Supplementary Materials

For

Zr-promoted Linear Coupling of Alkynes to Bis(allene)

Xiaoyu Yan, Chunbo Lai, Chanjuan Xi*

Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Experimental Sections

General. All manipulations were conducted in Schlenk tube and under nitrogen with a slightly positive pressure. The reaction progress was monitored by ³¹P NMR. The ³¹P NMR yields were obtained in proportion to the integral area of all the ³¹P signals determined by integration. Unless otherwise noted, all starting materials were commercially available and were used without further purification. Tetrahydrofuran (THF) was refluxed and freshly distilled from dark purple solutions of sodium and benzophenone under nitrogen atmosphere. ¹H NMR and ¹³C NMR spectra were recorded on JOEL 300 NMR spectrometer with TMS as internal standard. ³¹P NMR spectra were recorded on Bruker AC 200 NMR spectrometer at 81 MHz under ¹H decoupled conditions using 85% H₃PO₄ ($\delta_P = 0$ ppm) as an external standard. Elemental analyses were performed on a Flash EA 1112 instrument. Mass spectra were were obtained using a Bruker Esquire ion trap mass spectrometer in positive ion mode. Flash column chromatography was performed using silica gel (200-300 mesh).

Representative procedure for coupling of alkynes to bis(allene). To a solution of phenylacetylene (3 mmol) in THF (5 mL) was added *n*-BuLi (3.2 mmol, 2 mL, 1.6 M solution in hexane) at -78°C and the mixture was warmed up to room temperature and kept for 1 h. To the reaction system, Cp₂ZrCl₂ (1 mmol, 292 mg) was added at -78°C. This mixture was kept at room temperature for 12 h to afford a dark red solution. Then PPh₂Cl (3.0 mmol, 552 mL) was added to the solution and was stirred for another 3 h at room temperature. The reaction mixture was monitored by ³¹P NMR and three signals appeared in -6.7, -7.6, -9.3 ppm. ³¹P NMR yield 97%. The reaction mixture was dried over MgSO₄. Removing the solvent and subsequent purification by column chromatography on silica gel (petroleum ether : ethyl acetate = 25 : 1) afforded 1,4,6-triphenyl-1,3,6-tris(diphenylphosphino)hexa-1,2,4,5-tetraene (**1a**) (454 mg, 53%) as yellow solid.

¹H NMR (300MHz, CDCl₃, Me₄Si) δ 6.70-7.65 (m, 45H); ¹³C NMR (75MHz, CDCl₃, Me₄Si) δ 103.3 (d, ¹*J*_{PC} = 18.6 Hz, 1C), 105.5 (d, ¹*J*_{PC} = 15.8 Hz, 1C), 107.2 (d, ²*J*_{PC} = 20.8 Hz, ³*J*_{PC} = 2.9 Hz, 1C), 108.6 (d, ¹*J*_{PC} = 33.0 Hz, 1C), 126.9-136.9 (m, aromatic), 209.0 (d, ²*J*_{PC} = 5.0 Hz, 1C), 209.9 (d, ²*J*_{PC} = 2.9 Hz, 1C); ³¹P NMR (81MHz, CDCl₃, 85%H₃PO₄) δ -6.9, -7.9, -9.8; Positive ion ESI-MS:881.2 (M+Na⁺). Anal. calcd for C₆₀H₄₅P₃·CH₂Cl₂·H₂O: C, 76.17; H, 5.13. Found: C, 75.92; H, 5.23.

1,4,6-tri(4-methoxyphenyl)-1,3,6-tris(diphenylphosphino)hexa-1,2,4,5-tetraene 1b

³¹P NMR yield 72%. Isolated yield 29%. ¹H NMR (300MHz, CDCl₃, Me₄Si) δ 3.71 (s, 3H), 3.81 (s, 6H), 6.47-7.64 (m, 42H); ¹³C NMR (75MHz, CDCl₃, Me₄Si) δ 55.2, 55.3, 55.4, 103.7 (d, ¹*J*_{PC} = 17.2 Hz, 1C), 104.5 (d, ¹*J*_{PC} = 15.1 Hz, 1C), 106.1 (d, ²*J*_{PC} = 19.4 Hz, ³*J*_{PC} = 2.2 Hz, 1C), 108.2 (d, ¹*J*_{PC} = 33.0 Hz, 1C), 113.1, 113.4. 113.5, 128.0-136.1 (m, aromatic), 158.5, 158.6, 159.0, 209.0 (d, ²*J*_{PC} = 3.6 Hz, 1C), 209.0 (d, ²*J*_{PC} = 3.6 Hz, 1C), 209.7 (d, ²*J*_{PC} = 2.1 Hz, 1C); ³¹P NMR (81MHz, CDCl₃, 85%H₃PO₄) δ -7.3, -8.5, -10.3; Positive ion ESI-MS: 971.2 (M+Na⁺).

1,4,6-tri(thiophen-3-yl)-1,3,6-tris(diphenylphosphino)hexa-1,2,4,5-tetraene 1c

³¹P NMR yield 77%. Isolated yield 36%. ¹H NMR (300MHz, CDCl₃, Me₄Si) δ 6.78-7.69 (m, aromatic, 39H); ¹³C NMR (75MHz, CDCl₃, Me₄Si) δ 101.3 (d, ¹*J*_{PC} = 16.5 Hz, 1C), 102.6 (d, ¹*J*_{PC} = 16.5 Hz, 1C), 102.7 (d, ²*J*_{PC} = 20.8 Hz, ³*J*_{PC} = 2.9 Hz, 1C), 103.6 (d, ¹*J*_{PC} = 32.3 Hz, 1C), 121.4-136.5 (m, aromatic), 209.4 (d, ²*J*_{PC} = 3.6 Hz, 1C), 210.4 (d, ²*J*_{PC} = 2.9 Hz, 1C); ³¹P NMR (81MHz, CDCl₃, 85%H₃PO₄) δ -5.7, -8.2, -9.4; Positive ion ESI-MS: 899.2 (M+Na⁺).

1,4,6-trip-tolyl-1,3,6-tris(diphenylphosphino)hexa-1,2,4,5-tetraene 1d

³¹P NMR yield 91%. Isolated yield 49%. ¹H NMR (300MHz, CDCl₃, Me₄Si) δ 2.27 (s, 3H), 2.40 (s, 3H) 2.42 (s, 3H), 6.79-7.69 (m, 42H); ¹³C NMR (75MHz, CDCl₃, Me₄Si) δ 21.2, 21.3, 21.4, 103.5 (d, ¹*J*_{PC} = 18.6 Hz, 1C), 105.0 (d, ¹*J*_{PC} = 14.3 Hz, 1C), 106.8 (d, ²*J*_{PC} = 19.9 Hz, ³*J*_{PC} = 2.7 Hz, 1C), 108.6 (d, ¹*J*_{PC} = 33.8 Hz, 1C), 127.0-137.0 (m, aromatic), 209.1 (d, ²*J*_{PC} = 4.3 Hz, 1C), 209.9 (d, ²*J*_{PC} = 3.6 Hz, 1C); ³¹P NMR (81MHz, CDCl₃, 85%H₃PO₄) δ -7.3, -8.2, -10.4; Positive ion ESI-MS: 923.5 (M+Na⁺). Anal. calcd forC₆₃H₅₁P₃·2H₂O: C, 80.75; H, 5.92. Found: C, 81.03; H, 5.90.

1,4,6-tri(biphenyl-4-yl)-1,3,6-tris(diphenylphosphino)hexa-1,2,4,5-tetraene 1e

³¹P NMR yield 84%. Isolated yield 37%. ¹H NMR (300MHz, CDCl₃, Me₄Si) δ 6.77-7.70 (m, 57H); ¹³C NMR (75MHz, CDCl₃, Me₄Si) δ 103.3 (d, ¹*J*_{PC} = 19.4 Hz, 1C), 105.3 (d, ¹*J*_{PC} = 16.5 Hz, 1C), 107.2 (d, ²*J*_{PC} = 20.1 Hz, ³*J*_{PC} = 2.2 Hz, 1C), 108.4 (d, ¹*J*_{PC} = 33.0 Hz, 1C), 126.4-140.9 (m, aromatic), 209.3 (d, ²*J*_{PC} = 5.0 Hz, 1C), 210.4 (d, ²*J*_{PC} = 2.9 Hz, 1C); ³¹P NMR (81MHz, CDCl₃, 85%H₃PO₄) δ -7.0, -7.2, -9.5; Positive ion ESI-MS: 1109.3 (M+Na⁺). Anal. calcd forC₇₈H₅₇P₃·CH₂Cl₂·Et₃N: C, 80.18; H, 5.86; N, 1.10. Found: C, 79.68; H, 5.95; N, 0.94.

1,4,6-triphenyl-1,3,6-tris(trimethylsilyl)hexa-1,2,4,5-tetraene 1f

To the solution of $Cp_2Zr(CCPh)_3$ (1 mmol) in THF, 4 mmol TMSOTf was added and kept at room temperature for 10 hours. 57% isolated yield (1:1 de isomer). ¹H NMR

(300MHz, CDCl₃) δ 0.07, 0.08, 0.11, 0.16, 0.21, 0.29, 7.10-7.38; ¹³C NMR (75MHz, CDCl₃) δ -0.2, -0.2, -0.1, 0, 0, 0.1, 89.8, 90.3, 94.3, 94.6, 101.6, 101.7, 102.6, 103.0, 125.8, 126.5, 126.6, 126.6, 127.5, 127.6, 127., 127.7, 128.0, 128.1, 128.2, 128.2, 128.5, 128.6, 128.6, 137.2, 137.2, 137.6, 137.6, 137.7, 137.7, 208.9, 209.6, 209.8, 209.9. GC-MS: 522.

1,4,6-triphenyl-1,3,6-tris(diphenylphosphino)hexa-1,2,4,5-tetraene oxide 2a

¹H NMR (300MHz, CDCl₃, Me₄Si) δ 6.61(d, ³*J*_{HH} = 7.6 Hz, 2H), 6.86-7.50 (m, 39H), 7.92(dd, ³*J*_{HH} = 7.5 Hz, ⁴*J*_{PH} = 12 Hz, 2H), 8.20-8.25(m, 2H); ¹³C NMR (75MHz, CDCl₃, Me₄Si) δ 102.3 (ddd, ¹*J*_{PC} = 91.8 Hz, ³*J*_{PC} = 11.5 Hz, ⁴*J*_{PC} = 7.2 Hz, 1C), 104.0 (ddd, ²*J*_{PC} = 5.7 Hz, ³*J*_{PC} = 12.9 Hz, ⁴*J*_{PC} = 5.7 Hz, 1C), 105.1 (d, ¹*J*_{PC} = 94.6 Hz, 1C), 105.4 (d, ¹*J*_{PC} = 93.2 Hz, ³*J*_{PC} = 10.0 Hz, 1C), 127.1-135.7 (m, aromatic), 211.6 (dd, ²*J*_{PC} = 2.9 Hz, ²*J*_{PC} = 2.2 Hz , 1C), 213.0 (dd, ²*J*_{PC} = 5.0 Hz, ³*J*_{PC} = 8.6 Hz , 1C); ³¹P NMR (81MHz, CDCl₃, 85%H₃PO₄) δ 25.5, 29.1, 30.0; Positive ion ESI-MS: 929.3 (M+Na⁺).Anal. calcd for C₆₀H₄₅P₃O₃: C, 79.46 H, 5.00. Found: C, 79.56; H, 5.10.