Supplementary information

Demonstration of the existence of the intermolecular lone pair $\bullet \bullet \pi$ interaction between alcoholic oxygen and C₆F₅ group in organic solvent

Toshinobu Korenaga,* Taeko Shoji, Kazutaka Onoue and Takashi Sakai*

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan. Fax, Tel: +81-86-251-8092; E-mail: korenaga@cc.okayama-u.ac.jp

CONTENTS

General Experimental Methods.	pp. 2
Preparation of amines 1.	pp. 3
Estimation of Association Constants by ¹ H NMR Titrations.	pp. 5
Computational studies of 1 and 2.	pp. 12
References for Supporting Information	pp. 19

General Experimental Methods.

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dehydrated tetrahydrofuran (THF), diethyl ether, and toluene were purchased from Kanto Chemical Co. and then were stored in Schlenk tubes under an argon atmosphere. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. ¹H NMR and ¹³C NMR spectra were measured at 200, 300 or 500 MHz (for ¹H NMR) and 75 or 126 MHz (for ¹³C NMR), respectively, and chemical shifts are given relative to tetramethylsilane (TMS). ¹⁹F NMR spectra were measured at 282 MHz, and chemical shifts are given relative to CCl₃F using C₆F₆ as secondary reference (-162.9 ppm). ³¹P NMR spectra were measured at 121 MHz, and chemical shifts are given relative to 85% H₃PO₄ externally.

Preparation of amines 1.

N,*N*-Dimethyl-2,3,4,5,6-pentafluorobenzeneethanamine (1a).

To a mixture of formic acid (0.63 mL, 16.6mmol) and 2,3,4,5,6-pentafluorobenzeneethanamine¹ (0.70 g, 3.32 mmol) was added a 37% aqueous formaldehyde solution (0.69 mL, 6.64 mmol) at 0°C. After being stirred at 0°C for 5 h, the solution was heated at 100°C for 5h. The reaction mixture was poured into 25% NaOH aqueous solution, and then was extracted with diethyl ether. The extract was dried over MgSO₄ and was concentrated under reduced pressure to give yellow oil, which was purified by distillation using Kugelrohr apparatus to give **1a** (0.25 g, 32%) as colorless oil.

¹H NMR (200 MHz, CDCl₃): δ 2.27 (s, 6H), 2.50 (t, J = 7.4 Hz, 2H), 2.86 (t, J = 7.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): 21.0, 45.3, 58.4, 113.6 (m), 137.6 (m), 139.8 (m), 145.4 (m). ¹⁹F NMR (282 MHz, CDCl₃): -164.1 (dt, J = 7.9, 21.4 Hz, 2F), -158.9 (t, J = 21.4 Hz, 1F), -145.0 (dd, J = 7.9, 21.4 Hz, 2F). IR (neat): 1123, 1151, 1265, 1377, 1502 and 2949 cm⁻¹.

The elemental analysis of **1a** was performed after conversion of **1a** to its hydrochloride salt: Anal. calc. for $C_{10}H_{11}NF_5Cl$: C 43.57, H 4.02, N 5.08%. Found: C 43.25, H 3.85, N, 4.95.

N,*N*-Dimethyl-3,4,5-trifluorobenzeneethanamine (1b).

Compound **1b** (3.05 g, 63 %) was prepared from 3,4,5-trifluorobenzeneethanamine² by the procedure described for 1a.

Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ 2.26 (s, 6H), 2.49 (t, *J* = 7.8 Hz, 2H), 2.70 (t, *J* = 7.8 Hz, 2H), 6.81 (m, 2H). ¹³C NMR (75.5 MHz, CDCl₃): 33.8, 45.6, 60.8, 112.7 (m), 136.9 (m), 138.4 (dt, *J* = 15.1, 249 Hz), 151.3 (dm, *J* = 249 Hz). ¹⁹F NMR (282 MHz, CDCl₃): -165.6 (m, 1F), -136.4 (m, 2F). IR (neat): 1142, 1448, 1537, 1620, 2773 and 2945 cm⁻¹.

The elemental analysis of **1b** was performed after conversion of **1b** to its hydrochloride salt: Anal. calc. for $C_{10}H_{13}NF_3Cl$: C 50.11, H 5.47, N 5.84%. Found: C 50.35, H 5.31, N, 5.69.

N,*N*-Dimethyl-4-trifluoromethyl-benzeneethanamine (1c).³

Compound 1c (0.41 g, 36 %) was prepared from 4-trifluoromethyl-benzeneethanamine⁴ by the procedure described for 1a.

Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.32 (s, 6H), 2.57 (t, J = 8.0 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): 33.8, 44.9, 60.6, 124.1 (q, J = 272 Hz), 124.9, 128.0 (q, J = 32.5 Hz), 128.6, 144.4. ¹⁹F NMR (282 MHz, CDCl₃): -64.3 (s). IR (neat): 829, 1020, 1167, 1325, 1375, 1618, 2860 and 2947 cm⁻¹.

N,*N*-Dimethyl-4-fluorobenzeneethanamine (1d).⁵

Compound 1d (1.13 g, 89 %) was prepared from commercially available 4-fluorobenzeneethanamine by the procedure described for 1a.

Colorless oil.

¹H NMR (300 MHz, CDCl₃): δ 2.30 (s, 6H), 2.50 (t, *J* = 8.0 Hz, 2H), 2.75 (t, *J* = 8.0 Hz, 2H), 6.96 (m, 2H), 7.15 (m, 2H). ¹³C NMR (75.5 MHz, CDCl₃): 33.2, 45.0, 61.2, 114.7 (d, *J* = 20.9 Hz), 129.6 (d, *J* = 7.7 Hz), 135.7 (d, *J* = 3.2 Hz), 161.0 (d, *J* = 243 Hz). ¹⁹F NMR (282 MHz, CDCl₃): -119.1 (m). IR (neat): 1016, 1221, 1265, 1445, 1510, 1601 and 2725 cm⁻¹.

N,*N*-Dimethylphenethylamine (1e).⁶

Compound 1e (4.96 g, 42 %) was prepared from commercially available phenethylamine by the procedure described for 1a.

Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.30 (s, 6H), 2.53 (t, J = 8.0 Hz, 2H), 2.78 (t, J = 8.0 Hz, 2H), 7.18-7.21 (m, 3H), 7.27-7.30 (m, 2H). ¹³C NMR (75.5 MHz, CDCl₃): 34.2, 45.2, 61.4, 125.7, 128.1, 128.4, 140.1. IR (neat): 864, 1263, 1373, 1454, 1605, 2856 and 2943 cm⁻¹.

N,*N*-Dimethyl-4-methoxy-benzeneethanamine (1f).⁷

Compound **1f** (0.78 g, 64 %) was prepared from commercially available 4-methoxy-benzeneethanamine by the procedure described for **1a**. Colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.29 (s, 6H), 2.49 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 3.78 (s, 3H), 6.83 (d, J = 9.0 Hz, 2H), 7.12 (d, J = 9.0 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): 33.0, 44.9, 54.3, 61.3, 113.2, 129.0, 131.8, 157.4. IR (neat): 870, 1248, 1371, 1464, 1614, 2856 and 3030 cm⁻¹.

Estimation of Association Constants by ¹H NMR Titrations.

All amines **1** and CDCl₃ were stored with activated MS-3A under argon atmosphere after being filtered through basic almina column, respectively. All amines **1** were distilled by Kugelrohr apparatus before NMR titration.

As a typical example, the titration between **1a** and MeOH is described here. Six portion of 0.25 mL of 0.966M MeOH solutions in CDCl₃ were added to 0.000, 50.88, 96.78, 143.39, 191.73, or 239.45 mg of **1a**, respectively. All solutions were diluted with CDCl₃ until 1.00 mL accurately. Each of the resulting solutions was placed in six NMR tubes, and then the NMR tubes were sealded. ¹H NMR spectra were taken for each tube at 27, 37, and 47 °C. Association constants (K_a) were calculated by nonlinear curve-fitting method.

NMR titration between 1a and MeOH.

Concentration of MeOH is 0.2415 M. δ_{obs} is the chemical shifts at the H atom of MeOH's hydroxy proton. $\Delta \delta = \delta_{obs} - \delta_{obs}^{amine/MeOH=0}$. δ_c is the predicted chemical shift of the complex **2a**.

Results of NMR titration.

Ratio of 1a	27/	°C	37/	°С	47/	°C
per MeOH	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$
0.000	1.188	0.000	1.100	0.000	1.028	0.000
0.919	1.859	0.671	1.632	0.532	1.449	0.421
1.748	2.308	1.120	2.019	0.919	1.778	0.750
2.590	2.656	1.468	2.326	1.226	2.050	1.022
3.463	2.940	1.752	2.582	1.482	2.285	1.257
4.325	3.151	1.963	2.801	1.701	2.477	1.449
<i>K</i> _a /M ⁻¹ δ _c /ppm	1.343± 4.3	=0.011 38	0.9477: 4.8	±0.022 81	0.7060 4.7	±0.041 75

Graph of NMR titration.

 $\Delta H_{\rm obs}$ and $\Delta S_{\rm obs}$ were determined from van't Hoff plot and eq. 2.

$$\ln K_{\rm a} = -\left(\Delta H / R\right) \cdot (1 / T) + \Delta S / R \qquad (2)$$

 $\Delta H_{\rm obs} = -6.15 \text{ kcal mol}^{-1}$ $\Delta S_{\rm obs} = -19.9 \text{ cal mol}^{-1} \text{ K}^{-1}$

NMR titration between 1b and MeOH.

Concentration of MeOH is 0.1957 M. δ_{obs} is the chemical shifts at the H atom of MeOH's hydroxy proton. $\Delta \delta = \delta_{obs} - \delta_{obs}^{amine/MeOH=0}$. δ_c is the predicted chemical shift of the complex **2b**.

Results of NMR titration.

Ratio of 1b	27/	°C	37/	°C	47/	°C
per MeOH	δ_{obs}/ppm	Δδ/ppm	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$
0.000	1.147	0.000	1.068	0.000	1.001	0.000
0.914	1.878	0.731	1.646	0.578	1.456	0.455
1.979	2.432	1.285	2.121	1.053	1.854	0.853
3.208	2.998	1.851	2.619	1.551	2.284	1.283
4.188	3.335	2.188	2.930	1.862	2.564	1.563
4.959	3.527	2.380	3.121	2.053	2.732	1.731
<i>K</i> _a /M ⁻¹ δ _c /ppm	1.138± 5.9	=0.104 94	0.8227: 5.9	±0.068 94	0.6253= 6.(±0.057)8

Graph of NMR titration.

 $\Delta H_{\rm obs}$ and $\Delta S_{\rm obs}$ were determined from van't Hoff plot and eq. 1.

$$\ln K_{\rm a} = -\left(\Delta H / R\right) \cdot (1 / T) + \Delta S / R \qquad (2)$$

 $\Delta H_{\rm obs} = -5.72 \text{ kcal mol}^{-1}$ $\Delta S_{\rm obs} = -18.8 \text{ cal mol}^{-1} \text{ K}^{-1}$

NMR titration between 1c and MeOH.

Concentration of MeOH is 0.2255 M. δ_{obs} is the chemical shifts at the H atom of MeOH's hydroxy proton. $\Delta \delta = \delta_{obs} - \delta_{obs}^{amine/MeOH=0}$. δ_c is the predicted chemical shift of the complex **2c**.

Results of NMR titration.

Ratio of 1c	27/	°C	37/	′°C	47/	°C
per MeOH	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/\!ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$
0.000	1.155	0.000	1.076	0.000	1.007	0.000
0.839	2.053	0.898	1.793	0.717	1.579	0.572
2.145	2.911	1.756	2.550	1.474	2.238	1.231
3.105	3.353	2.198	2.950	1.874	2.595	1.588
4.499	3.791	2.636	3.390	2.314	3.011	2.004
5.312	3.984	2.829	3.577	2.501	3.199	2.192
<i>K</i> _a /M ⁻¹ δ _c /ppm	1.138± 5.5	=0.104 52	0.8227: 5.4	±0.068 43	0.6253= 5.4	±0.057 40

Graph of NMR titration.

 $\Delta H_{\rm obs}$ and $\Delta S_{\rm obs}$ were determined from van't Hoff plot and eq. 1.

$$\ln K_{\rm a} = -\left(\Delta H / R\right) \cdot (1 / T) + \Delta S / R \qquad (2)$$

 $\Delta H_{\rm obs} = -5.85 \text{ kcal mol}^{-1}$ $\Delta S_{\rm obs} = -18.4 \text{ cal mol}^{-1} \text{ K}^{-1}$

NMR titration between 1d and MeOH.

Concentration of MeOH is 0.2395 M. δ_{obs} is the chemical shifts at the H atom of MeOH's hydroxy proton. $\Delta \delta = \delta_{obs} - \delta_{obs}^{amine/MeOH=0}$. δ_c is the predicted chemical shift of the complex **2d**.

Results of NMR titration.

Ratio of 1d	27/°C		of 1d 27/°C 37/°C		47/°C	
per MeOH	δ_{obs}/ppm	Δδ/ppm	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$
0.000	1.228	0.000	1.133	0.000	1.054	0.000
0.814	2.153	0.925	1.888	0.755	1.668	0.614
1.878	2.915	1.687	2.563	1.430	2.259	1.205
2.624	3.311	2.083	2.922	1.789	2.578	1.524
3.980	3.796	2.568	3.410	2.277	3.034	1.980
5.301	4.095	2.867	3.711	2.578	3.357	2.303
<i>K</i> _a /M ⁻¹ δ _c /ppm	2.092± 5.4	=0.064 12	1.531± 5	=0.044 33	1.126± 5.2	=0.019 27

Graph of NMR titration.

 $\Delta H_{\rm obs}$ and $\Delta S_{\rm obs}$ were determined from van't Hoff plot and eq. 1.

$$\ln K_{\rm a} = -\left(\Delta H / R\right) \cdot (1 / T) + \Delta S / R \qquad (2)$$

 $\Delta H_{\rm obs} = -5.92 \text{ kcal mol}^{-1}$ $\Delta S_{\rm obs} = -18.6 \text{ cal mol}^{-1} \text{ K}^{-1}$

NMR titration between 1e and MeOH.

Concentration of MeOH is 0.2243 M. δ_{obs} is the chemical shifts at the H atom of MeOH's hydroxy proton. $\Delta \delta = \delta_{obs} - \delta_{obs}^{amine/MeOH=0}$. δ_c is the predicted chemical shift of the complex **2e**.

Results of NMR titration.

Ratio of 1e	27/	°C	37/	°C	47/	′°C
per MeOH	δ_{obs}/ppm	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	Δδ/ppm	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$
0.000	1.182	0.000	1.096	0.000	1.024	0.000
1.078	2.441	1.259	2.133	1.037	1.867	0.843
2.048	3.145	1.963	2.753	1.657	2.414	1.390
3.429	3.762	2.580	3.343	2.247	2.964	1.940
4.617	4.132	2.950	3.716	2.620	3.324	2.300
5.658	4.336	3.154	3.947	2.851	3.566	2.542
<i>K</i> _a /M ⁻¹ δ _c /ppm	2.169± 5.0	=0.047 54	1.568± 5.5	=0.038 55	1.154± 5.4	=0.022 48

Graph of NMR titration.

 $\Delta H_{\rm obs}$ and $\Delta S_{\rm obs}$ were determined from van't Hoff plot and eq. 1.

$$\ln K_{\rm a} = -\left(\Delta H / R\right) \cdot (1 / T) + \Delta S / R \qquad (2)$$

 $\Delta H_{\rm obs} = -6.03 \text{ kcal mol}^{-1}$ $\Delta S_{\rm obs} = -18.5 \text{ cal mol}^{-1} \text{ K}^{-1}$

NMR titration between 1f and MeOH.

Concentration of MeOH is 0.2217 M. δ_{obs} is the chemical shifts at the H atom of MeOH's hydroxy proton. $\Delta \delta = \delta_{obs} - \delta_{obs}^{amine/MeOH=0}$. δ_c is the predicted chemical shift of the complex **2f**.

Results of NMR titration.

Ratio of 1f	27/	°C	37/	′°C	47/	°C
per MeOH	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$	$\delta_{obs}\!/ppm$	$\Delta\delta/ppm$
0.000	1.174	0.000	1.091	0.000	1.021	0.000
1.052	2.275	1.101	1.995	0.904	1.762	0.741
2.252	3.044	1.870	2.688	1.597	2.376	1.355
3.266	3.470	2.296	3.084	1.993	2.750	1.729
4.431	3.852	2.678	3.452	2.361	3.106	2.085
5.659	4.059	2.885	3.726	2.635	3.376	2.355
<i>K</i> _a /M ⁻¹ δ _c /ppm	2.006± 5.3	=0.090 39	1.411± 5.3	=0.034 39	1.060± 5.3	=0.020 34

Graph of NMR titration.

 $\Delta H_{\rm obs}$ and $\Delta S_{\rm obs}$ were determined from van't Hoff plot and eq. 1.

$$\ln K_{\rm a} = -\left(\Delta H / R\right) \cdot (1 / T) + \Delta S / R \qquad (2)$$

 $\Delta H_{\rm obs} = -6.09 \text{ kcal mol}^{-1}$ $\Delta S_{\rm obs} = -18.9 \text{ cal mol}^{-1} \text{ K}^{-1}$

Computational studies of 1a and 2a.

Geometry optimizations and energy calculations of **1a** for each conformations were performed at Geometry optimizations and energy calculations of 2a for each the MP2(full)/6-31G(d,p). conformations were performed at the CP-MP2(full)/6-31G(d,p).

Summary of energies.				
Conformation	1 a	2a		
Comormation	(Hartree)	(Hartree)		
Α	-938.51027	-1053.91142		
В	-938.50606	-1053.90608		
С	-938.50560	-1053.90649		
D	-938.50680	-1053.90739		
E	-938.50616	-1053.90591		

Results of 1a.

Conformation A

- Conformation B
- Conformation C
- Conformation D

Conformation E

Conformation A

Conformation B

12

Computational studies of 1b and 2b.

Geometry optimizations and energy calculations of **1b** for each conformations were performed at the MP2(full)/6-31G(d,p). Geometry optimizations and energy calculations of **2b** for each conformations were performed at the CP-MP2(full)/6-31G(d,p).

a	0	•
Summary	ot.	energieg
Summary	U1	chicigics.
2		\mathcal{O}

Conformation	1b	2b
	(Hartree)	(Hartree)
А	-740.49910	-855.89892
В	-740.49554	-855.89573
С	-740.49724	-855.89948
D	-740.49778	-855.89954
E	-740.49678	-855.89657

Results of 1b.


```
Results of 2b.
```


Computational studies of 1c and 2c.

Geometry optimizations and energy calculations of 1c for each conformations were performed at the MP2(full)/6-31G(d,p). Geometry optimizations and energy calculations of 2c for each conformations were performed at the CP-MP2(full)/6-31G(d,p).

Summary of energies.				
Conformation	1c	2c		
Comornation	(Hartree)	(Hartree)		
А	-779.73629	-895.13626		
В	-779.73316	-895.13355		
С	-779.73482	-895.13685		
D	-779.73542	-895.13698		
E	-779.73445	-895.13439		

Results of 1c.

Results of **2c**.

Computational studies of 1d and 2d.

Geometry optimizations and energy calculations of **1d** for each conformations were performed at the MP2(full)/6-31G(d,p). Geometry optimizations and energy calculations of **2d** for each conformations were performed at the CP-MP2(full)/6-31G(d,p).

Summary of energies.				
Conformation	1d	2d		
Comormation	(Hartree)	(Hartree)		
А	-542.48683	-657.88709		
В	-542.48401	-657.88465		
С	-542.48547	-657.88761		
D	-542.48631	-657.88775		
E	-542.48525	-657.88543		

Results of 1d.

Conformation A

Conformation B

Conformation C

Conformation D

Conformation E

Results of **2d**.

Computational studies of 1e and 2e.

Geometry optimizations and energy calculations of **1e** for each conformations were performed at the MP2(full)/6-31G(d,p). Geometry optimizations and energy calculations of **2e** for each conformations were performed at the CP-MP2(full)/6-31G(d,p).

Conformation	1e	2e
Comormation	(Hartree)	(Hartree)
А	-443.47335	-558.87415
В	-443.47102	-558.87193
С	-443.47225	-558.87434
D	-443.47323	-558.87454
E	-443.47224	-558.87257

Results of 1e.

Conformation A

Conformation B

Conformation C

Conformation D

Conformation E

Results of 2e.

Conformation B

Conformation C

Conformation D

Conformation E

Computational studies of 1f and 2f.

Geometry optimizations and energy calculations of **1f** for each conformations were performed at the MP2(full)/6-31G(d,p). Geometry optimizations and energy calculations of **2f** for each conformations were performed at the CP-MP2(full)/6-31G(d,p).

Summary of energies.								
Conformation	1f	2f						
Comormation	(Hartree)	(Hartree)						
А	-557.68567	-673.08692						
В	-557.68351	-673.08436						
С	-557.68455	-673.08661						
D	-557.68554	-673.08695						
E	-557.68450	-673.08524						

Results of 1f.

Results of **2f**.

Calculations of association enthalpies (ΔH_{calc}).

The frequency calculations of 2a-f (conformation A) and MeOH were performed at the MP2(full)/6-31G(d,p). No imaginary frequencies appeared in all results. All frequency calculations resulted in Zero point energy (ZPE) corrected energies and Enthalpies (H) in Gaussian's output file. The association enthalpies (ΔH_{calc}) of intermolecular interactions for **2a-f** were given by The frequency calculations of **2a** (conformation A) and **2b-f** (conformation D) were performed at the CP-MP2(full)/6-31G(d,p). the eq 1.

 $\Delta H_{calc} = H_{complex} - (H_{amine} + H_{MeOH})$ (1)

11 4	$\Delta H_{\rm calc}$ (kcal/mol)	-5.50	-4.98	-5.03	-5.22	-5.39	-5.38	
	H _{MeOH} (Hartree)		-115.33258					
MeOH	ZPE corrected E (Hartree)			20066 211				
1	H _{amine} (Hartree)	lation A) -938.29925	ation A) -740.27367	ation A) -549.20076	lation A) -542.24680	ation A) -443.22588	ation A) -557.40204	
Amine	ZPE corrected E (Hartree)	1a (conform -938.32678	1b (conform -740.30031	1c (conform -549.22057	1d (conform -542.27260	1e (conform -443.25134	1f (conform -557.43199	
Complex 2	H H H H H H H H H H H H H H H H H H H	nation A) -1053.64059	aation D) -855.61418	ation D) -664.54135	aation D) -657.58771	nation D) -558.56706	ation D) -672.74320	
	ZPE corrected E (Hartree)	2a (conforn -1053.67589	2b (conforn -855.64869	2c (conform -664.56905	2d (conforn -657.62143	2e (conform -558.60050	2f (conforn -672.78128	
J ~ r V	Ar or amine	C_6F_5	3,4,5-F ₃ - C ₆ H ₂	4-CF ₃ - C ₆ H ₄	4-F-C ₆ H ₄	Ph	4-MeO- C ₆ H ₄	

- 1 B. Kumar Das, N. Shibata and Y. Takeuchi, J. Chem. Soc., Perkin Trans. 1, 2002, 197.
- 2 R. F. Nystrom, J. Am. Chem. Soc., 1955, 77, 2544.
- 3 P. J. Smith and A. N. Bourns, Canadian J. Chem., 1970, 48, 125.
- 4 T. Ankner and G. Hilmersson, *Tetrahedron Lett.*, 2007, 48, 5707.
- 5 M. Van der Auweraer, A. M. Swinnen and F. C. De Schryver, J. Chem. Phys., 1982, 77, 4110.
- 6 A.R. Lepley and R. H. Becker, *Tetrahedron*, 1965, **21**, 2365.
- 7 T. Tanaka, N. Shirai, J. Sugimori, Y. Sato, J. Org. Chem. 1992, 57, 5034.