Zn-mediated electrochemical allylation of aldehydes in aqueous ammonia

Jing-mei Huang,^{*,a,b} Yi Dong^a

^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
^bMinistry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China

chehjm@scut.edu.cn

Supplementary Information

Table of contents

General methods
Experimental procedure
Spectroscopic data of products
Procedure of electrodeposition
Cyclic voltammograms of Zn^{2+} in different solutions in the absence of organic reactants
Cyclic voltammograms of Zn ²⁺ in 4.5 M aqueous ammonia solution in the presence of organic reactants
SEM image of Zn particles deposited from 4.5 M aqueous ammonia solution and 0.1 N H ₂ SO ₄ solution
X-ray diffraction spectrum of Zn particles deposited from 4.5 M aqueous ammonia solution and 0.1 N H ₂ SO ₄ solution
Copies of NMR spectra of products

General methods

Commercial solvents and reagents were used without further purification with the following exceptions: benzaldehyde, furan-2-carbaldehyde, cinnamaldehyde and 3-phenylpropanal were distilled before use, and secondary distilled water was used for the reaction.

Crotyl bromide was purchased from Aldrich; heptanal and cyclohexanecarbaldehyde was purchased from Alfa, 3-methylbenzaldehyde, picolinaldehyde, cinnamaldehyde, 3-phenylpropanal and allyl bromide were products from Alfa; furan-2-carbaldehyde, 4-methoxybenzaldehyde, 2-hydroxybenzaldehyde, 4-chlorobenzaldehyde and 2-oxoacetic acid were purchased from Aladian Corporation in China; zinc foils (98%) were purchased from domestic corporation.

Analytical thin layer chromatography (TLC) plates and the silica gel for column chromatography were phased from Qingdao Haiyang Chemical and Special Silica Gel Co, Ltd.

Proton nuclear magnetic resonance ⁽¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectroscopy were performed on Bruker Advance 300 and 500 NMR spectrometers. Chemical shifts of ¹H NMR spectra are reported as in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (*J* = 7.264, singlet). Multiplicities were given as: s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); m (multiplets), etc. The number of protons (n) for a given resonance is indicated by nH. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as in units of parts per million (ppm) downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-*d* (*J* = 77.03, triplet).

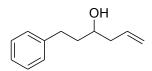
Cyclic voltmmetry (CV) analysis was performed on Auto Lab[®] PGSTAT30 (product from Metrohm AG, Switzerland).

SEM image was performed on SE-30 EXEM.

X-ray diffraction (XRD) data were collected on a PANalytical (Netherlands) X'Pert PRO X-ray diffractometer.

Experimental procedure

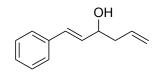
General procedure for the allylation of benzaldehyde: A mixture of benzaldehyde (0.5 mmol), allyl bromide (1.0 mmol) in aqueous ammonia (4.5 M, 5 mL, diluted from 1.5 mL of 25% (w/w) ammonia with water) was stirred in a round-bottom flask cell equipped with a pair of zinc electrodes (1.5 cm^2) at room temperature. The suspension was electrolyzed at a constant current (15 mA) until benzaldehyde was completely consumed (2 F mol⁻¹ of current was consumed, 1.5-2 hrs). The reaction mixture was quenched by 3 M HCl, and then extracted with diethyl ether (2×10 mL). The combined organic layer was washed with water (5 mL), brine (5 mL) and then dried over anhydrous magnesium sulfate. The organic solvent was removed on a rotary evaporator under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 7:1) and the corresponding homoallylic alcohol was obtained as a colourless liquid (**3a**, 68 mg, 92%). The totally consumed Zn on the electrodes was 43 mg, 0.66 mmol. The authenticities of the products are verified by comparing their ¹H NMR and ¹³C NMR spectral with reported data.


Spectroscopic data of products

OH

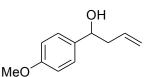
1-phenylbut-3-en-1-ol

3a (68 mg, 92%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 2.16 (1 H, br s, CHO*H*), 2.47-2.56 (2 H, m, 2 × C*H*₂CH=CH₂), 4.73 (1 H, dd, *J* 5.4 and 7.6 Hz, CHOH), 5.13-5.19 (2 H, m, 2 × CH₂CH=C*H*₂), 5.77-5.86 (1 H, m, CH₂C*H*=CH₂), 7.26-7.36 (5 H, m, 5 × *Ph*); $\delta_{\rm C}$ (500 MHz; CDCl₃; Me₄Si) 43.7, 73.2, 118.2, 125.7, 127.4, 128.3, 134.4, 143.8.


Reference: Yamamoto, Y.; Yatagi, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103, 1969.

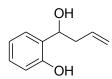
1-phenylhex-5-en-3-ol

3b (71 mg, 70%) colourless oil $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.77-1.81 (2 H, m, 2 × PhCH₂CH₂), 2.16-2.22 (1 H, m, CH₂CH=CH₂), 2.30-2.35 (1 H, m, CH₂CH=CH₂), 2.66-2.84 (2 H, m, 2 × PhCH₂CH₂), 3.67-3.69 (1 H, m, CHOH), 5.13-5.16 (2 H, m, 2 × CH₂CH=CH₂), 5.79-5.85 (1 H, m, CH₂CH=CH₂), 7.09-7.30 (5 H, m, 5 × Ph). $\delta_{\rm C}$ (300 MHz; CDCl₃; Me₄Si) 32.0, 38.4, 42.0, 69.9, 118.3, 125.8, 128.3, 128.4, 134.6, 142.0.


Reference: Schmidt, B. J. Org. Chem. 2004, 69, 7772.

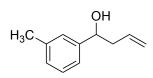
(E)-1-phenylhexa-1,5-dien-3-ol

3c (61 mg, 70%) colourless oil $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.28-2.43 (2 H, m, 2 × CH₂CH=CH₂), 4.30 (1 H, dd, *J* 6.0 and 12.3 Hz, CHOH), 5.09-5.14 (2 H, m, 2 × CH₂CH=CH₂), 5.73-5.84 (1 H, m, CH₂CH=CH₂), 6.18 (1 H, dd, *J* 6.3 and 16.0 Hz, CH=CH), 6.54 (1 H, d, *J* 16.0 Hz, CH=CH), 7.13-7.46 (5 H, m, 5 × Ph); $\delta_{\rm C}$ (300 MHz; CDCl₃; Me₄Si) 42.0, 71.7, 118.5, 126.5, 127.7, 128.6, 130.3, 131.5, 134.0, 136.6.

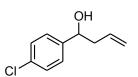

Reference: Kobayashi, S.; Nagayama, S. J. Org. Chem. 1996, 61, 2256.

1-(4-methoxyphenyl)but-3-en-1-ol

3d (76 mg, 85%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 1.94 (1 H, br s, CHO*H*), 2.41-2.44 (2 H, m, 2 × C*H*₂CH=CH₂), 3.72 (3 H, s, 3 × OC*H*₃), 4.61 (1 H, t, *J* 6.3 Hz, C*H*OH), 5.04-5.09 (2 H, m, 2 × CH₂CH=C*H*₂), 5.68-5.76 (1 H, m, CH₂C*H*=CH₂), 6.80-7.21 (4 H, m, 4 × *Ph*); $\delta_{\rm C}$ (500 MHz; CDCl₃;

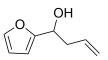

Me₄Si) 42.8, 54.3, 72.1, 112.9, 117.2, 126.1, 133.7, 135.2, 158.1. Reference: Dam, J. H.; Fristrup, P.; Madsen, R. *J. Org. Chem.* **2008**, *73*, 3228.

2-(1-hydroxybut-3-enyl)phenol

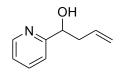

3e (59 mg, 85%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 2.48-2.59 (2 H, m, 2 × CH₂CH=CH₂), 2.94 (1 H, br s, CHO*H*), 4.79 (1 H, dd, *J* 5.0 and 8.2 Hz, CHOH), 5.12-5.15 (2 H, m, 2 × CH₂CH=CH₂), 5.72-5.81 (1 H, m, CH₂CH=CH₂), 6.75-7.11 (4 H, m, 4 × *Ph*); $\delta_{\rm C}$ (500 MHz; CDCl₃; Me₄Si) 42.0, 74.5, 117.1, 119.1, 119.7, 126.4, 127.0, 128.8, 133.8, 155.3.

Reference: Zhang, T.; Shi, M.; Zhao, M. Tetrahedron 2008, 64, 2412.

1-m-tolylbut-3-en-1-ol


3f (67 mg, 82%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 2.11 (1 H, br s, CHO*H*), 2.31 (3 H, s, CH₃), 2.40-2.48 (2 H, m, 2 × CH₂CH=CH₂), 4.63 (1 H, dd, *J* 5.4 and 7.3 Hz, CHOH), 5.07-5.13 (2 H, m, 2 × CH₂CH=CH₂), 5.71-5.79 (1 H, m, CH₂CH=CH₂), 7.02-7.20 (4 H, m, 4 × *Ph*); $\delta_{\rm C}$ (500 MHz; CDCl₃; Me₄Si) 21.4, 43.7, 73.3, 118.1, 122.8, 126.4, 128.1, 128.2, 134.5, 137.9, 143.8.

1-(4-chlorophenyl)but-3-en-1-ol


3g (64 mg, 70%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 2.35-2.45 (2 H, m, 2 × CH₂CH=CH₂), 4.63 (1 H, dd, *J* 5.0 and 7.6 Hz, CHOH), 5.06-5.10 (2 H, m, 2 × CH₂CH=CH₂), 5.66-5.74 (1 H, m, CH₂CH=CH₂), 7.19-7.25 (4 H, m, 4 × *Ph*); $\delta_{\rm C}$ (500 MHz; CDCl₃; Me₄Si) 43.7, 72.5, 118.6, 127.1, 128.4, 133.1, 133.9, 142.2.

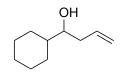
Reference: Makoto, W.; Hidenori, O.; Kinya, A. Bull. Chem. Soc. Jpn. 1990, 63, 1738.

1-(furan-2-yl)but-3-en-1-ol

3h (58 mg, 84%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 2.52-2.58 (2 H, m, 2 × CH₂CH=CH₂), 4.68 (1 H, t, *J* 6.3 Hz, CHOH), 5.06-5.13 (2 H, m, 2 × CH₂CH=CH₂), 5.69-5.78 (1 H, m, CH₂CH=CH₂), 6.18 (1 H, d, *J* 3.1 Hz, *furyl*), 6.26 (1 H, dd, *J* 1.9 and 3.1 Hz, *furyl*), 7.30-7.31 (1 H, m, *furyl*); $\delta_{\rm C}$ (300 MHz; CDCl₃; Me₄Si) 40.0, 66.9, 106.1, 110.1, 118.5, 133.7, 142.0, 156.0. Reference: Wang, Z.; Zha, Z.; Zhou, C. *Org. Lett.* **2002**, *4*, 1683.

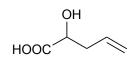
1-(pyridin-2-yl)but-3-en-1-ol

3i (46 mg, 84%) yellow oil $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.40-2.54 (1 H, m, CH₂CH=CH₂), 2.55-2.67 (1 H, m, CH₂CH=CH₂), 4.74-4.80 (1 H, m, CHOH), 5.06-5.15 (2 H, m, 2 × CH₂CH=CH₂), 5.74-5.91 (1 H, m, CH₂CH=CH₂), 7.15-7.22 (1 H, m, *pyridyl*), 7.26-7.32 (1 H, m, *pyridyl*), 7.63-7.71 (1 H, m, *pyridyl*), 8.52-8.53 (1 H, m, *pyridyl*); $\delta_{\rm C}$ (300 MHz; CDCl₃; Me₄Si) 42.9, 72.2, 118.0, 120.4, 122.3, 134.1, 136.6, 148.2, 161.3.


Reference: Kobayashi, S.; Nagayama, S. J. Org. Chem. 1996, 61, 2256.

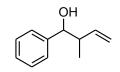
ÓН

dec-1-en-4-ol


3j (39 mg, 50%) colourless oil $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.87 (3 H, m, CH₃), 1.15-1.50 (10 H, m, 10 × CH₂), 2.05-2.18 (1 H, m, CH₂CH=CH₂), 2.23-2.39 (1 H, m, CH₂CH=CH₂), 3.61 (1 H, m, CHOH), 5.06-5.18 (2 H, m, 2 × CH₂CH=CH₂), 5.74-5.92 (1 H, m, CH₂CH=CH₂).

Reference: Jiang, S.; Agoston, G. E.; Chen, T.; Cabal, M-P. and Turos, E. *Organometallics*, **1995**, *14*, 4697.

1-cyclohexylbut-3-en-1-ol


3k (41 mg, 53%) colourless oil $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 0.91-1.32 (4 H, m, 4 × *cyclohexyl*), 1.56-1.82 (7 H, m, 7 × *cyclohexyl*), 2.03-2.10 (1 H, m, CH₂CH=CH₂), 2.23-2.30 (1 H, m, CH₂CH=CH₂), 3.30-3.35 (1 H, m, CHOH), 5.06-5.10 (2 H, m, 2 × CH₂CH=CH₂), 5.72-5.82 (1 H, m, CH₂CH=CH₂) Reference: Li, G.-L. and Zhao, G. *Org. Lett.* **2006**, *8*, 633.

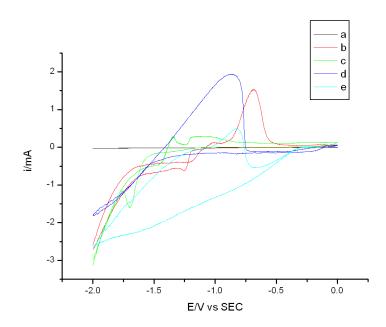
2-hydroxypent-4-enoic acid

31 (28 mg, 48%) colourless oil $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 2.40-2.47 (1 H, m, CH₂CH=CH₂), 2.54-2.62 (1 H, m, CH₂CH=CH₂), 4.28 (1 H, dd, *J* 4.4 and 6.6 Hz, CHOH), 5.11-5.16 (2 H, m, 2 × CH₂CH=CH₂), 5.72-5.81 (1 H, m, CH₂CH=CH₂). $\delta_{\rm C}$ (300 MHz; CDCl₃; Me₄Si) 38.3, 69.8, 119.3, 132.1, 178.3.

Reference: Kaur, P.; Singh, P.; Kumar, S. Tetrahedron 2005, 61, 8231.

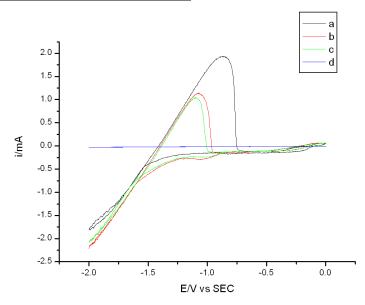
2-methyl-1-phenylbut-3-en-1-ol

3m (76 mg, 94%) colourless oil $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) (*syn* isomer) 0.99 (3 H, d, *J* 6.8 Hz, *CH*₃), 2.41-2.60 (1 H, m, CHCH₃), 4.59 (1 H, d, *J* 5.5 Hz, CHOH), 4.98-5.07 (2 H, m, 2 × CH₂CH=CH₂), 5.66-5.86 (1 H, m, CH₂CH=CH₂), 7.20-7.37 (5 H, m, 5 × *Ph*). (*anti* isomer) δ 0.85 (3 H, d, *J* 6.8 Hz, CH₃), 2.41-2.60 (1 H, m, CHCH₃), 4.34 (1 H, d, *J* 7.8 Hz, CHOH), 5.12-5.22 (2 H, m, 2 × CH₂CH=CH₂), 5.66-5.86 (1 H, m, CH₂CH=CH₂), 7.20-7.37 (5 H, m, 5 × *Ph*). $\delta_{\rm C}$ (300 MHz; CDCl₃; Me₄Si) (*syn* isomer) 14.0, 44.6, 77.2, 115.6, 126.5, 127.3, 128.0, 140.3, 142.5; $\delta_{\rm C}$ (*anti* isomer) 16.5, 46.3, 77.8, 116.9, 126.8, 127.6, 128.2, 140.6, 142.4.

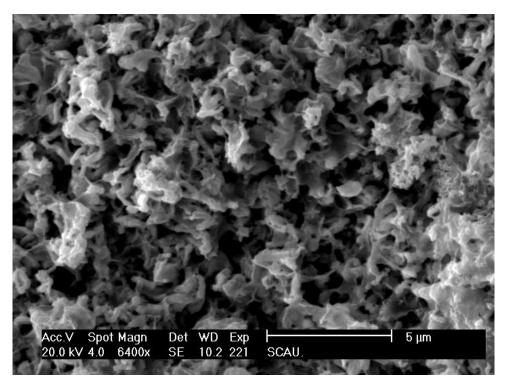

Reference: Wang, Z.; Zha, Z.; Zhou, C. Org. Lett. 2002, 4, 1683.

procedure of electrodeposition

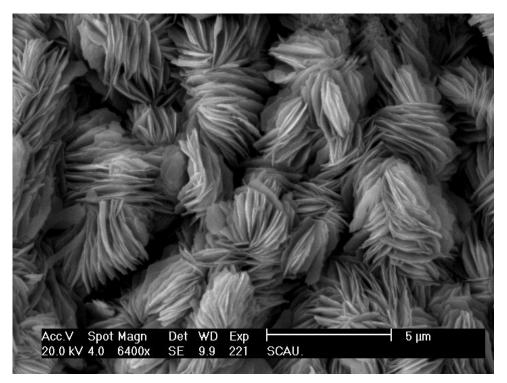
General Electrodeposition procedure: 0.1 M LiClO₄ solution (or 0.1 M NaOH, 0.1 N H₂SO₄ and 4.5 M aqueous ammonia) was electrolyzed at constant current of 15 mA in a round-bottom flask cell equipped with a pair of zinc electrodes (1.5 cm²) at room temperature for 2 hrs. The Zn powder deposited on the cathode was collected, washed and weighted.


Cyclic voltammograms of Zn²⁺ in different solutions in the absence of reactants

The electrochemistry of Zn deposition from 0.1 N H_2SO_4 , 0.1 M LiClO₄, 0.1 M NaOH and 4.5 M aqueous ammonia solutions was investigated by cyclic voltmmetry (CV) with the same concentration of zinc (II) salt (Figure 2). The available experimental data did not allow full understanding of the deposition mechanism. However, curves of zinc deposition recorded in different solutions exhibited different reduction potentials. As we can see from the following Figure, deposition in 4.5 M aqueous ammonia solution started from - 0.1 V, which was the one who deposited easiest, compared that with 0.1 N H_2SO_4 (-0.3V), 0.1 M LiClO₄ (-1.1V) and 0.1 M NaOH (-1.5V).


Cyclic voltammograms of the solutions recorded at a scan rate of 50 mV s⁻¹ at rt with two platinum electrodes (12 mm²). (a) H₂O only. (b) 13 mM ZnCl₂, 0.1 N LiClO₄. (c) 13 mM ZnCl₂, 0.1 N NaOH. (d) 13 mM ZnCl₂, 4.5 M aqueous ammonia solution. (e) 13 mM ZnCl₂, 0.1 N H₂SO₄ (a minimal scale represent 5 mA on Y axis for curve e)

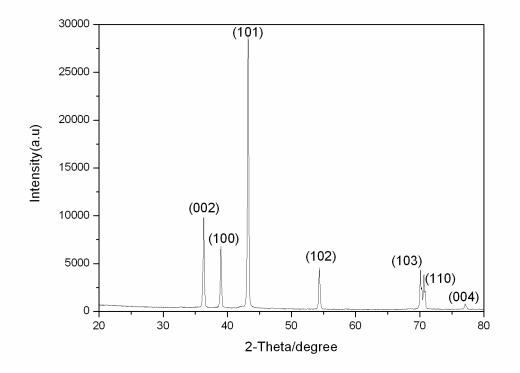
<u>Cyclic voltammograms of Zn²⁺ in 4.5 M aqueous ammonia solution in the presence of organic reactants</u>



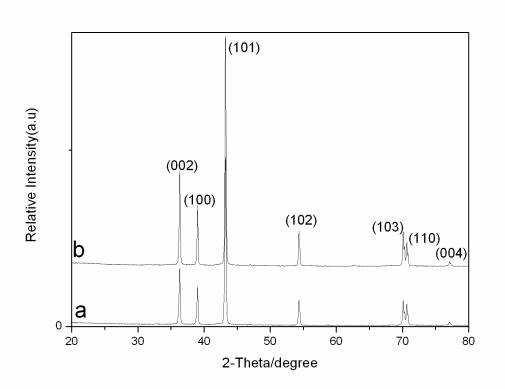
Cyclic voltammograms of the solution recorded at a scan rate of 50 mV s⁻¹ and room temperature with two platinum electrodes (12 mm²). (a) 13 mM ZnCl₂, 4.5 M aqueous ammonia solution. (b) 13 mM ZnCl₂, 20 mM allyl bromide, 4.5 M aqueous ammonia solution. (c) 13 mM ZnCl₂, 10 mM benzaldehyde, 20 mM allyl bromide, 4.5 M aqueous ammonia solution. (d) H₂O only.

<u>SEM image of Zn particles deposited from 4.5 M aqueous ammonia solution and 0.1 N H₂SO₄ solution</u>

SEM image of Zn particles deposited from 4.5 M aqueous ammonia solution

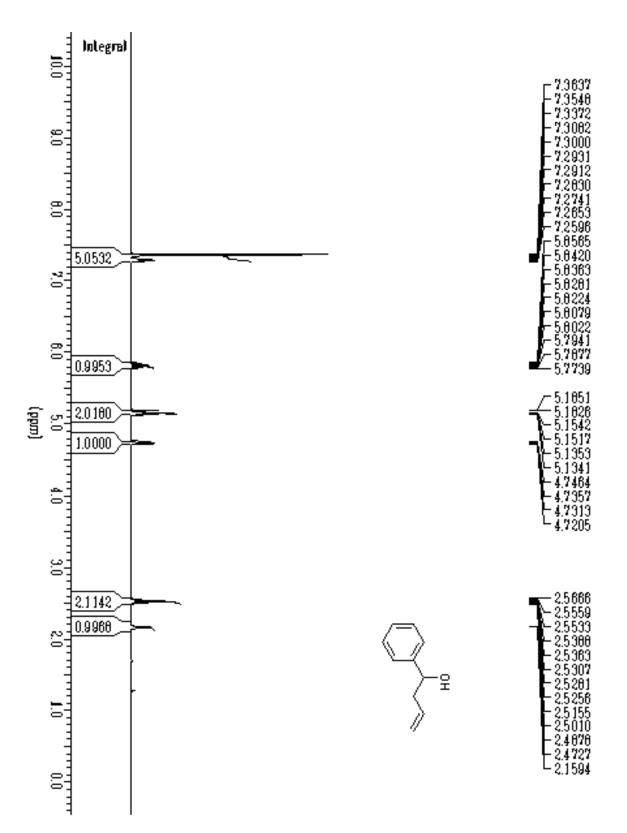


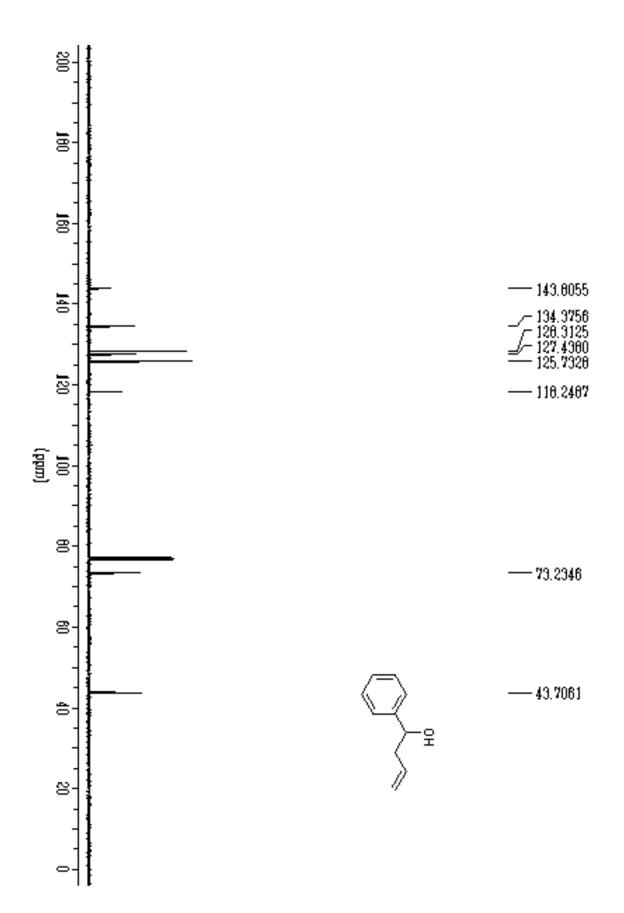
SEM image of Zn particles deposited from 0.1 N H_2SO_4 solution

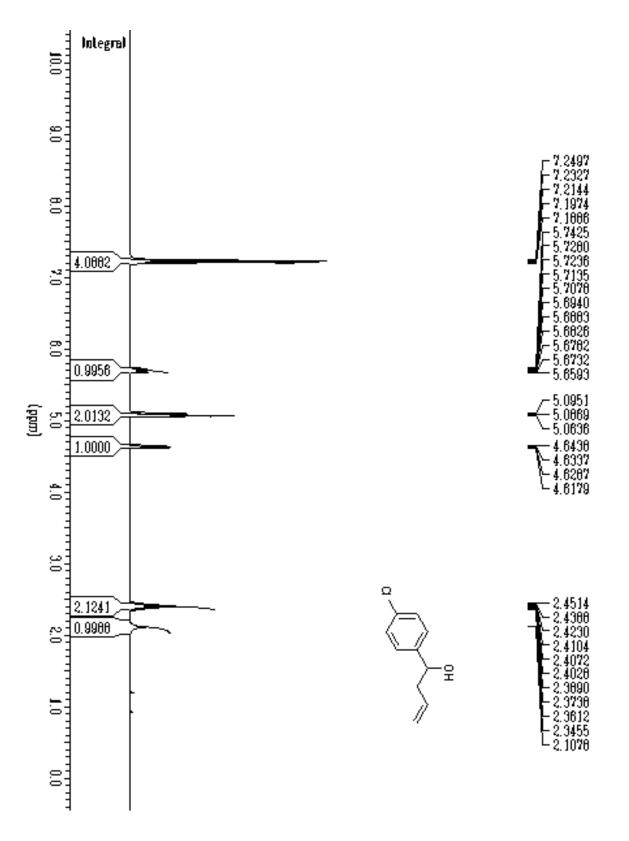

<u>X-ray diffraction spectrum of Zn particles prepared in 4.5M aqueous ammonia</u> solution and 0.1 N H_2SO_4 solution

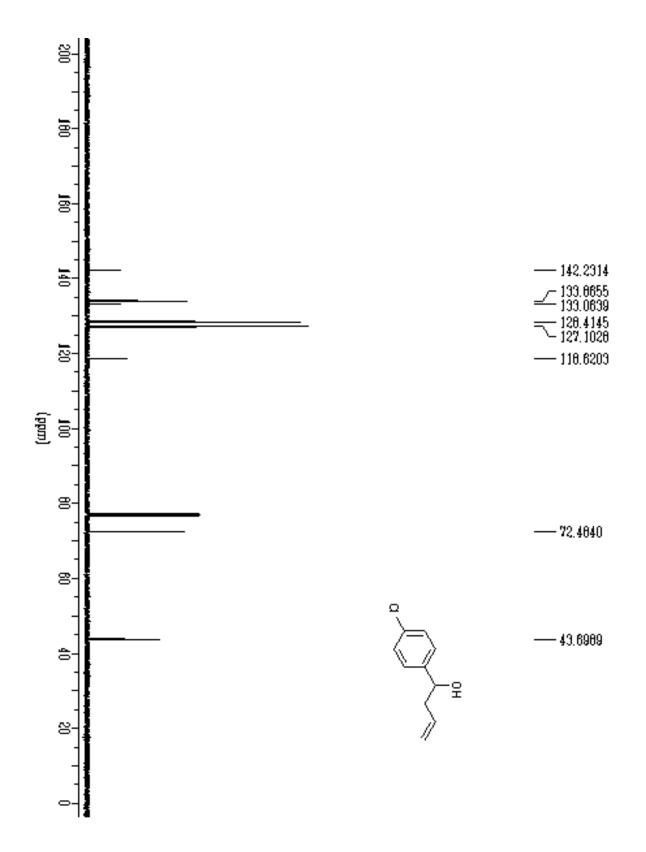
X-ray diffraction spectrum of deposits from 4.5 M aqueous ammonia solution

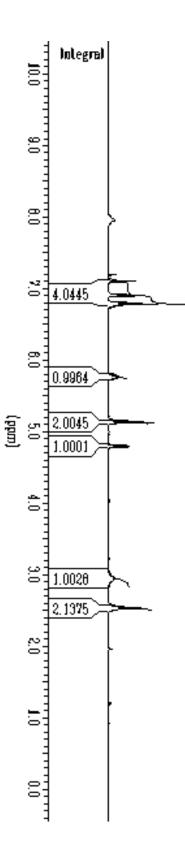
X-ray diffraction spectrum of Zn particles deposited from 0.1 N H₂SO₄ solution

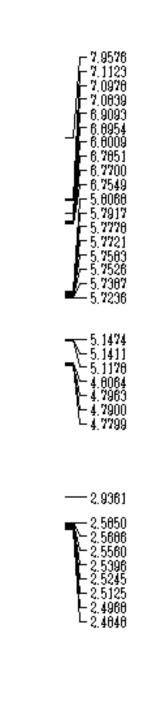


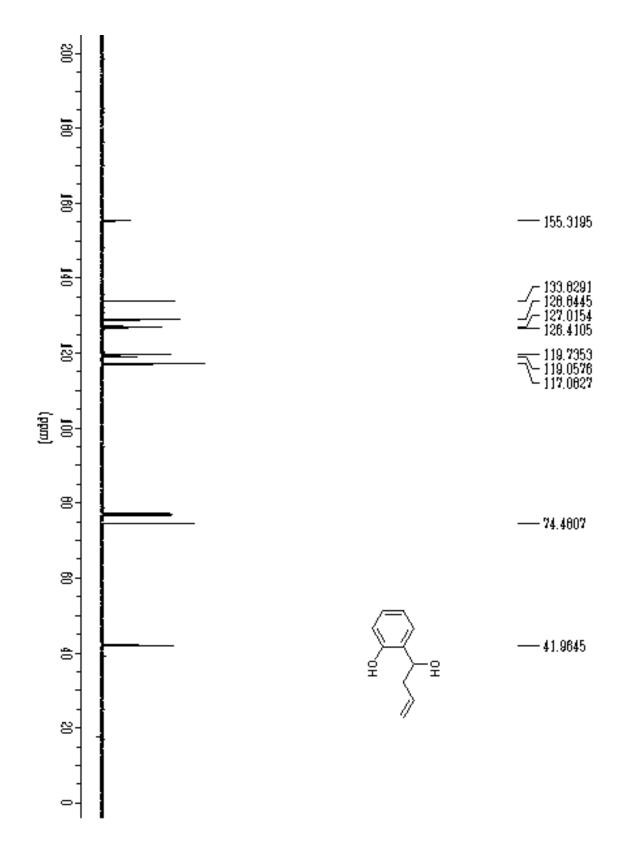

Comparison of X-ray diffraction spectrum of deposits from 4.5 M aqueous ammonia solution and 0.1 N $\rm H_2SO_4$ solution

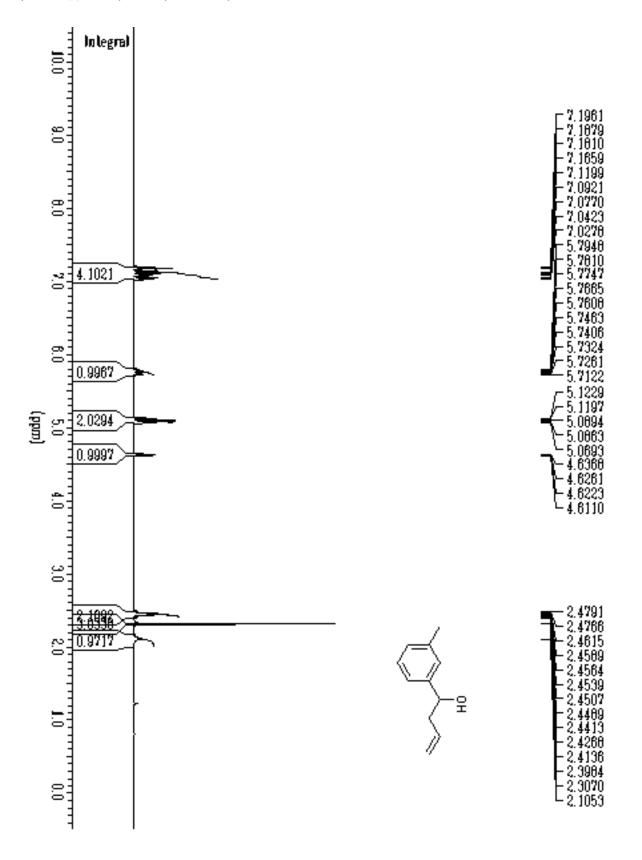

- (a) from 4.5 M aqueous ammonia solution
- (b) from 0.1 N H_2SO_4 solution

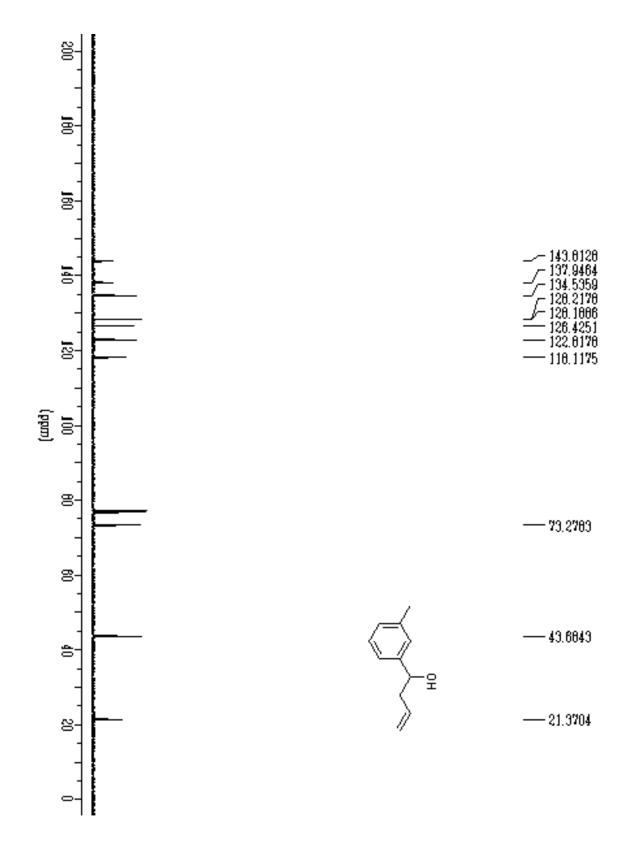

••

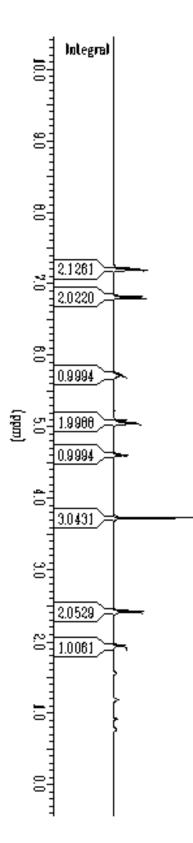

Copies of NMR spectrum for products

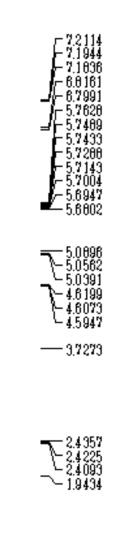




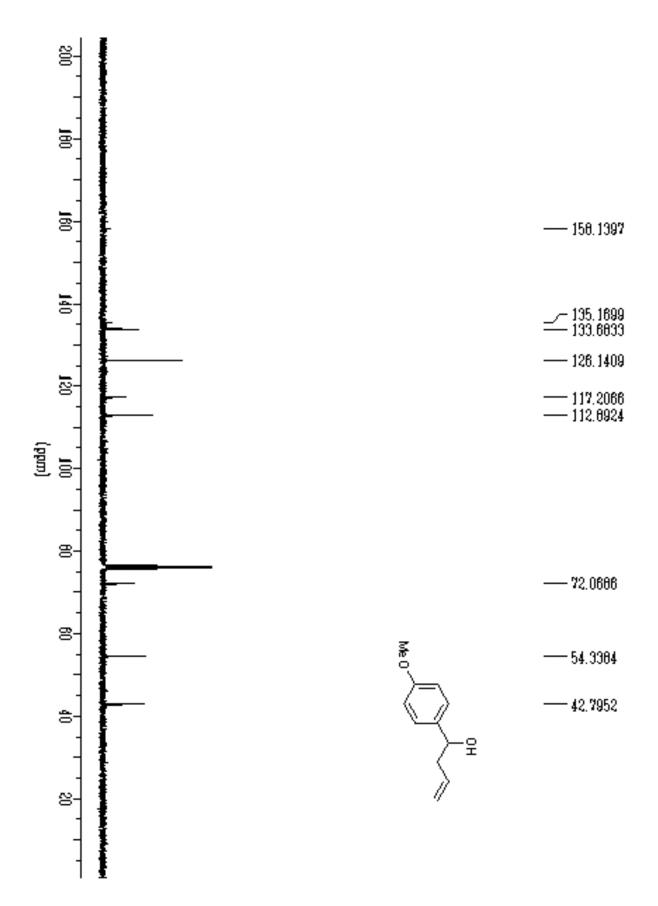



é


£



Electronic Supplementary Material for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009



80

요

Electronic Supplementary Material for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

