Synthesis and characterization of a germanium bismethanediide complex

Cechao Foo,^a Kai-Chung Lau^b, Yi-Fan Yang,^a and Cheuk-Wai So*^a

^aDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. ^bDepartment of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong. E-mail: CWSo@ntu.edu.sg

Electronic Supplementary Information

Content:

- 1. Table S1. Individual hybrid contributions, NLMO/NPA bond orders and Wiberg index of the Ge(1)–C(1), C(1)–P(2), P(2)–S(2), Ge(1)–S(2) and C(1)-P(1) bonds in compound **2**.
- 2. Complete citation for reference 18
- 3. Carterian coordinates for compound 2
- 4. Carterian coordinates for compound 2A
- 5. Carterian coordinates for compound 2B

Bond	NLMO/NPA	MO(1)	Contr. %	Туре	MO(2)	Contr. %	Туре	Wiberg index
	bond order			$(\text{contr. }\%)^a$			$(\text{contr. }\%)^a$	
Ge(1)-C(1)	0.624	Ge	28.2	s (35.1)	С	71.8	s (31.0)	0.858
				$p^{1.05}$ (64.8)			$p^{2.22}$ (69.0)	
C(1) - P(2)	0.835	С	61.1	s (30.7)	Р	38.9	s (30.2)	1.051
				$p^{2.26}$ (69.3)			$p^{2.29}$ (69.1)	
P(2)-S(2)	0.907	Р	44.8	s (19.3)	S	55.2	s (13.6)	1.019
				p ^{4.14} (79.6)			$p^{6.33}$ (86.0)	
Ge(1)-S(2)	0.494	Ge	25.7	s (15.2)	S	74.3	s (14.0)	0.671
				$p^{5.50}$ (83.4)			p ^{6.12} (85.8)	
C(1) - P(1)	0.727	С	64.0	s (37.5)	Р	36.0	s (26.4)	0.902
				$n^{1.67}$ (62.5)			$n^{2.76}$ (72.8)	

Table S1. Individual hybrid contributions, NLMO/NPA bond orders and Wiberg index of the Ge(1)-C(1), C(1)-P(2), P(2)-S(2), Ge(1)-S(2) and C(1)-P(1) bonds in compound **2**

^a The individual hybrid contribution may not sum up to 100% as the contribution from the d-type orbital is not listed

2. Complete citation for reference 18

18. Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, **2004**.

3. Carterian coordinates for compound 2

Ge	0.00000	0.00000	0.487057
S	-1 847249	0 470372	1 910268
S	1 847249	-0 470372	1 910268
C	1 049974	1 111961	_0 127922
C	1 048074	1 444064	0.127052
	-1.048974	1 240246	-0.12/032
P -	-2.401508	-1.249246	0.884003
Þ	2.461568	1.249246	0.884003
Р	-0.711406	-2.883394	-1.111218
P	0.711406	2.883394	-1.111218
S	2.305330	3.563187	-2.103397
S	-2.305330	-3.563187	-2.103397
С	2.810696	2.603709	2.067924
С	3.502626	3.741452	1.617814
С	2.349425	2.549007	3.391291
С	3.732915	4.805953	2.490523
Н	3.844664	3.803354	0.588715
С	2.593757	3.613805	4.261763
Н	1.812172	1.672774	3.742222
С	3.283986	4.742855	3.812960
Н	4.262373	5.685242	2.133406
Н	2.243022	3.559258	5.289204

Η

C C C C

Η С Η С Η Η Η С С С С Η С Η С Η Η Η С С С С Η С Η С Η Η Η С

C C C

Η С Η С Η Η Η С С С С Η С Η С Η Η Η

2 481161		4 401100
3.4/1161	5.5/1546	4.491199
-2.810696	-2.603709	2.067924
-3.502626	-3.741452	1.617814
-2 349425	-2 549007	3 391291
2.019120	1 005052	2 400522
-5.732915	-4.803933	2.490525
-3.844664	-3.803354	0.588715
-2.593757	-3.613805	4.261763
-1.812172	-1.672774	3.742222
-3 283986	-4 742855	3 812960
4 262272	E 69E242	2 122406
-4.202373	-3.005242	2.133400
-2.243022	-3.559258	5.289204
-3.471161	-5.571546	4.491199
4.059652	0.913332	0.067834
4.112908	0.642774	-1.303914
5 236906	0 884266	0 834237
5.250500	0.001200	1 000001
5.341512	0.367396	-1.908824
3.206519	0.676039	-1.896532
6.458564	0.594444	0.227011
5.204669	1.094975	1.899918
6.512249	0.341736	-1.148241
5 379960	0 179933	-2 978368
7.200	0.17555	2.970300
7.366524	0.5/364/	0.824075
7.466443	0.129363	-1.624116
-4.059652	-0.913332	0.067834
-4.112908	-0.642774	-1.303914
-5.236906	-0.884266	0.834237
-5 341512	-0 367396	-1 908824
2.20(510	0.507550	1 000523
-3.206519	-0.6/6039	-1.896532
-6.458564	-0.594444	0.227011
-5.204669	-1.094975	1.899918
-6.512249	-0.341736	-1.148241
-5.379960	-0.179933	-2.978368
-7 366524	-0 573647	0 824075
7.500524	0.373047	1 624116
- / . 466443	-0.129363	-1.624116
0.00000	4.218971	-0.047664
-0.005885	5.539452	-0.523943
-0.547433	3.946636	1.211707
-0.561081	6.564582	0.243394
0 444293	5 761153	-1 487609
1 100220	4 072722	1 000575
-1.100230	4.9/3/23	1.5045/5
-0.543624	2.932186	1.593496
-1.111776	6.283325	1.498450
-0.559171	7.583359	-0.136361
-1.519969	4.746255	2,959382
-1 540810	7 082645	2 097858
T.040010	_1 01001	
0.00000	-4.2189/1	-0.04/664
0.005885	-5.539452	-0.523943
0.547433	-3.946636	1.211707
0.561081	-6.564582	0.243394
-0.444293	-5.761153	-1.487609
1 100220	-4 973702	1 982575
	-2 022100	1 502070
0.543624	-2.932100	1 400450
1.111776	-6.283325	1.498450
0.559171	-7.583359	-0.136361
1.519969	-4.746255	2.959382
1.540810	-7.082645	2.097858

С	0.681084	-2.434279	-2.232393
С	0.378950	-1.821064	-3.456999
С	2.014597	-2.742258	-1.926694
С	1.395759	-1.520116	-4.363200
Н	-0.656535	-1.607014	-3.704367
С	3.029953	-2.450208	-2.842272
Н	2.266793	-3.229030	-0.989777
С	2.723244	-1.840529	-4.060398
Н	1.151056	-1.050096	-5.312615
Н	4.058916	-2.701399	-2.599383
Н	3.512491	-1.621268	-4.775593
С	-0.681084	2.434279	-2.232393
С	-0.378950	1.821064	-3.456999
С	-2.014597	2.742258	-1.926694
С	-1.395759	1.520116	-4.363200
Н	0.656535	1.607014	-3.704367
С	-3.029953	2.450208	-2.842272
Н	-2.266793	3.229030	-0.989777
С	-2.723244	1.840529	-4.060398
Н	-1.151056	1.050096	-5.312615
Н	-4.058916	2.701399	-2.599383
Н	-3.512491	1.621268	-4.775593

4. Carterian coordinates for compound 2A

Ge	0.00000	0.00000	0.538749
S	1.217306	1.512274	1.900323
S	-1.217306	-1.512274	1.900323
С	0.789799	-1.533309	-0.201040
С	-0.789799	1.533309	-0.201040
Ρ	0.00000	2.753041	0.732784
Н	-0.777814	3.580879	1.569603
Н	0.792674	3.697615	0.050491
Р	0.00000	-2.753041	0.732784
Н	0.777814	-3.580879	1.569603
Н	-0.792674	-3.697615	0.050491
Р	-1.994236	1.953672	-1.409731
Н	-1.666066	1.256681	-2.599710
Н	-3.202893	1.289590	-1.080692
Р	1.994236	-1.953672	-1.409731
Н	1.666066	-1.256681	-2.599710
Н	3.202893	-1.289590	-1.080692
S	2.160495	-3.925252	-1.600276
S	-2.160495	3.925252	-1.600276

5. Carterian coord	linates for compound 2B		
Ge	0.00000	0.00000	0.000101
S	2.517844	0.373135	-0.003338
S	-2.517844	-0.373135	-0.003338
Р	1.696738	2.253548	-0.002641
Н	2.133784	3.020605	-1.099758
H	2.138009	3.021179	1.092367
Р	-1.696738	-2.253548	-0.002641
Н	-2.138009	-3.021179	1.092367
Н	-2.133784	-3.020605	-1.099758

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

С	0.00000	1.852380	0.000776
С	0.00000	-1.852380	0.000776
P	-1.274954	3.085613	0.003980
Н	-2.140909	2.795396	-1.077258
H	-2.134807	2.795819	1.090149
P	1.274954	-3.085613	0.003980
Н	2.140909	-2.795396	-1.077258
Н	2.134807	-2.795819	1.090149
S	-0.492235	4.908776	0.001346
S	0.492235	-4.908776	0.001346