, 155, 149, 123(100), 111, 95, 87, 75, 57; HRMS(ESI) calcd for C₁₈H₁₀Cl₄O₃ (M⁺): 414.9457; found: 416.9430.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-(5-methylfuran-2-yl)-2-oxoethyl)cyclohexa-2,4dienone (3j). Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.4$). ¹H NMR (ppm) δ 7.11(d, J = 3.2Hz, 1H), 6.12(d, J = 3.2Hz, 1H), 4.35(bs, 1H), 3.83(d, J = 16.8Hz, 1H), 3.63(d, J = 16.8Hz, 1H), 2.32(s, 3H); ¹³C NMR (ppm) δ 189.6, 183.0, 159.4, 149.9, 144.8, 138.6, 129.7, 127.0, 121.3, 109.7, 76.6, 50.0, 14.0; MS(EI) *m/z*(%): 360, 337, 326, 309, 293, 284, 260, 248, 239, 214, 212, 197, 183, 169, 149, 141, 127, 109, 97, 71, 57(100), 43, 41, 27; HRMS(ESI) calcd for C₁₃H₈Cl₄O₄ (M⁺+H): 368.9250; found: 370.3785.

2,3,4,5-Tetrachloro-6-hydroxy-6-(2-oxopropyl)cyclohexa-2,4-dienone (**3k**).¹ Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:5, $R_f = 0.3$). ¹H NMR (ppm) δ 3.79(bs,1H), 3.51(d, J = 17.4Hz, 1H), 3.44(d, J = 17.4Hz, 1H), 2.15(s, 3H); ¹³C NMR (ppm) δ 205.3, 189.6, 145.2, 138.1, 129.5, 127.4, 75.9, 54.8, 29.9; MS(EI) *m/z*(%):

 $304(M^+)$, 143, 105, 85, 58, 43(100), 36; HRMS(ESI) calcd for C₉H₆Cl₄O₃ (M⁺+H): 301.9071; found: 301.9031.

1-Hydroxy-1-(2-oxopropyl)naphthalen-2(1H)-one and **2-hydroxy-2-(2-oxopropyl) naphthalene-1(2H)-one** (**3I**+**3I'**). A ratio of two isomers is 4:3. Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:2, $R_f = 0.5$). **overlap:** ¹H NMR (ppm) δ 7.96(d, J = 7.6Hz, 1H), 7.65(d, J = 7.6Hz, 1H), 7.59(t, J = 7.6Hz, 1H), 7.45-7.28(m, 5H), 7.21(d, J = 7.6Hz, 1H), 6.55(d, J = 10.0Hz, 1H), 6.30(d, J = 10.0Hz, 1H), 6.23(d, J = 10.0Hz, 1H); **major isomer:** ¹H NMR (ppm) δ 4.31(s,1H), 2.93(dd, J = 14.0Hz, 8.4 Hz ,2H), 2.10(s, 3H), **minor isomer:** ¹H NMR (ppm) δ 3.98(s,1H), 2.87(dd, J = 15.2Hz, 6.4Hz ,2H), 2.18(s, 3H); ¹³C NMR (ppm) δ 205.8, 205.5, 202.7, 201.2, 145.1, 142.5, 137.1, 135.0, 134.3, 130.3, 129.5, 128.7, 128.4, 128.3, 128.2, 127.5, 127.1, 126.0, 125.9, 122.8, 77.5, 74.7, 55.8, 52.6, 31.9, 31.7; MS(EI) m/z(%): 216(M⁺), 198, 188, 173, 160, 158, 145, 131(100), 117, 115, 102, 91, 85, 77, 63, 58, 51, 43, 27, 25; HRMS(ESI) calcd for C₁₃H₁₂O₃(M⁺+Na): 239.0679; found: 239.0676.

10-Hydroxy-10-(2-oxo-propyl)-10H-phenanthren-9-one (**3m**).² Isolated by flash column chromatography (ethyl acetate/hexane = 1:5, $R_f = 0.2$). ¹H NMR (ppm) δ 7.91(d, J = 7.8Hz, 1H), 7.87(d, J = 7.8Hz, 1H), 7.79-7.78(m, 1H), 7.74-7.72(m, 1H), 7.66(t, J = 7.8Hz, 1H), 7.42-7.37(m, 3H), 4.51(bs, 1H), 2.97(d, J = 15.0Hz, 1H), 2.79(d, J = 15.0Hz, 1H), 2.06(s, 3H); ¹³C NMR (ppm) δ 205.5, 202.2, 139.2, 136.6, 134.7, 129.2, 129.1, 128.8, 128.6, 128.5, 127.5, 125.8, 124.3, 123.0, 78.2, 55.4, 31.9.

(2*Z*,4*E*,6*E*)-7-Acetyl-2,3,4-trichloro-6-hydroxycyclohepta-2,4,6-trienone (4a).¹ ¹H NMR (ppm) δ 7.03(s, 1H), 2.41(s, 3H); ¹³C NMR (ppm) δ 204.6, 181.5, 171.3, 140.6, 140.5, 133.9, 128.2, 116.6, 28.7; MS(EI) *m/z*(%): 266(M⁺), 251, 238, 225, 223, 210, 196, 189, 171, 167, 159, 147, 133, 119, 107, 97, 87, 84, 69, 61, 43(100), 37, 27; HRMS(ESI) calcd for C₉D₆Cl₄O₃ (M⁺): 266.9377; found: 266.9378.

(2*Z*,4*E*,6*E*)-7-Benzoyl-2,3,4-trichloro-6-hydroxycyclohepta-2,4,6-trienone (4b). Crystals for X-ray analyses of 4b were obtained on slow solvent evaporation of ether and petroleum ether. ¹H NMR (ppm) δ 7.56-7.53(m, 3H), 7.46-7.42(m, 2H), 7.22(s, 1H); ¹³C NMR (ppm) δ 200.2, 181.4, 169.6, 141.2, 140.8, 136.5, 134.8, 132.8, 128.5, 128.3, 128.1, 115.3; MS(EI) *m/z*(%): 328(M⁺), 301, 299, 225, 223, 173, 119, 105, 97, 77(100), 63, 51, 40, 37; HRMS(ESI) calcd for C₁₄H₇Cl₃O₃ (M⁺): 328.9534; found: 328.9542.

(2*Z*,4*E*,6*E*)-2,3,4-Trichloro-7-(4-ethylbenzoyl)-6-hydroxycyclohepta-2,4,6-trienone (4c). ¹H NMR (ppm) δ 7.48(dd, J = 8.4, 1.8Hz, 2H), 7.26-7.25(m, 2H), 7.21(s, 1H), 2.70(q, J = 7.8Hz, 2H), 1.26(t, J = 7.8Hz, 3H); ¹³C NMR (ppm) δ 199.7, 181.6, 168.4, 150.0, 140.9, 140.7, 134.7, 133.8, 128.5, 128.4, 128.0, 115.2, 28.9, 14.9; MS(EI) *m/z*(%): 356(M⁺), 355, 329, 327, 299, 285, 265, 249, 236, 222, 207, 186, 173, 167, 149, 133(100), 119, 105, 91, 77, 63, 51, 37, 27; HRMS(ESI) calcd for C₁₆H₁₁Cl₃O₃ (M⁺+H): 356.9847; found: 356.9843.

(2*Z*,4*E*,6*E*)-2,3,4-Trichloro-7-(4-chlorobenzoyl)-6-hydroxycyclohepta-2,4,6-trienone (4d). ¹H NMR (ppm) δ 7.49(d, *J* = 8.4Hz, 2H), 7.41(d, *J* = 8.4Hz, 2H), 7.23(s, 1H); ¹³C NMR (ppm) δ 198.9, 181.3, 168.8, 141.5, 140.9, 139.2, 135.1, 134.9, 129.5, 128.9, 128.2, 115.2; MS(EI) *m/z*(%): 382(M⁺), 364, 336, 299, 248, 222, 167, 149, 139, 119, 111, 91, 71, 57, 43(100), 41, 28; HRMS(ESI) calcd for C₁₄H₆Cl₄O₃ (M⁺+Na): 384.8963; found: 384.8970.

(2*Z*,4*E*,6*E*)-7-(4-Bromobenzoyl)-2,3,4-trichloro-6-hydroxycyclohepta-2,4,6-trienone (4e). ¹H NMR (ppm) δ 7.59-7.57(m, 2H), 7.42-7.40(m, 2H), 7.23(s, 1H); ¹³C NMR (ppm) δ 199.1, 181.2, 168.9, 141.6, 141.0, 135.3, 135.1, 131.8, 129.5, 128.2, 127.8, 115.2; MS(EI) *m*/*z*(%): 408(M⁺), 406, 380, 377, 363, 345, 327, 309, 299, 282, 264, 250, 236, 224, 207, 196, 183(100), 167, 155, 139, 131, 111, 97, 84, 76, 50; HRMS(ESI) calcd for C₁₄H₆BrCl₃O₃ (M⁺+H): 406.9639; found: 406.8638.

(2*Z*,4*E*,6*E*)-7-(2-naphthoyl)-2,3,4-trichloro-6-hydroxycyclohepta-2,4,6-trienone (4f). ¹H NMR (ppm) δ 8.05(s, 1H), 7.87-7.83(m, 3H), 7.60-7.51(m, 3H), 7.21(s, 1H); ¹³C NMR (ppm) δ 199.9, 181.6, 168.4, 141.1, 140.7, 135.3, 134.8, 133.5, 132.2, 129.8, 129.2, 128.6, 128.5, 128.3, 127.8, 127.0, 124.0, 115.5; MS(EI) *m/z*(%): 378(M⁺), 351, 279, 250, 248, 223, 205, 189, 184, 170, 155, 149, 127(100), 115, 101, 93, 77, 63, 57; HRMS(ESI) calcd for C₁₈H₉Cl₃O₃ (M⁺+Na): 400.9510; found: 400.9509.

References:

Space group

Unit cell dimensions

(1) H. Kogler, H.-W. Fehlhaber, K. Leube, W. Durckheimer, *Chem. Ber.* 1989, **122**, 2205-2206.

(2) R. V. Linko, V. K. Belsky, A. V. Varlamov, B. E. Zaitsev, A. I. Chernyshev, *Russ. Chem. Bull. Int. Ed.* 2001, **50**, 1625-1629.

2) X-ray crystallography data for 4b

Fig. 1 ORTEP drawing of **4b** with 30% thermal ellipsoids. Hydrogen atoms omitted for clarity.

(Note: Intramolecular hydrogen bonding is responsible for the two configurations of tropone **4b** as shown in Fig. 1. The two configurations break the symmetry and change the crystal system to triclinic.)

Identification code	lzpa	
Empirical formula	C14 H7 Cl3 O3	
Formula weight	329.55	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	

Table 1. Crystal data and structure refinement for 4b.

a = 4.1248(8) Å $\alpha = 62.21(3)$ °b = 18.813(4) Å $\beta = 89.89(3)$ °c = 19.845(4) Å $\gamma = 89.83(3)$ °

P-1

Volume	1362.3(5) Å ³
Z	4
Density (calculated)	1.607 Mg/m ³
Absorption coefficient	0.674 mm ⁻¹
F(000)	664
Crystal size	0.50 x 0.30 x 0.20 mm ³
Theta range for data collection	1.16 to 27.48°.
Index ranges	-5<=h<=5, -24<=k<=24, -25<=l<=22
Reflections collected	12452
Independent reflections	6165 [R(int) = 0.0332]
Completeness to theta = 27.48°	98.1 %
Absorption correction	Empirical
Max. and min. transmission	0.8769 and 0.7291
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6165 / 1 / 369
Goodness-of-fit on F ²	1.058
Final R indices [I>2sigma(I)]	R1 = 0.0417, $wR2 = 0.0724$
R indices (all data)	R1 = 0.1080, wR2 = 0.0780
Largest diff. peak and hole	0.241 and -0.354 e. Å $^{\text{-3}}$

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA }^2x \ 10^3)$ for **4b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	V	Z	U(ea)
		5		
C(1)	3334(6)	674(2)	570(2)	41(1)
C(2)	2784(6)	-175(2)	955(2)	49(1)
C(3)	2903(6)	-701(1)	1693(2)	44(1)
C(4)	3688(6)	-564(1)	2328(1)	41(1)
C(5)	5182(6)	102(2)	2278(1)	38(1)
C(6)	6445(6)	816(1)	1585(1)	34(1)
C(7)	4801(6)	1143(1)	851(1)	35(1)
C(8)	4949(6)	2026(2)	349(2)	45(1)
C(9)	5512(6)	2623(1)	621(2)	38(1)

C(10)	4384(6)	2524(2)	1315(2)	44(1)
C(11)	4736(6)	3154(2)	1494(2)	56(1)
C(12)	6202(7)	3863(2)	987(2)	67(1)
C(13)	7324(7)	3954(2)	307(2)	65(1)
C(14)	6967(6)	3338(2)	115(2)	52(1)
C(15)	1652(6)	5675(2)	5570(2)	43(1)
C(16)	2238(6)	4823(2)	5956(2)	49(1)
C(17)	2097(6)	4302(1)	6697(2)	44(1)
C(18)	1306(6)	4441(1)	7330(1)	39(1)
C(19)	-165(6)	5105(2)	7272(1)	37(1)
C(20)	-1454(6)	5817(1)	6583(1)	35(1)
C(21)	217(6)	6143(1)	5848(1)	35(1)
C(22)	43(6)	7023(2)	5350(2)	45(1)
C(23)	-502(6)	7619(1)	5623(2)	39(1)
C(24)	618(6)	7529(2)	6314(2)	42(1)
C(25)	282(7)	8145(2)	6499(2)	55(1)
C(26)	-1203(7)	8860(2)	5989(2)	64(1)
C(27)	-2309(7)	8954(2)	5307(2)	67(1)
C(28)	-1977(6)	8342(2)	5113(2)	52(1)
Cl(1)	1931(2)	-1681(1)	1908(1)	91(1)
Cl(2)	2643(2)	-1314(1)	3220(1)	70(1)
Cl(3)	6007(2)	178(1)	3088(1)	67(1)
Cl(4)	3074(2)	3321(1)	6907(1)	91(1)
Cl(5)	2355(2)	3686(1)	8220(1)	70(1)
Cl(6)	-1009(2)	5178(1)	8087(1)	68(1)
O(1)	2309(5)	990(1)	-148(1)	69(1)
O(2)	4390(6)	2284(1)	-342(1)	82(1)
O(3)	8827(4)	1158(1)	1662(1)	49(1)
O(4)	2701(5)	5990(1)	4851(1)	68(1)
O(5)	622(6)	7285(1)	4659(1)	82(1)
O(6)	-3831(4)	6158(1)	6664(1)	49(1)
H(2)	2256	-396	637	59
H(10)	3406	2045	1657	53
H(11)	3977	3096	1958	67
H(12)	6423	4280	1112	80
H(13)	8333	4430	-30	78

H(14)	7704	3405	-354	62
H(16)	2803	4601	5641	59
H(24)	1600	7050	6656	51
H(25)	1046	8084	6963	66
H(26)	-1439	9276	6115	77
H(27)	-3296	9434	4970	80
H(28)	-2731	8410	4645	62
H(1)	3020(90)	1580(30)	-340(20)	138(15)
H(4)	1940(80)	6539(13)	4640(20)	129(14)

Table 3. Bond lengths [Å] and angles [°] for 4b.

C(1)-O(1)	1.331(3)	С(12)-Н(12)	0.9300
C(1)-C(7)	1.385(3)	C(13)-C(14)	1.387(4)
C(1)-C(2)	1.433(3)	C(13)-H(13)	0.9300
C(2)-C(3)	1.332(4)	C(14)-H(14)	0.9300
C(2)-H(2)	0.9300	C(15)-O(4)	1.336(3)
C(3)-C(4)	1.438(4)	C(15)-C(21)	1.372(3)
C(3)-Cl(1)	1.736(3)	C(15)-C(16)	1.438(3)
C(4)-C(5)	1.358(3)	C(16)-C(17)	1.335(4)
C(4)-Cl(2)	1.726(3)	C(16)-H(16)	0.9300
C(5)-C(6)	1.499(3)	C(17)-C(18)	1.435(4)
C(5)-Cl(3)	1.713(3)	C(17)-Cl(4)	1.738(2)
C(6)-O(3)	1.224(3)	C(18)-C(19)	1.343(3)
C(6)-C(7)	1.458(3)	C(18)-Cl(5)	1.728(2)
C(7)-C(8)	1.488(3)	C(19)-C(20)	1.496(3)
C(8)-O(2)	1.244(3)	C(19)-Cl(6)	1.720(3)
C(8)-C(9)	1.476(3)	C(20)-O(6)	1.222(3)
C(9)-C(10)	1.380(3)	C(20)-C(21)	1.463(3)
C(9)-C(14)	1.385(3)	C(21)-C(22)	1.482(3)
C(10)-C(11)	1.395(3)	C(22)-O(5)	1.244(3)
C(10)-H(10)	0.9300	C(22)-C(23)	1.472(3)
C(11)-C(12)	1.381(4)	C(23)-C(24)	1.382(3)
C(11)-H(11)	0.9300	C(23)-C(28)	1.399(3)
C(12)-C(13)	1.360(4)	C(24)-C(25)	1.375(3)

C(24)-H(24)	0.9300	C(10)-C(9)-C(14)	120.3(2)
C(25)-C(26)	1.392(4)	C(10)-C(9)-C(8)	122.6(2)
C(25)-H(25)	0.9300	C(14)-C(9)-C(8)	116.8(2)
C(26)-C(27)	1.359(4)	C(9)-C(10)-C(11)	118.8(3)
C(26)-H(26)	0.9300	C(9)-C(10)-H(10)	120.6
C(27)-C(28)	1.381(4)	С(11)-С(10)-Н(10)	120.6
C(27)-H(27)	0.9300	C(12)-C(11)-C(10)	120.6(3)
C(28)-H(28)	0.9300	С(12)-С(11)-Н(11)	119.7
O(1)-H(1)	1.03(5)	С(10)-С(11)-Н(11)	119.7
O(2)-H(1)	1.44(5)	C(13)-C(12)-C(11)	120.2(3)
O(4)-H(4)	0.968(19)	С(13)-С(12)-Н(12)	119.9
		С(11)-С(12)-Н(12)	119.9
O(1)-C(1)-C(7)	121.4(2)	C(12)-C(13)-C(14)	120.1(3)
O(1)-C(1)-C(2)	110.4(2)	С(12)-С(13)-Н(13)	119.9
C(7)-C(1)-C(2)	128.1(2)	С(14)-С(13)-Н(13)	119.9
C(3)-C(2)-C(1)	130.7(3)	C(9)-C(14)-C(13)	120.0(3)
C(3)-C(2)-H(2)	114.7	C(9)-C(14)-H(14)	120.0
C(1)-C(2)-H(2)	114.7	C(13)-C(14)-H(14)	120.0
C(2)-C(3)-C(4)	128.9(2)	O(4)-C(15)-C(21)	121.4(2)
C(2)-C(3)-Cl(1)	114.8(2)	O(4)-C(15)-C(16)	110.2(2)
C(4)-C(3)-Cl(1)	116.2(2)	C(21)-C(15)-C(16)	128.5(2)
C(5)-C(4)-C(3)	125.1(2)	C(17)-C(16)-C(15)	130.1(3)
C(5)-C(4)-Cl(2)	118.3(2)	C(17)-C(16)-H(16)	114.9
C(3)-C(4)-Cl(2)	116.54(19)	C(15)-C(16)-H(16)	114.9
C(4)-C(5)-C(6)	128.9(2)	C(16)-C(17)-C(18)	129.3(2)
C(4)-C(5)-Cl(3)	120.0(2)	C(16)-C(17)-Cl(4)	114.0(2)
C(6)-C(5)-Cl(3)	111.07(19)	C(18)-C(17)-Cl(4)	116.6(2)
O(3)-C(6)-C(7)	119.8(2)	C(19)-C(18)-C(17)	124.7(2)
O(3)-C(6)-C(5)	117.7(2)	C(19)-C(18)-Cl(5)	119.2(2)
C(7)-C(6)-C(5)	122.3(2)	C(17)-C(18)-Cl(5)	116.14(19)
C(1)-C(7)-C(6)	123.7(2)	C(18)-C(19)-C(20)	129.6(2)
C(1)-C(7)-C(8)	118.1(2)	C(18)-C(19)-Cl(6)	119.2(2)
C(6)-C(7)-C(8)	118.0(2)	C(20)-C(19)-Cl(6)	111.05(19)
O(2)-C(8)-C(9)	117.4(2)	O(6)-C(20)-C(21)	120.4(2)
O(2)-C(8)-C(7)	118.1(2)	O(6)-C(20)-C(19)	117.7(2)
C(9)-C(8)-C(7)	124.4(2)	C(21)-C(20)-C(19)	121.7(2)

C(15)-C(21)-C(20)	123.6(2)	C(26)-C(25)-H(25)	120.1
C(15)-C(21)-C(22)	118.6(2)	C(27)-C(26)-C(25)	120.3(3)
C(20)-C(21)-C(22)	117.6(2)	C(27)-C(26)-H(26)	119.8
O(5)-C(22)-C(23)	117.1(2)	C(25)-C(26)-H(26)	119.8
O(5)-C(22)-C(21)	118.1(2)	C(26)-C(27)-C(28)	120.5(3)
C(23)-C(22)-C(21)	124.5(2)	C(26)-C(27)-H(27)	119.7
C(24)-C(23)-C(28)	119.5(2)	C(28)-C(27)-H(27)	119.7
C(24)-C(23)-C(22)	123.6(2)	C(27)-C(28)-C(23)	119.7(3)
C(28)-C(23)-C(22)	116.7(2)	C(27)-C(28)-H(28)	120.2
C(25)-C(24)-C(23)	120.2(3)	C(23)-C(28)-H(28)	120.2
C(25)-C(24)-H(24)	119.9	C(1)-O(1)-H(1)	100(2)
C(23)-C(24)-H(24)	119.9	C(8)-O(2)-H(1)	100.4(16)
C(24)-C(25)-C(26)	119.9(3)	C(15)-O(4)-H(4)	102(2)
C(24)-C(25)-H(25)	120.1		

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	62(2)	33(2)	29(2)	-14(1)	2(1)	-3(1)
C(2)	67(2)	38(2)	47(2)	-25(2)	-5(1)	-2(1)
C(3)	53(2)	24(1)	50(2)	-13(1)	-6(1)	-3(1)
C(4)	39(2)	31(2)	38(2)	-3(1)	3(1)	1(1)
C(5)	36(2)	42(2)	32(1)	-15(1)	-1(1)	6(1)
C(6)	33(2)	31(1)	40(2)	-17(1)	4(1)	5(1)
C(7)	41(2)	29(1)	30(1)	-11(1)	5(1)	1(1)
C(8)	56(2)	37(2)	39(2)	-14(1)	2(1)	-1(1)
C(9)	41(2)	29(1)	41(2)	-15(1)	-3(1)	0(1)
C(10)	42(2)	37(2)	52(2)	-19(1)	1(1)	-1(1)
C(11)	53(2)	62(2)	68(2)	-43(2)	-4(2)	9(2)
C(12)	67(2)	49(2)	99(3)	-46(2)	-17(2)	2(2)
C(13)	67(2)	34(2)	84(3)	-19(2)	2(2)	-13(1)
C(14)	59(2)	37(2)	52(2)	-14(2)	3(1)	-8(1)
C(15)	61(2)	36(2)	32(2)	-14(1)	-2(1)	4(1)
C(16)	66(2)	38(2)	49(2)	-24(2)	3(1)	7(1)
C(17)	53(2)	26(2)	49(2)	-13(1)	3(1)	7(1)
C(18)	38(2)	34(2)	32(2)	-3(1)	-2(1)	2(1)
C(19)	35(2)	40(2)	32(1)	-14(1)	3(1)	-5(1)
C(20)	36(2)	30(1)	39(2)	-16(1)	-3(1)	-4(1)
C(21)	41(2)	27(1)	33(1)	-13(1)	-5(1)	4(1)
C(22)	56(2)	39(2)	36(2)	-14(1)	0(1)	6(1)
C(23)	44(2)	25(1)	44(2)	-12(1)	6(1)	0(1)
C(24)	42(2)	34(2)	51(2)	-20(1)	3(1)	2(1)
C(25)	55(2)	60(2)	65(2)	-40(2)	7(2)	-7(2)
C(26)	64(2)	47(2)	95(3)	-44(2)	18(2)	-4(2)
C(27)	67(2)	38(2)	87(3)	-23(2)	6(2)	13(1)
C(28)	58(2)	40(2)	48(2)	-14(2)	-1(1)	8(1)
Cl(1)	141(1)	30(1)	85(1)	-13(1)	-26(1)	-17(1)
Cl(2)	84(1)	52(1)	45(1)	3(1)	7(1)	-14(1)
Cl(3)	90(1)	72(1)	40(1)	-27(1)	-2(1)	-5(1)
Cl(4)	141(1)	32(1)	83(1)	-13(1)	28(1)	20(1)
Cl(5)	85(1)	52(1)	45(1)	2(1)	-5(1)	15(1)
Cl(6)	92(1)	73(1)	39(1)	-27(1)	4(1)	7(1)
O(1)	127(2)	43(1)	36(1)	-18(1)	-15(1)	-7(1)

Table 4. Anisotropic displacement parameters (Å $^{2}x 10^{3}$) for **4b**. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

O(2)	165(2)	38(1)	32(1)	-8(1)	-14(1)	-14(1)
O(3)	35(1)	44(1)	64(1)	-21(1)	-4(1)	-3(1)
O(4)	126(2)	43(1)	33(1)	-16(1)	15(1)	11(1)
O(5)	161(2)	37(1)	35(1)	-7(1)	13(1)	17(1)
O(6)	35(1)	47(1)	63(1)	-23(1)	6(1)	5(1)

3) Copies of ¹H NMR and ¹³C NMR spectra for all compounds

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-4c-H-1.jdf

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-4e-C-1.jdf lee-4e-C

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

.

30

이야기 : Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

$CI \rightarrow O \rightarrow $		i ⁿ	$\begin{array}{llllllllllllllllllllllllllllllllllll$
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0	4.5 4.0 3.5 3.0 2	2.5 2.0 1.5 1.0 0.5	ppm

.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R876-0H-2.jdf lee-R876-0H

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R876-0C-1.jdf lee-R876-0C

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R869-2H-1.jdf lee-R869-2H

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R876-3H-1.jdf lee-R876-3H

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R876-3C-1.jdf lee-R876-3C

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R867-3H-1.jdf lee-R867-3H

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R867-3C-1.jdf lee-R867-3C

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R868-3H-1.jdf lee-R868-3H

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R868-3C-1.jdf lee-R868-3C

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R872-3H-1.jdf lee-R872-3H

2.88

DFILE	C:\DOCUME~1\nmr\LOCALS~1\Te
COMNT	lee-R872-3H
DATIM	14-02-2009 18:00:38
OBNUC	1H
EXMOD	single pulse.ex2
OBFRQ	600.17 MHz
OBSET	5.30 KHz
OBFIN	5.47 Hz
POINT	32768
FREQU	11261.26 Hz
SCANS	8
ACQTM	2.9098 sec
PD	5.0000 sec
PW1	6.90 usec
IRNUC	1H
CTEMP	19.2 c
SLVNT	CDCL3
EXREF	0.00 ppm
BF	0.12 Hz

50

-0.000

RGAIN

÷

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R872-3C-1.jdf lee-R872-3C

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R870-3H-3.jdf lee-R870-3H

DFILE	C:\DOCUME~1\nmr\LOCALS~1\Te
COMNT	lee-R870-3H
DATIM	14-02-2009 14:06:41
OBNUC	1H
EXMOD	single pulse.ex2
OBFRQ	600.17 MHz
OBSET	5.30 KHz
OBFIN	5.47 Hz
POINT	32768
FREQU	11261.26 Hz
SCANS	8
ACQTM	2.9098 sec
PD	5.0000 sec
PW1	6.90 usec
IRNUC	1H
CTEMP	18.9 c
SLVNT	CDCL3
EXREF	0.00 ppm .
BF	0.12 Hz

50

-0.000

RGAIN

÷

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R870-3C-2.jdf lee-R870-3C

C:\DOCUME~1\nmr\LOCALS~1\Temp\lee-R874-3H-1.jdf lee-R874-2H

CI

CI-

C

4f

_	DFILE	C:\DOCUME~1\nmr\LOCALS~1\Te
00	COMNT	lee-R874-2H
°.	DATIM	16-02-2009 16:03:12
Ŷ	OBNUC	1H
	EXMOD	single pulse.ex2
	OBFRQ	600.17 MHz
•	OBSET	5.30 KHz
	OBFIN	5.47 Hz
	POINT	32768
	FREQU	11261.26 Hz
	SCANS	8
	ACQTM	2.9098 sec
	PD	5.0000 sec
	PW1	6.90 usec
	IRNUC	1H
	CTEMP	19.1 c
	SLVNT	C6D6
	EXREF	0.00 ppm
	BF	0.12 Hz
1°	RGAIN	42

÷

C:\DOCUME~1\nmr\LOCALS~1\Te DFILE COMNT lee-R874-3C 16-02-2009 16:49:30 DATIM OBNUC 13C EXMOD single pulse_dec OBFRQ 150.92 MHz OBSET 8.52 KHz OBFIN 1.74 Hz POINT 32768 FREQU 47348.49 Hz SCANS 1000 ACQTM 0.6921 sec PD 2.0000 sec PW1 4.17 usec IRNUC 1H CTEMP 20.1 c SLVNT C6D6 EXREF 77.00 ppm 1.20 Hz BF 60 RGAIN

4) Standard isotopic distribution for compounds containing chlorine and bromine

5) Copies of the representative mass spectra

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Peking University Mass Spectrometry Sample Analysis Report

Analysis Info Acquisition Date 12/16/2008 4:44:23 PM 81426_20081216_000001.d Analysis Name Bruker Apex IV FTMS Instrument Sample 4 Operator Peking University Comment **ESI** Positive Intens. +MS x10⁶ 5. 0 CI 466.82037 C ÒΗ 468.81774 C 3f 3 464.82358 2 470.81497 467.82394 469.82110 465.80885 462.81276 472.81122 459.99511 475.28618 0+---456 458 460 468 470 462 464 466 472 474 m/z Sum Formula Sigma m/z Err [ppm] Mean Err [ppm] Err [mDa] rdb N Rule e C 14 H 7 Br 1 Cl 4 Na 1 O 3 -2.36 0.18 0.011 464.82249 -1.09 8.50 ok even 2.82 4.22 C 16 H 6 Br 1 Cl 4 O 3 0.027 464.82489 1.31 11.50 ok even Bruker Daltonics DataAnalysis 3.4 printed: 12/16/2008 4:46:59 PM Page 1 of 1

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Peking University Mass Spectrometry Sample Analysis Report

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Peking University Mass Spectrometry Sample Analysis Report

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

s. e . e	•			and and a second se Second second s Second second	n an an an an an ann an Anna. An an an Anna a		
File Na Creatio File Ty File So Operate Instrun	ame : e:\n on Date/Time : 08-1 pe : Lo- purce : Acq tor : Pek ment : ZAE	naspec2\data\73467.ms2 1-4 at 14:58:56 Res Data - Raw (Magnet) Juired on MASPEC II syster King University 3-HS	n [msw/9888]		•	میں ایک	
SCAN	GRAPH. Flagging=No Scan 13#1:08. Sub =3	om.M/z. Ctd=[Thr:1000磺, M \$#0:15. Entries=955. Base N	in.Hgt:1000磺, Min.Wid(Mlt I/z=43. 100% Int.=10.20928.	:):10(7), Inc:10%, Res:10 . El. POS. Saturated.	%].		
%age	4	3	,				
90							
80		85	ci—	Me		,	
			C		1°	* <u>11</u> 17	
10	i di Bar		• • • • •	3k			75
60				· · ·			
50 -				,			
40							
					2		
30 -							
20							304
10	36	58	143 105				
0-					ւուրերներներություններ	[₩] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
	0	50 1	00 150	201) 25	50	300 M/z

.

I

.

:

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

ζ

1

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

⁻Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Peking University Mass Spectrometry Sample Analysis Report

.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Bruker Daltonics DataAnalysis 3.4

printed:

ed: 12/16/2008 5:18:20 PM

83

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Bruker Daltonics DataAnalysis 3.4

I

Supplementary Materia+(ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009