Supporting Information

Facile synthesis of sulfonyl amidines via carbon-nitrogen bonds formation mediated by FeCl₃

Sujing Wang, Zhiyong Wang* and Xiaoqi Zheng*

To whom correspondence should be addressed. E-mail: zwang3@ustc.edu.cn. Fax:

+86-551-3603185; Tel: +86-551-3603185

Hefei National Laboratory for Physical Science at Microscale, Joint-lab of Green Synthetic Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China

1. Representative procedure for the FeCl₃-mediated synthesis of sulfonyl amidines

To a solution of sulfonyl azide (1.0 mmol) and tertiaryamine (4.0 mmol) in 5.0 mL of CH₂Cl₂ was added FeCl₃ (1.0 mmol), and the resulting mixture was reacted under required condition monitored by TLC. Then the system was diluted with 10 mL CH₂Cl₂, following the addition of the EDTA-NaOH solution (20 mmol of EDTA and 20 mmol of NaOH in 15 mL of water). Afterward, the whole mixture was refluxed for five hours and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (10 mL×3) and the combined organic phase was dried over anhydrous Na₂SO₄ powder. The final product was obtained through purification with column chromatography.

2. Crystal data of the product obtained by 4-NO₂-C₆H₄SO₂N₃ reacted with Et₃N.

The data collection for the above compound were performed on a Oxford Diffraction Gemini S Ultra CCD diffractometer equipped with mirror CuK α (λ = 1.54184 Å) radiation at room temperature. The structure was solved by direct methods and refined by full-matrix least-squares methods with SHELXL-97 programs. Crystallographic parameters: C₁₁H₁₅N₃O₄S, M = 285.32, triclinic, space group P-1, a = 6.366(5), b = 10.293(5), c = 12.008(5) Å, α = 115.154(5) °, β = 102.366(5) °, γ = 92.033(5) °, V = 688.5(7) Å³, Z = 2, D_c = 1.376 g/cm³, F(000) = 300, a total of 5886 reflections, of which 2137 were independent (R_{int} = 0.015). Goodness of fit: 1.065, R₁[I> 2 α [I] = 0.0346, wR₂[I> 2 α [I] = 0.0984, R₁ (all data) = 0.0369, wR₂ (all data) = 0.1001, residuals (e·Å⁻³): 0.166, -0.226. CCDC depository number: 733386.

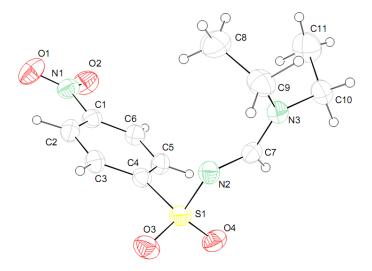
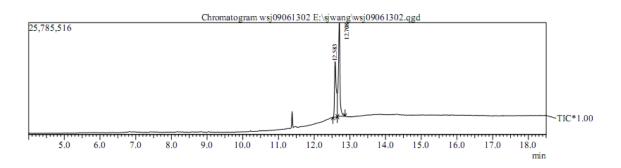
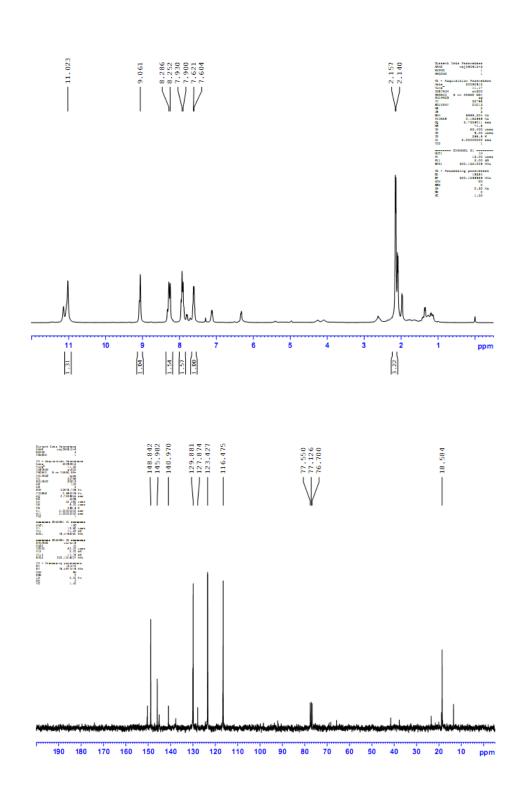



Figure S1 ORTEP draw of the crystal structure of the product obtained by 4-NO₂-C₆H₄SO₂N₃ reacted with Et₃N with 30% thermal possibility.

3. Experimental details for the captures of enamine and diazoalkane.

3.1 Procedure for the capture of vinyldiethylamine by (2,4-dinitrophenyl)hydrazine: To a mixture of FeCl₃ (810 mg, 5.0 mmol) and CH₂Cl₂ (10 mL) was added CH₂Cl₂ (5.0 mL) solution of triethylamine (1.2 g, 12.0 mmol) dropwise in 5 minutes. The resulting mixture was stirred for 20 minutes at room temperature. Afterward, the mixture was treated with 10 mL of saturated NH₄Cl and (2,4-dinitrophenyl)hydrazine (198 mg, 1.0 mmol) solution (5 mL of EtOH and 5 mL of concentrated H₂SO₄), then extracted with ethyl acetate (3×20 mL), washed with water and brine, dried with anhydrous Na₂SO₄ powder. The final product was obtained as the mixture of the desired product with an unconfirmed compound and determined by GC-MS, ¹H NMR and ¹³C NMR.

$$NO_{2}$$
 + FeCl₃ + $O_{2}N$ NO_{2} NH_{2} NH_{2} $O_{2}N$ NO_{2} NH_{2} $O_{2}N$ NH_{2} NH_{2}


				reak Report TIC						
Peak#	R.Time	I.Time	F.Time	Area Area%		Height leight%		A/H	Mark	Name
1	12.583	12.525	12.650	45369418	39.74	12862942	37.35	3.53	MI	
2	12.708	12.650	12.867	68806887	60.26	21577437	62.65	3.19	MI	
				114176304	100.00	34440379	100.00			

Spectrum

$$O_2N$$
 NO_2
 $1H$
 N
 N
 $1H$
 N
 N
 N
 N

¹H NMR (CDCl₃, 300 MHz, ppm): δ = 11.02 (s, 1 H), 9.06 (s, 1 H), 8.27 (d, J = 10.2 Hz, 1 H), 7.91 (d, J = 9.0 Hz, 1H), 7.62-7.60 (m, 1 H), 2.15 (m, 3H). ¹³C NMR (CDCl₃, 75 MHz,

ppm): δ = 148.8, 145.9, 140.9, 129.9, 127.9, 123.4, 116.5, 18.6.

3.2 Procedure for the capture of diazomethane by benzoic acid: The experiment was carried out with the below equipments. To a CH₂Cl₂ (10 mL) solution of TsN₃ (985 mg, 5.0 mmol) and FeCl₃ (810 mg, 5.0 mmol) was added triethylamine (2.0 g, 20 mmol) dropwisely. The generated gas was introduced into the CHCl₃ (10 mL) solution of PhCOOH (223 mg, 1.0 mmol). After the reaction of TsN₃ and Et₃N completed, the chloroform solution was treated with NaOH solution. The aqueous solution was extracted with chloroform and the combined organic phase was dried with anhydrous Na₂SO₄ powder. The product of PhCOOMe was obtained and determined by GC-MS, ¹H NMR and ¹³C NMR.

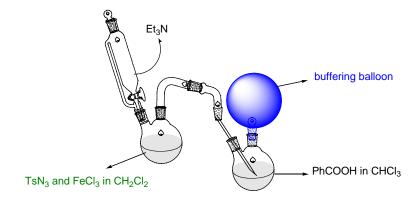
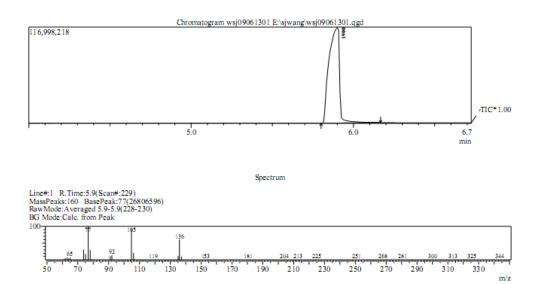
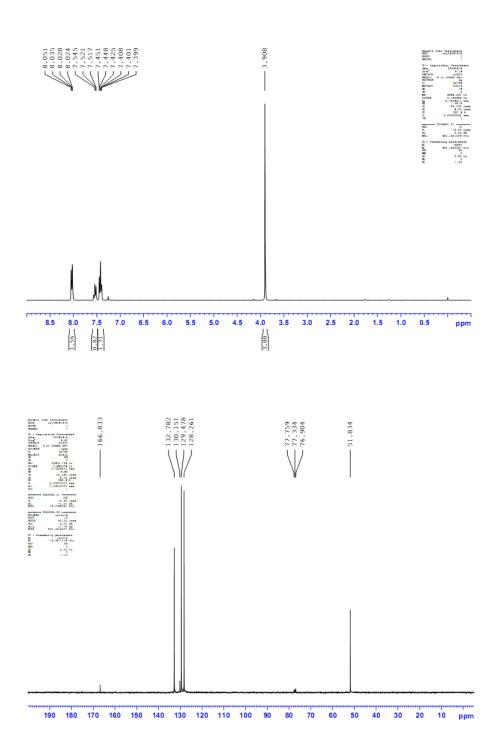
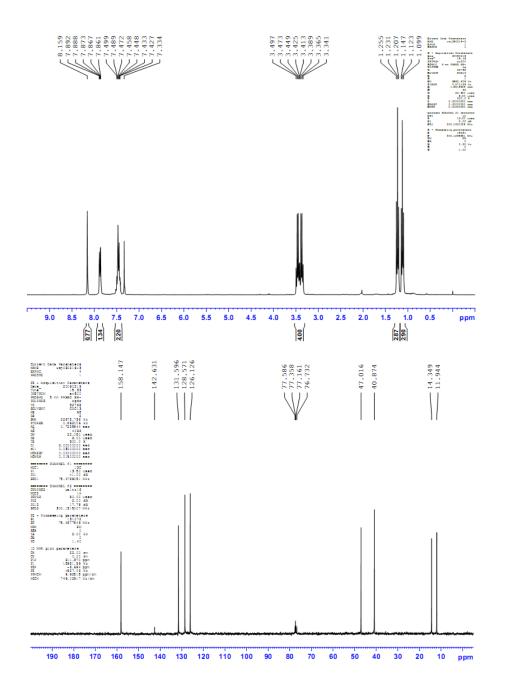




Figure S2 The equipment for the capture of diazomethane by benzoic acid.

$$\sim$$
 COOH + CH₂N₂ \sim COOCH₃ + N₂

COOCH₃ ¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.03 (m, 2 H), 7.52 (m, 1 H), 7.42 (m, 2 H), 3.91 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 166.8, 132.8, 130.1, 129.5, 128.3, 51.8.

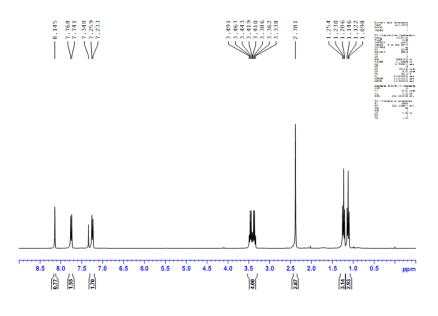
4. Characterization data and NMR spectrums for products

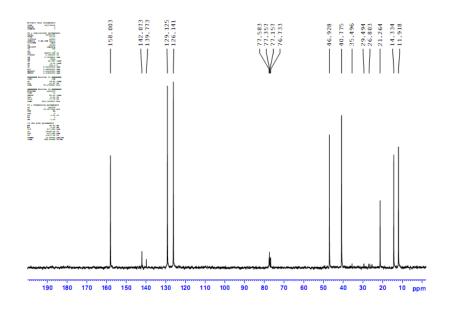

(E)-N,N-diethyl-N'-(phenylsulfonyl)formimidamide

¹H NMR (CDCl₃, 300 MHz, ppm):
$$\delta = 8.16$$
 (s, 1 H),

7.89-7.86 (m, 2 H), 7.42-7.50 (m, 3 H), 3.50-3.34 (m, 4 H),

1.26-1.21 (t, 3 H, $J = 7.2$ Hz), 1.15-1.10 (t, 3 H, $J = 7.2$ Hz). ¹³C NMR (CDCl₃, 75

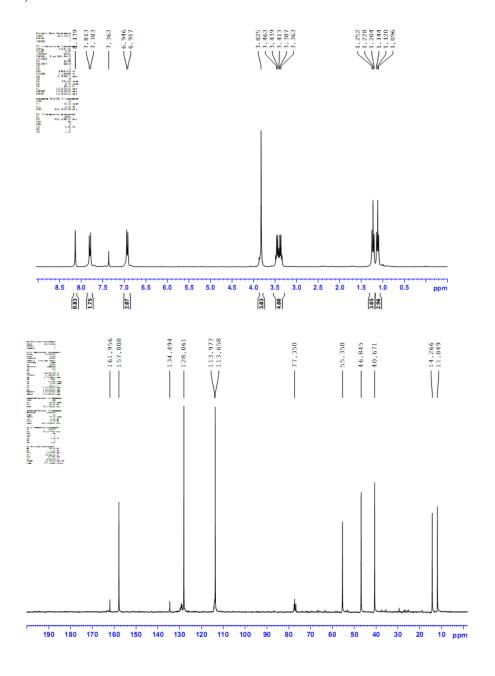

1.26-1.21 (t, 3 H, J = 7.2 Hz), 1.15-1.10 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 158.1$, 142.6, 131.6, 128.6, 126.1, 47.0, 40.9, 14.3, 11.9. IR (liquid film, cm⁻¹): v = 2979, 2939, 1612, 1447, 1345, 1299, 1210, 1149, 1089, 956, 876, 770, 723, 691, 607. HRMS calc. $C_{11}H_{16}N_2O_2S(M^+)$: 240.0932. Found: 240.0935.



(E)-N,N-diethyl-N'-tosylformimidamide

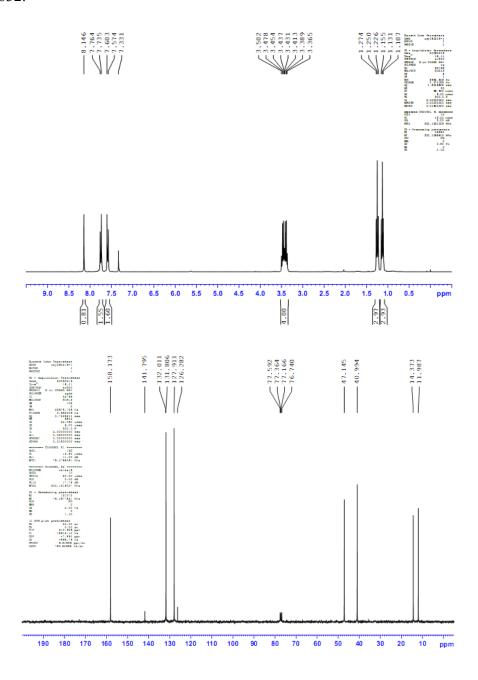
¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.14 (s, 1 H), 7.75 (d, 2 H, J = 8.4 Hz), 7.24 (d, 2 H, J = 8.1 Hz), 3.49-3.34 (m,

4 H), 2.38 (s, 3 H), 1.25-1.21 (t, 3 H, J = 7.2 Hz), 1.12-1.08 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 158.0, 142.0, 139.8, 129.1, 126.1, 46.9, 40.8, 21.3, 14.3, 11.9. IR (liquid film, cm⁻¹): v = 2979, 2938, 1612, 1451, 1346, 1298, 1211, 1149, 1088, 955, 876, 818, 769, 674, 593, 553. HRMS calc. $C_{12}H_{18}N_2O_2S$ (M⁺): 254.1089. Found: 254.1085.



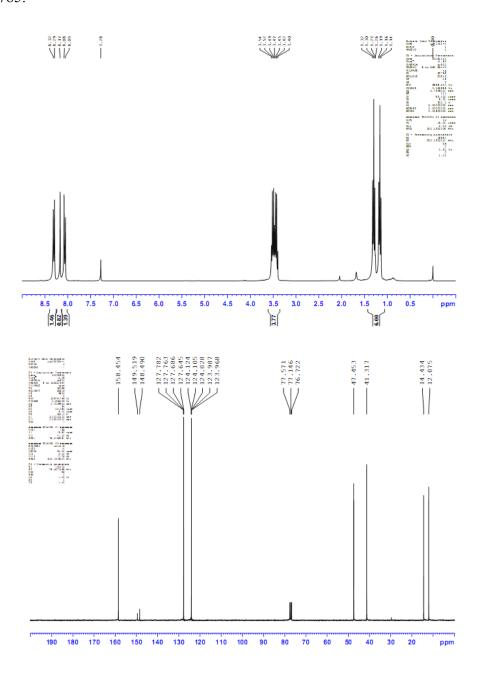
$(E)\hbox{-}N, N-diethyl-N'\hbox{-}(4-methoxyphenylsulfonyl) for mimidamide$

¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.14 (s, 1 H), 7.79


(d, 2 H, J = 9.0 Hz), 6.93 (d, 2 H, J = 8.7 Hz), 3.79 (s, 3 H), 3.49-3.34 (m, 4 H), 1.25-1.20 (t, 3 H, J = 7.2 Hz), 1.14-1.09 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 162.0, 157.8, 134.5, 128.1, 113.7, 55.4, 46.9, 40.7, 14.3, 11.9. IR (liquid film, cm⁻¹): v = 2978, 2940, 1612, 1498, 1453, 1346, 1291, 1258, 1211, 1146, 1090, 1025, 955, 876, 835, 769, 677, 594, 573. HRMS calc. $C_{12}H_{18}N_2O_3S$ (M⁺): 270.1038, Found: 270.1036.

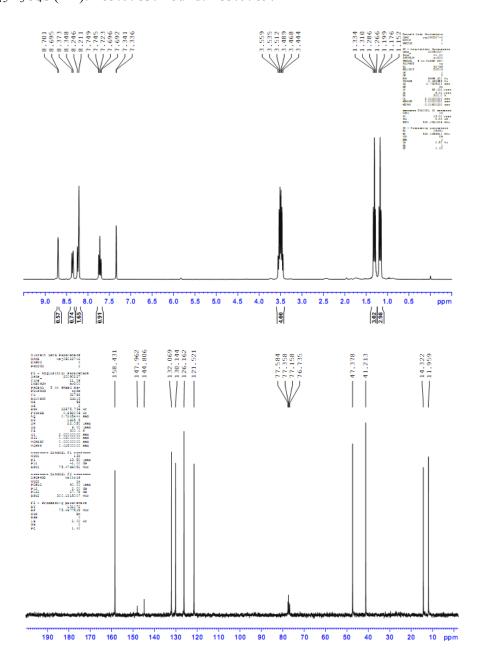
(E)-N'-(4-bromophenyl sulfonyl)-N, N-diethyl formimidamide

¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.15 (s, 1 H), 7.75 (d, 2 H, J = 8.7 Hz), 7.59 (d, 2 H, J = 8.4 Hz), 3.50-3.37


(m, 4 H), 1.28-1.23 (t, 3 H, J = 7.2 Hz), 1.16-1.11 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 158.2$, 141.8, 131.8, 127.9, 126.3, 47.1, 41.0, 14.4, 12.0. IR (liquid film, cm⁻¹): v = 2979, 1612, 1450, 1344, 1303, 1210, 1148, 1086, 1010, 956, 878, 820, 771, 740, 623, 587. HRMS calc. $C_{11}H_{15}BrN_2O_2S$ (M⁺): 318.0038. Found: 318.0032.

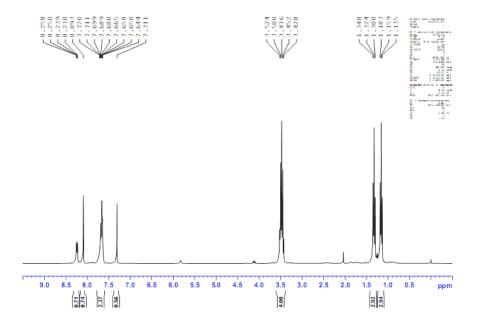
(E)-N, N-diethyl-N'-(4-nitrophenyl sulfonyl) for mimidamide

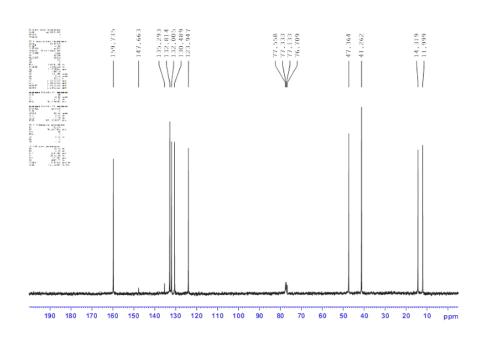
¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.30 (d, 2 H, J = 9.0 Hz), 8.17 (s, 1 H), 8.07 (d, 2 H, J = 9.0 Hz),


3.54-3.40 (m, 4 H), 1.32-1.27 (t, 3 H, J = 7.2 Hz), 1.19-1.14 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 158.4$, 149.5, 148.5, 127.7, 124.1, 47.4, 41.3, 14.4, 12.0. IR (liquid film, cm⁻¹): v = 2979, 1614, 1528, 1347, 1296, 1209, 1151, 1086, 957, 881, 854, 771, 738, 631, 587. HRMS calc. $C_{11}H_{15}N_3O_4S$ (M⁺): 285.0783. Found: 285.0785.

(E)-N,N-diethyl-N'-(3-nitrophenylsulfonyl)formimidamide

¹H NMR (CDCl₃, 300 MHz, ppm): $\delta = 8.70$ (s, 1 H), 8.36

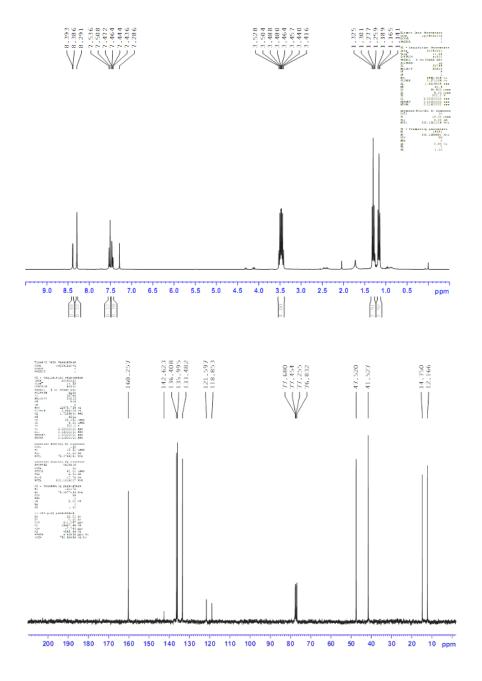

O₂N (d, 1 H, J = 7.5 Hz), 8.23 (m, 2 H), 7.75-7.69 (m, 1 H), 3.56-3.44 (m, 4 H), 1.33-1.29 (t, 3 H, J = 7.2 Hz), 1.20-1.15 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 158.4$, 147.9, 144.8, 132.1, 130.1, 126.2, 121.5, 47.4, 41.2, 14.3, 12.0. IR (liquid film, cm⁻¹): $\nu = 2981$, 1618, 1532, 1450, 1353, 1299, 1209, 1157, 1119, 1069, 1000, 958, 888, 819, 773, 735, 665, 611, 587. HRMS calc. C₁₁H₁₅N₃O₄S (M⁺): 285.0783. Found: 285.0789.



(E)-N, N-diethyl-N'-(2-nitrophenyl sulfonyl) for mimidamide

¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.26-8.23 (m, 1 H), 8.09 (s, 1 H), 7.72-7.64(m, 3 H), 3.52-3.43 (m, 4 H), 1.35-1.30 (t, 3 H, J = 7.2 Hz), 1.18-1.14 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 159.7, 147.7, 135.3, 132.8, 132.0, 130.5, 123.9, 47.4, 41.3, 14.3, 12.0. IR (liquid film, cm⁻¹): ν = 2981, 1618, 1541, 1449, 1344, 1310, 1209, 1155, 1122, 1059, 958, 882, 772, 742, 657, 608, 588. HRMS calc. C₁₁H₁₅N₃O₄S (M⁺): 285.0783.

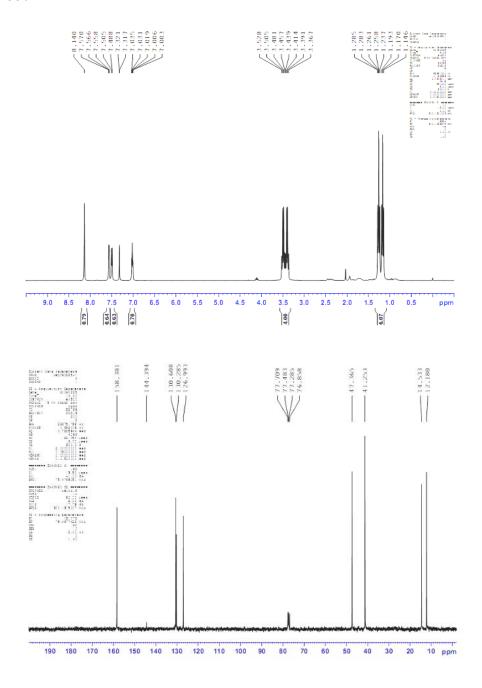
Found: 285.0780.



(E)-N'-(2,5-dibromophenyl sulfonyl)-N, N-diethyl formimidamide

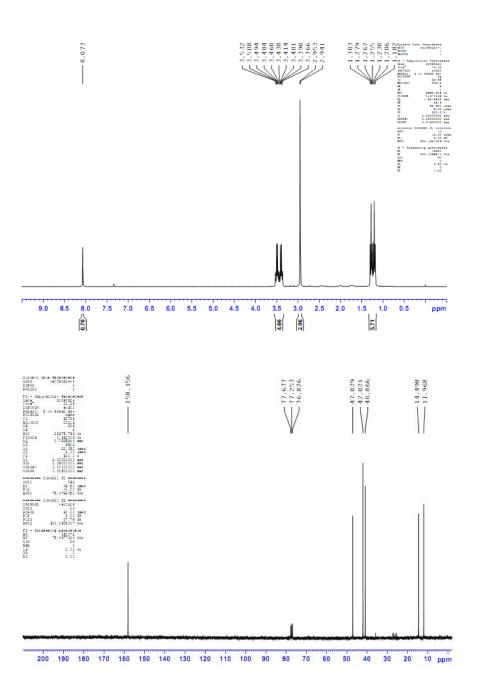
¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.39 (m, 1 H), 8.29 (s, 1 H), 7.54-7.44(m, 2 H), 3.53-3.42 (m, 4 H), 1.33-1.28 (t,

3 H, J = 7.2 Hz), 1.19-1.14 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 160.2$, 142.5, 136.3, 135.9, 133.4, 121.5, 118.8, 47.4, 41.4, 14.7, 12.1. IR (liquid film, cm⁻¹): v = 2978, 1614, 1445, 1344, 1303, 1209, 1154, 1129, 1085, 1023, 957, 881, 822, 766, 670, 611, 592. HRMS calc. C₁₁H₁₄Br₂N₂O₄S (M⁺): 397.9122. Found: 397.9127.

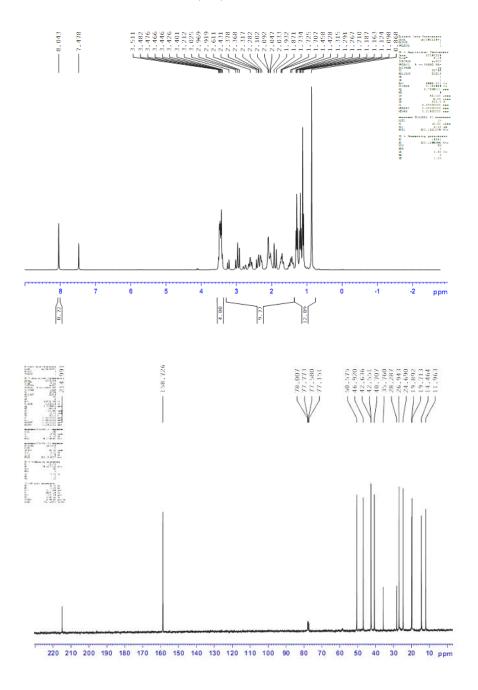


$$\begin{array}{c|c} & O & \text{ } \\ & S & S - N \end{array}$$

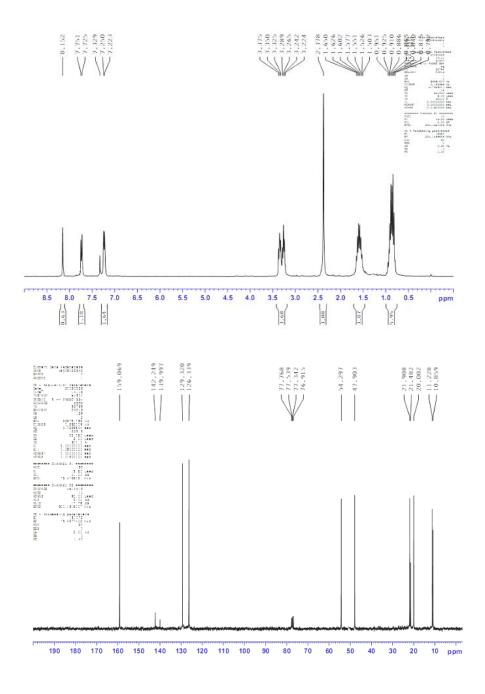
(E)-N, N-diethyl-N'-(thiophen-2-ylsulfonyl) for mimidamide


¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.14 (s, 1 H), 7.57-7.56 (m, 1 H), 7.49 (m, 1 H), 7.00-7.04 (m, 1 H), 3.53-3.37 (m, 4 H),

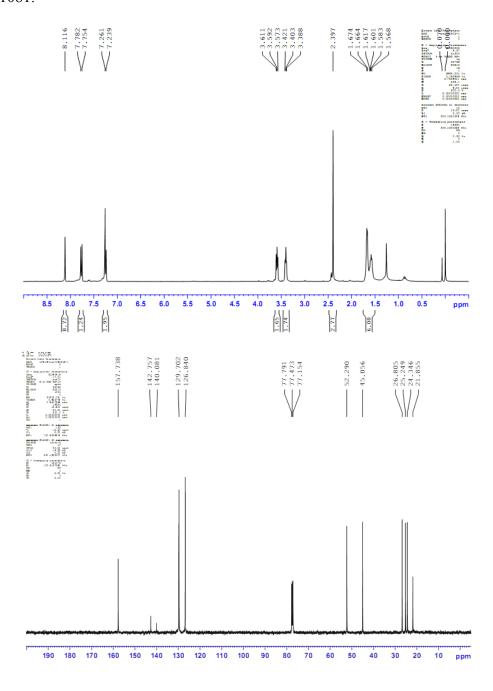
1.28-1.26 (t, 3 H, J = 7.2 Hz), 1.19-1.15 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 158.4$, 144.4, 130.6, 130.3, 127.0, 47.4, 41.3, 14.5, 12.2. IR (liquid film, cm⁻¹): v = 2979, 1616, 1449, 1341, 1301, 1224, 1209, 1146, 1089, 1014, 956, 879, 770, 727, 673, 610, 589. HRMS calc. C₉H₁₄N₂O₂S₂ (M⁺): 246.0497. Found: 246.0499.



(E)-N, N-diethyl-N'-(methyl sulfonyl) for mimidamide

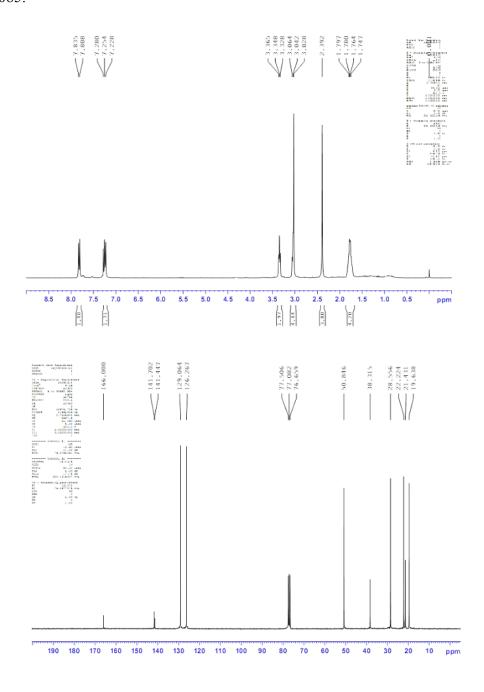

¹H NMR (CDCl₃, 300 MHz, ppm): δ = 8.07 (s, 1 H), 3.53-3.37 (m, 4 H), 2.94 (s, 3 H), 1.30-1.18 (m, 6 H). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 158.2, 47.0, 42.0, 40.9, 14.5, 12.0$. IR (liquid film, cm⁻¹): $\nu = 2979, 1614$, 1453, 1356, 1292, 1211, 1130, 968, 875, 823, 778, 577, 553, 527. HRMS calc. $C_6H_{14}N_2O_2S(M^+)$: 178.0776, Found: 178.0773.

MHz, ppm): δ = 8.04 (s, 1 H), 3.51-3.40 (m, 4 H), 3.21-1.43 (m, 9 H), 1.32-0.87 (m, 12 H). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 215.0, 158.7, 50.8, 46.9, 42.6, 42.5, 40.7, 35.8, 28.3, 26.9, 24.7, 19.9, 19.7, 14.5, 12.0. IR (liquid film, cm⁻¹): ν = 2965, 1744, 1614, 1454, 1345, 1304, 1213, 1169, 1129, 1053, 956, 873, 823, 765, 681, 615, 577, 530. HRMS calc. $C_{15}H_{26}N_2O_3S$ (M⁺): 314.1664, Found: 314.1659.


(m, 4 H), 2.38 (s, 3 H), 1.63-1.55 (m, 4 H), 0.91-0.82 (m, 6 H). 13 C NMR (CDCl₃, 75 MHz, ppm): δ = 159.1, 142.2, 140.0, 129.3, 126.3, 54.3, 47.9, 21.9, 21.5, 20.0, 11.2, 10.9. IR (liquid film, cm⁻¹): v = 2966, 2935, 2876, 1609, 1544, 1454, 1344, 1298, 1148, 1088, 910, 878, 837, 815, 676, 554. HRMS calc. $C_{14}H_{22}N_2O_2S$ (M⁺): 282.1402. Found: 282.1404.

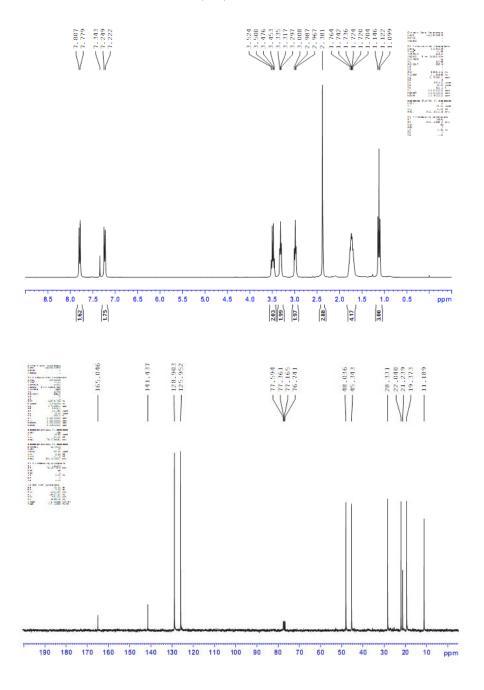
(E)-4-methyl-N-(piperidin-1-ylmethylene)benzenesulfonamide

¹H NMR (CDCl₃, 300 MHz, ppm): 8.12 (s, 1H), 7.76 (d, 2 H, J = 8.4 Hz), 7.25 (d, 2 H, J = 6.6 Hz), 3.61-3.57 (m,


2 H), 3.42-3.39 (m, 2 H), 2.39 (s, 3 H), 1.67-1.57 (m, 6 H). 13 C NMR (CDCl₃, 75 MHz, ppm): δ = 157.7, 142.8, 140.0, 129.7, 126.8, 52.3, 45.1, 26.8, 25.2, 24.3, 21.9. IR (liquid film, cm⁻¹): v = 2939, 2861, 1611, 1448, 1339, 1298, 1283, 1148, 1089, 927, 873, 851, 784, 675, 607, 562. HRMS calc. $C_{13}H_{18}N_2O_2S$ (M⁺): 266.1089. Found: 266.1081.

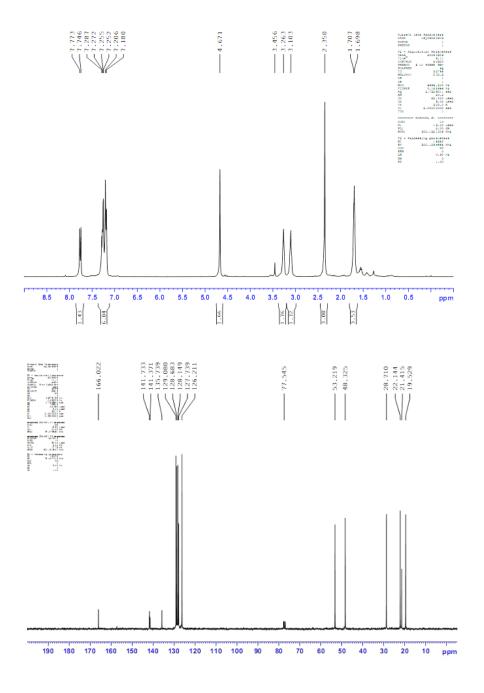
 ${\bf 4-methyl-N-(1-methylpiperidin-2-ylidene)} benzene sulfonamide$

¹H NMR (CDCl₃, 300 MHz, ppm): 7.82 (d, 2 H, J = 8.1 Hz), 7.24 (d, 2 H, J = 8.1 Hz), 3.37-3.33 (m, 2 H),


3.07-3.03 (m, 5 H), 2.39 (s, 3 H), 1.80-1.75 (m, 4 H). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 166.0$, 141.7, 141.4, 129.1, 126.3, 50.8, 38.3, 28.6, 22.2, 21.4, 19.6. IR (liquid film, cm⁻¹): v = 2951, 2870, 1571, 1483, 1404, 1364, 1327, 1273, 1143, 1090, 962, 823, 704, 675, 584, 554. HRMS calc. $C_{13}H_{18}N_2O_2S$ (M⁺): 266.1089. Found: 266.1085.

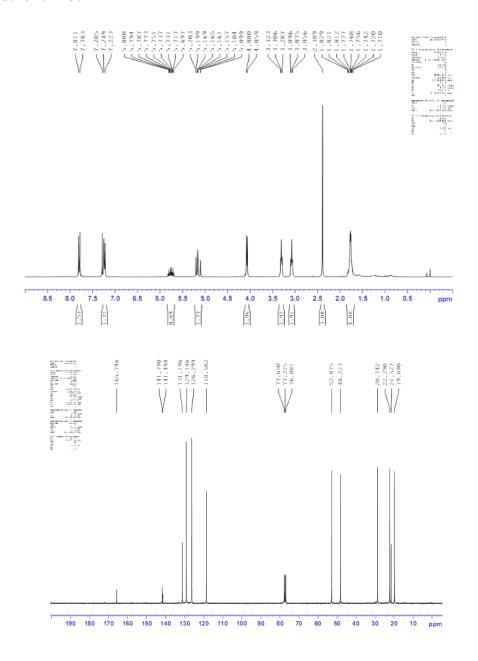
N-(1-ethylpiperidin-2-ylidene)-4-methylbenzenesulfonamide

¹H NMR (CDCl₃, 300 MHz, ppm): 7.79 (d, 2 H, J = 8.4 Hz), 7.23 (d, 2 H, J = 8.1 Hz), 3.52-3.45 (m, 2 H),


3.33-3.29 (m, 2 H), 3.00-2.96 (m, 2 H), 2.38 (s, 3 H), 1.76-1.70 (m, 4 H), 1.15-1.09 (t, 3 H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz, ppm): $\delta = 165.0$, 141.4, 128.9, 125.9, 48.0, 45.3, 28.3, 22.0, 21.2, 19.4, 11.2. IR (liquid film, cm⁻¹): $\nu = 2942$, 2872, 1558, 1484, 1364, 1327, 1273, 1214, 1144, 1094, 1068, 984, 936, 825, 785, 753, 702, 672, 585, 555. HRMS calc. $C_{14}H_{20}N_{2}O_{2}S$ (M⁺): 280.1245. Found: 280.1248.

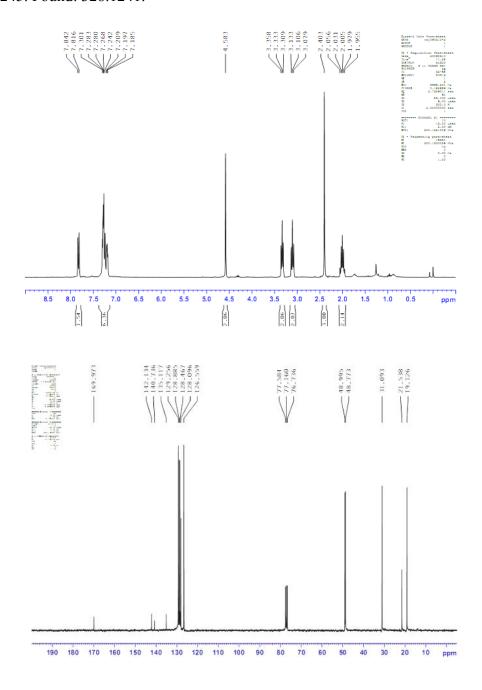
N-(1-benzylpiperidin-2-ylidene)-4-methylbenzenesulfonamide

¹H NMR (CDCl₃, 300 MHz, ppm): 7.76 (d, 2 H, J = 7.8 Hz), 7.29-7.18 (m, 7 H), 4.67 (s, 2 H), 3.26-3.10 (m, 4 H), 2.35 (s, 3 H), 1.71-1.69 (m, 4 H). ¹³C NMR (CDCl₃, 75


MHz, ppm): $\delta = 166.0$, 141.7, 141.4, 135.7, 129.1, 128.7, 128.1, 127.7, 126.2, 53.2, 48.3, 28.7, 22.1, 21.4, 19.5. IR (liquid film, cm⁻¹): v = 2948, 2869, 1555, 1486, 1363, 1328, 1274, 1142, 1084, 964, 825, 701, 683, 584, 554. HRMS calc. $C_{19}H_{22}N_2O_2S$ (M⁺): 342.1402. Found: 342.1403.

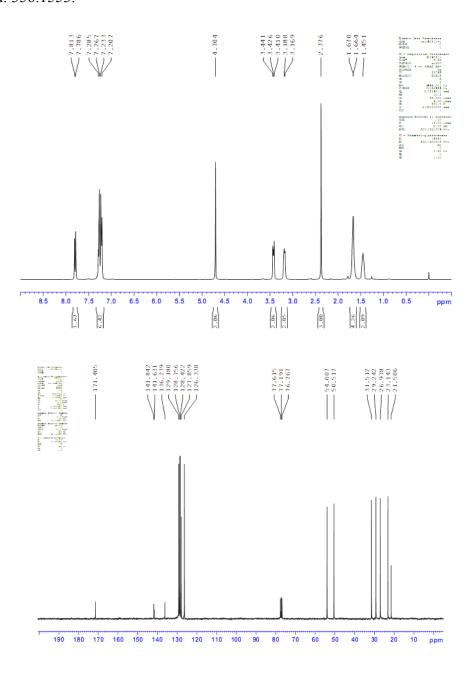
N-(1-allylpiperidin-2-ylidene)-4-methylbenzenesulfonamide

¹H NMR (CDCl₃, 300 MHz, ppm): 7.80 (d, 2 H, J = 8.4 Hz), 7.23 (d, 2 H, J = 7.8 Hz), 5.80-5.69 (m, 1 H), 5.20-5.09 (m, 2 H), 4.08-4.05 (m, 2 H), 3.32-3.28 (m, 2 H),


3.09-3.05 (m, 2 H), 2.39 (s, 3 H), 1.82-1.71 (m, 4 H). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 165.7, 141.8, 141.5, 131.2, 129.1, 126.3, 118.6, 52.9, 48.2, 28.7, 22.3, 21.5, 19.7. IR (liquid film, cm⁻¹): v = 2949, 2869, 1609, 1557, 1486, 1363, 1327, 1273, 1186, 1144, 1081, 966, 822, 696, 585, 555. HRMS calc. $C_{15}H_{20}N_2O_2S$ (M⁺): 292.1245. Found: 292.1249.

N-(1-benzylpyrrolidin-2-ylidene)-4-methylbenzenesulfonamide

¹H NMR (CDCl₃, 300 MHz, ppm): 7.83 (d, 2 H, J = 7.8 Hz), 7.30-7.19 (m, 7 H), 4.58 (s, 2 H), 3.36-3.31 (m, 2 H), 3.13-3.08 (m, 2 H), 2.40 (s, 3 H), 2.06-1.95 (m, 2 H). ¹³C


NMR (CDCl₃, 75 MHz, ppm): δ = 169.9, 142.1, 140.7, 135.1, 129.2, 128.9, 128.5, 128.1, 126.6, 48.9, 48.8, 31.1, 21.5, 19.1. IR (liquid film, cm⁻¹): ν = 2925, 1572, 1492, 1282, 1145, 1092, 909, 816, 703, 673, 589, 554. HRMS calc. $C_{18}H_{20}N_2O_2S$ (M⁺): 328.1245. Found: 328.1241.

N-(1-benzylazepan-2-ylidene)-4-methylbenzenesulfonamide

¹H NMR (CDCl₃, 300 MHz, ppm): 7.80 (d, 2 H, J = 8.1 Hz), 7.28-7.20 (m, 7 H), 4.70 (s, 2 H), 3.44-3.41 (m, 2 H), 3.19-3.17 (m, 2 H), 2.38 (s, 3 H), 1.67-1.66 (m, 4 H), 1.45

(s, 2 H). ¹³C NMR (CDCl₃, 75 MHz, ppm): δ = 171.4, 141.8, 141.6, 136.2, 129.2, 128.7, 128.4, 127.9, 126.3, 54.0, 50.5, 31.5, 29.2, 26.9, 23.1, 21.5. IR (liquid film, cm⁻¹): v = 2932, 2861, 1546, 1494, 1453, 1355, 1323, 1264, 1207, 1182, 1148, 1085, 959, 892, 815, 779, 752, 688, 582, 556. HRMS calc. $C_{20}H_{24}N_2O_2S$ (M⁺): 356.1558. Found: 356.1553.

