Supporting Information for

Remarkably Bistable and Fast Reversible Calixarene Based Copper Centered Redox Molecular Switch

Ulrich Darbost,* Vanessa Penin, Erwann Jeanneau, Caroline Félix, Francis Vocanson, Christophe Bucher, Guy Royal and Isabelle Bonnamour

E-mail : ulrich.darbost@univ-lyon1.fr

Outline:

Synthesis, analysis and electrochemistry general methods

Synthetic procedures

Crystallographic data

Figure S1: ¹ H NMR Spectrum of compound **2**

Figure S2: ¹³C NMR Spectrum of compound 2

Figure S3: 13C-DEPT NMR Spectrum of compound **2**

Figure S4: COSY NMR Spectrum of compound **2**

Figure S5: HSQC Spectrum of compound **2**

Figure S6: Mass Spectrum of compound **2**

Figure S7: IR Spectrum of compound **2**

Figure S8: ¹ H NMR Spectrum of compound **3**

Figure S9: ¹³C NMR Spectrum of compound 3

Figure S10: 13C-DEPT NMR Spectrum of compound **3**

Figure S11: COSY NMR Spectrum of compound **3**

Figure S12: HSQC Spectrum of compound **3**

Figure S13: Mass Spectrum of compound **3**

Figure S14: IR Spectrum of compound **3**

Figure S15: ¹ H NMR Spectrum of compound **3.CuI Figure S16:** 13C NMR Spectrum of compound **3.CuI Figure S17:** Mass Spectrum of compound **3.CuI Figure S18:** IR Spectrum of compound **3.CuI Figure S19:** UV-vis Spectrum of compound **3.CuI**

Figure S20: EPR Spectrum of compound **3.CuII Figure S21:** Mass Spectrum of compound **3.CuII Figure S22:** IR Spectrum of compound **3.CuII Figure S23:** UV-vis Spectrum of compound **3.CuII**

Figure S24: Dual display of ¹ H NMR spectra of compounds **3** and **3.CuI**

Figure S25-S35: Electrochemical experiments realized on compounds **3.CuI** and **3.CuII**

General methods. Solvents were purified and dried by standard methods prior to use. All reactions were carried out under nitrogen. Column chromatography was performed using silica gel (Kieselgel-60, 0.040-0.063 nm, Merck). Reactions were monitored by TLC on POLYGAM[®] SIL G/UV₂₅₄ (Macherey-Nagel) silica gel plate and visualized by UV light. ¹H NMR and ¹³C NMR spectra were recorded at 300 and 75 MHz (CDCl₃) on a Bruker Avance DRX 300 spectrometer. Mass spectra were acquired on a ThermoFinnigan LCQ Advantage ion trap instrument, detecting positive ions (+) or negative ions (-) in the ESI mode. Samples (in methanol:dichloromethane:water, 45:40:15, v/v/v) were infused directly into the source (5μL/min) using a syringe pump. The following source parameters were applied: spray voltage 3.0–3.5 kV, nitrogen sheath gas flow 5–20 arbitrary units. The heated capillary was held at 200°C. High resolution mass spectra were acquired on a THERMOQUEST Finnigan MAT 95 XL. Acetonitrile (Rathburn, HPLC grade) was used as received. Tetra-*n*-butylammonium PF₆ was purchased from Fluka and used as recieved. Electrochemical experiments were conducted in a conventional three-electrode cell. For analytical experiments, the counter electrode was a platinum wire. The reference electrode was a $Ag/AgNO₃$ (10 mM in CH₃CN containing 0.1 M TBAP) purchased from CH-instrument. Rotating disk electrode (RDE) voltammetry was carried out with a radiometer equipment at a rotation rate of 500 rpm using glassy carbon RDE tips (\varnothing = 2 mm). Cyclic voltammetry (CV) curves were recorded using a CH instrument CH-660 potentiostat. The CH-intrument vitreous carbon working electrodes ($(\emptyset = 2 \text{ mm})$) were polished with 1 μ m diamond paste before each recording. Electrolyses were performed at controlled potential using a Pt plate as working electrode as well as a large Pt counter electrode isolated through an ionic bridge.

Synthesis of Di-quinoline calixarene 2

Under nitrogen atmosphere, dibromo calixarene 1 (4.25 g; 4.62 mmol; 1 equiv) and K_2CO_3 $(2.55 \text{ g}$; 18.5 mmol; 4 equiv) were dissolved in freshly distillate acetonitrile (80 mL) . The suspension was stirring during 30 minutes at room temperature. 8-hydroxyquinoline (5.36 g; 37,0 mmol ; 8 éq.) was then added and the reaction mixture was refluxing during 5 days. After allowing the mixture going back to room temperature, the solvent was removed under reduced pressure and the resulting residue was dissolved in dichloromethane and wash with HCl 10 % (100 mL), then with water until $pH = 7$. After dichloromethane extraction, drying, filtration and solvent evaporation, the resulting crude compound was purified by flash chromatography (methanol/dichloromethane 3/97) giving pure diquinoleine calixarene **2** (3.09 g, 64 %) as pale beige solid: mp 190 °C dec; IR (CHCl₃) v 3403, 2952, 1485, 1318, 1111, 745 cm⁻¹; ¹H NMR (CDCl3) δ 0.89 (s, 18 H, tBu), 1.22 (s, 18H, tBu), 2.17-2.22 (m, 4H, O-CH2-CH2-*CH2*-CH2-Oquino), 2.28-2.34 (m, 4H, O-CH2-C*H2*-*C*H2-CH2-O-quino), 3.24 (d, 4H, *J* = 13 Hz, Ar-*CH2*-Ar ax), 4.00 (t, 4H, $J = 6.2$ Hz, O-CH₂-CH₂-CH₂-CH₂-O-quino), 4.20 (d, 4H, $J = 13$ Hz, Ar-CH₂-Ar eq), 4.31 (t, 4H, *J* = 5.9 Hz, O-C*H2*-CH2-*C*H2-CH2-O-quino), 6.73 (s, 4H, Ar*Hcalix*), 6.98 (s, 4H, Ar*Hcalix*), 7.06 (sl, 2H, *Hquinoline*), 7.29-7.38 (m, 6H, *Hquinoline*), 7.49 (s, 2H, O*H*) ; 8.10 (d, 2H, *J* = 7 Hz, *Hquinoline*), 8.91 (m, 2H, *Hquinoline*); 13C NMR (CDCl3) δ 26.2, 27.3, 31.4, 32.1, 34.2, 34.3, 68.9, 76.5, 109.4, 119.8, 121.8, 125.5, 125.9, 127.2, 128.2, 129.9, 133.0, 136.2, 140.8, 141.8, 147.2, 149.6, 150.3, 151.1, 155.2. HRMS (ESI-TOF) m/z : calcd for C₇₀H₈₃N₂O₆ [M + H]⁺: 1047.6251; Found: 1047.6244.

Synthesis of [di-quino di-imidazole] calixarene 3

Under nitrogen atmosphere, anhydrous THF was added to a mixture of di-quinoline calixarene **2** $(2.00 \text{ g}; 1.91 \text{ mmol})$ and NaH $(60\%$ in oil, $1.38 \text{ g}; 34.5 \text{ mmol})$. The reaction mixture was stirred for one hour at room temperature and 2-chloromethyl-*N*-methylimidazole hydrochloride (1.92 g, 11.5 mmol) was introduced. After 18 h of refluxing, the solvent was removed under reduced pressure and the resulting residue was dissolved in dichloromethane and washed with water until $pH = 7$. After dichloromethane extraction drying, filtration and solvent evaporation, the resulting crude compound was purified by flash chromatography (dichlorométhane/méthanol/triéthylamine : 88/10/2) giving pure di-imidazole di-quinoline calixarene **3** (1.13 g, 48 %) as a white solid: mp 194 °C ; IR (CHCl₃) v 2959, 1479, 1260, 1105, 791 cm⁻¹; ¹H NMR (CDCl₃) δ 0.79 (s, 18 H, tBu), 1.22 (s, 18H, tBu), 1.79-1.90 (m, 4H, O-CH₂-

CH2-*CH2*-CH2-O-quino), 1.95-2.05 (m, 4H, O-CH2-C*H2*-*C*H2-CH2-O-quino), 2.99 (d, 4H, *J* = 13 Hz, Ar-*CH2*-Ar ax), 3.46 (s, 6H, NC*H3*), 3.90 (t, 4H, *J* = 5.9 Hz, O-C*H2*-CH2-CH2-CH2-O-quino), 4.09 (t, 4H, *J* = 6.2 Hz, O-CH*2*-CH2-*C*H2-C*H*2-O-quino), 4.30 (d, 4H, *J* = 13 Hz, Ar-*CH2*-Ar eq), 4.78 (s, 4H, C*H2*Im), 6.44 (s, 4H, Ar*Hcalix*), 6.70 (s, 2H, Im*H*), 6.88 (s, 2H, Im*H*), 6.97 (s, 4H, Ar*Hcalix*), 7.02 (d, 2H, *J* = 7.0 Hz, *Hquinoline*), 7.20-7.34 (m, 6H, *Hquinoline*), 8.03 (d, 2H, *J* = 7 Hz, *H_{quinoline}*), 8.83-8.84 (m, 2H, *H_{quinoline}*); ¹³C NMR (CDCl₃) δ 26.2, 26.8, 31.3, 31.6, 32.1, 33.2, 34.1, 34.4, 67.7, 69.5, 75.0, 109.4, 119.7, 121.9, 125.1, 125.8, 125.8, 128.5, 129.9, 132.9, 135.5, 136.2, 140.8, 145.1, 145.3, 149.5, 151.8, 154.7, 155.3. HRMS (ESI-TOF) m/z : calcd for $C_{80}H_{95}N_6O_6 [M + H]^+$: 1235.7313; Found: 1235.7313.

Synthesis of complex 3.Cu I

Under nitrogen, CHCl₃ (3 mL) was added to a mixture of di-quino di-midazole calixarene **3** (30.0) mg, 0.024 mmol) and $\text{[Cu(CH₃CN)₄]PF₆$ (9.5 mg, 0.025 mmol). The resulting pale yellow solution was stirring for one hour at room temperature. After a removal of the solvent under reduces pressure, the obtained complex **3.Cu I** was dry under vacuum. (31 mg, 88 %): mp 155 °C dec; IR (CHCl₃) v 2953, 1571, 1502, 1479, 837 cm⁻¹; ¹H NMR (CDCl₃) δ 0.81 (s, 18 H, tBu), 1.37 (s, 18H, tBu), 1.90-2.20 (m, 8H, O-CH2-C*H2*-*CH2*-CH2-O-quino), 3.02 (s, 6H, NC*H3*), 3.11 (d, 4H, *J* = 13 Hz, Ar-*CH2*-Ar ax), 3.70-3.80 (m, 4H, O-C*H2*-CH2-CH2-CH2-O-quino), 3.95 (d, 4H, *J* = 13 Hz, Ar-*CH2*-Ar eq), 4.30-4.40 (m, 4H, O-CH*2*-CH2-*C*H2-C*H*2-O-quino), 5.45-5.55 (m, 4H, C*H2*Im), 6.36 (s, 4H, Ar*Hcalix*), 6.80-7.00 (m, 4H, Im*H*), 7.14 (s, 4H, Ar*Hcalix*), 7.18 (d, 2H, *J* = 8.4 Hz, *Hquinoline*), 7.30-7.55 (m, 6H, *Hquinoline*), 8.12 (d, 2H, *J* = 8.1 Hz, *Hquinoline*), 8.80 (d, 2H, *J* $= 4.6$ Hz, $H_{\text{quinoline}}$); ¹³C NMR (CDCl₃) δ 26.5, 27.8, 31.5, 31.7, 32.1, 34.0, 34.6, 71.0, 109.7, 120.1, 122.2, 124.9, 126.7, 127.6, 130.0, 131.6, 135.9, 136.6, 140.1, 145.0, 147.2, 149.7, 150.4, 153.8, 154.8. HRMS (ESI-TOF) m/z: calcd for C₈₀H₉₄CuN₆O₆ [M]⁺: 1297.6531; Found: 1297.6528.

Synthesis of complex 3.Cu II

Under nitrogen, CH3CN (3 mL) was added to a mixture of di-quino di-midazole calixarene **3** $(32.1 \text{ mg}, 0.026 \text{ mmol})$ and $Cu(CIO₄)$, $6H₂O$ (9.8 mg, 0.026 mmol). The resulting deep green solution was stirring for one hour at room temperature. After a removal of the solvent under reduces pressure, the obtained complex **3.Cu II** was dry under vacuum. (32 mg, 82 %): mp 190 $^{\circ}$ C dec; IR (CHCl₃) v 2954, 1585, 1509, 1479, 1083 cm⁻¹; HRMS (ESI-TOF) m/z: calcd for $C_{80}H_{94}ClCuN_6O_{10}$ [*M*-ClO₄]⁺: 1396.6016; Found: 1396.6018; UV-vis (λ_{max} = 635 nm, ε = 62.4 M^{-1} .cm $^{-1}$). EPR: (9.44 GHz, 40K, CH₃CN/Toluene 1/1, v/v): A_{//} = 172 10⁻⁴ cm⁻¹ g_{//} = 2.211 g₊ = 2.004.

Crystallographic data

A suitable crystal was mounted on a Nonius KappaCCD diffractometer using Mo K α radiation (λ $= 0.71073$ Å). Intensities were collected at 150(1) K for CCDC 727116 and 293(2) K for CCDC 727115 by means of the COLLECT software.[1] Reflection indexing, Lorentz-polarization correction, peak integration, and background determination were carried out with DENZO.[2] Frame scaling and unit-cell parameters refinement were made with SCALEPACK.[2] A semiempirical absorption correction was applied using the program DIFABS [3]. The structures were solved by direct methods with SIR97.[4] The remaining non-hydrogen atoms were located by successive difference Fourier map analyses. H-atoms were placed geometrically and included in the refinement using soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93-0.98 Å and O-H = 0.82 Å) and isotropic atomic displacement parameters $(U(H))$ in the range 1.2-1.5 times U_{eq} of the adjacent atom). In the last cycles of the refinement, the hydrogen atoms were refined using a riding mode. The structure refinement was carried out with CRYSTALS.[5]

- [2] Otwinowski, Z.; Minor, W. *Methods in Enzymology*; Carter, C. W.,
- Jr., Sweet, R. M., Eds.; Academic Press: New York, 1997; Vol. *276*,
- pp 307-326.
- [3] Walker N. and Stuart D., *Acta Crystallogr*., Sect A **1983**, 39, 158-166.
- [4] Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo,
- C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna,
- R. *J. Appl. Crystallogr.* **1999**, *32*, 115–119.

[5] Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K. and Watkin, D. J. *J. Appl. Crystallogr.* **2003**, *36*, 1487.

^[1] Nonius, B. V. *COLLECT*; Nonius: Delft, The Netherlands, 1997-2001.

Table S1. Selected Crystal data for [3.Cu(II)H₂O](ClO₄)₂

Table S2. Selected Crystal data for [3.Cu(I)]PF₆

Figure S1: ¹ H NMR Spectrum of compound **2**

Figure S2: 13C NMR Spectrum of compound **2**

Figure S4: COSY-2D NMR Spectrum of compound **2**

Figure S5: HSQC Spectrum of compound **2**

Figure S6: Mass Spectrum of compound **2**

Figure S7: IR Spectrum of compound **2**

Figure S8: ¹H NMR Spectrum of compound 3

Figure S9: 13C NMR Spectrum of compound **3**

Figure S11: COSY NMR Spectrum of compound **3**

Figure S13: Mass Spectrum of compound **3**

Figure S14: IR Spectrum of compound **3**

Figure S15: ¹ H NMR Spectrum of compound **3.CuI**

Figure S16: 13C NMR Spectrum of compound **3.CuI**

Figure S17: Mass Spectrum of compound **3.CuI**

Figure S20: EPR Spectrum of compound **3.CuII**

EPR Spectrum, Freq. 9.44 GHz, Bruker EMX-plus spectrometer coupled with an Oxford Instrument Hélium cryostat. Frozen solution (1.45 mM) in CH_3CN/T oluène 1/1, v/v), T= 40K

 A_{II} = 172 10⁻⁴ cm⁻¹ $g_{\ell\ell}$ = 2.211 g_{\perp} = 2.004

Figure S22: IR Spectrum of compound **3.CuII**

Figure S24: Dual display of ¹ H NMR spectra of compounds **3** and **3.CuI**

Figure S25: CV curves of $[3$.Cu(I)]⁺ in CH₃CN + 0.1 M TBAPF₆ (0.1 V.s⁻¹, 1 mM, vitr. Carbon α 2 mm, *E* vs Ag/Ag⁺).

Figure S26: CV curves of $[3$.Cu(I)]⁺ in CH₃CN + 0.1 M TBAPF₆ (1V.s⁻¹, 1 mM, vitr. carbon ø 2 mm, E vs Ag/Ag^+).

Figure S27: CV curves of $[3$.Cu(I)]⁺ in CH₃CN + 0.1 M TBAPF₆ (5V.s⁻¹, 1 mM, vitr. carbon ø 2 mm, E vs Ag/Ag^+).

Figure S28: (*solid line*) Voltamperogram of $[3$.Cu(I)]⁺ recorded with a vitreous carbon rotating disk in CH₃CN + 0.1 M TBAPF₆ (500 rd. s⁻¹, 10 mV.s⁻¹, 1 mM, vitr. carbon ø 2 mm, *E* vs Ag/Ag^+).

(c*rosses*) Voltamperogram recorded with a vitreous carbon rotating disk after bulk oxidation (carbon working electrode, $E_{app} = 0.8 \text{ V}$) of $[3 \text{Cu}(I)]^+$ in CH₃CN + 0.1 M TBAPF₆ (500 rd. s⁻¹, 10 mV.s[−]¹ , 1 mM, vitr. carbon ø 2 mm, *E* vs Ag/Ag⁺).

Figure S29: (*solid line*) CV curve of $[3$ Cu(I)^{$+$} recorded in CH₃CN + 0.1 M TBAPF₆ (100) mV.s⁻¹, 1 mM, vitr. carbon ø 2 mm, *E* vs Ag/Ag⁺).

(c*rosses*) CV curve recorded after bulk oxidation (carbon working electrode, *E*app = 0.8 V) of $[3$.Cu(I)]⁺ in CH₃CN + 0.1 M TBAPF₆ (100 mV.s⁻¹, 1 mM, vitr. carbon ø 2 mm, *E* vs Ag/Ag⁺).

Figure S31: CV curves of $[3$ **.**Cu(II)]²⁺ in CH₃CN + 0.1 M TBAPF₆ (0.1 V.s⁻¹, 1 mM, vitr. carbon ø 2 mm, E vs Ag/Ag⁺).

Figure S32: CV curves of $[3$.Cu(II)]²⁺ in CH₃CN + 0.1 M TBAPF₆ (1 V.s⁻¹, 1 mM, vitr. carbon ø $2 \text{ mm}, E \text{ vs } \text{Ag/Ag}^+$).

Figure S33: CV curves of $[3$.Cu(II)]²⁺ in CH₃CN + 0.1 M TBAPF₆ (10 V.s⁻¹, 1 mM, vitr. Carbon ø 2 mm, E vs Ag/Ag^+).

Figure S35: Reduction/oxidation cycles followed by UV-Vis spectroscopy (absorbance recorded at $\lambda = 635$ nm). Successive electrolyses (Q = 0.16 C) were carried out in a 1cm quartz cell starting from LCuI ($1x10^{-3}$ M in DMF, $0.\overline{1}$ M TBAP) upon switching the working electrode potential (1 cm² vitreous carbon) between + 0.6 and -0.6 V vs Ag/Ag⁺.

