Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2009

Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium (IV) oxide

Shinichi Naya,^a Miwako Teranishi,^a Takeshi Isobe,^b Hiroaki Tada^{a,b} *

^a Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

^b Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

* To whom correspondence should be addressed: TEL: +81-6-6721-2332, FAX: +81-6-6727-2024,

E-mail: <u>h-tada@apch.kindai.ac.jp</u>.

Experimental details

Photocatalytic reaction

The photoreaction solution of 2-mercaptopyridine (PySH) (5.4×10^{-5} mol dm⁻³) was prepared by diluting an acetonitrile solution with H₂O (H₂O:acetonitrile = 99:1 v/v). After the suspension (200 mL) of TiO₂, Au/TiO₂, or Au/ZrO₂ (200 mg) had been stirred at 298 K in dark, irradiation was started using a 300 W Xe lamp (HX-500, Wacom) with a cut off filter Y-45 (Toshiba) in a double jacket type reaction cell (31 mm in diameter and 175 mm in length, transparent to light with $\lambda >$ 4300 nm). The light intensity integrated from 420 to 480 nm ($I_{420-480}$) was measured to be 3.7 mW cm⁻² by the use of a digital radiometer. Magnetic stirring of the suspension were continued throughout the irradiation. The temperature of the suspension was kept at 298 K by circulating thermostatted water through an outer jacket around the cell. The concentrations of PySH consumed and 2,2'-dipyridyl disulfide (PySSPy) generated were determined from the absorbances at 342 nm ($\varepsilon_{max} = 7.82 \times 10^3$ mol⁻¹ dm³ cm⁻¹) and HPLC, respectively.

Photochronopotentiometry measurement

Photoelectrochemical measurements: slurry of Au/TiO2 particles (Au/TiO2 0.5 g/H2O 1 mL) was

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2009

coated on SnO₂-film coated glass substrates (12 Ω/\Box) by a squeegee method, and the sample was heated in air at 573 K for 1 h to form Au/TiO2/SnO2 electrodes. The *U* was measured in a 0.1 mol dm⁻³ Na₂SO₄ electrolyte solution with PySH (5.4 × 10⁻⁵ mol dm⁻³) in a regular three-electrode electrochemical cell using a galvanostat/potentiostat (HZ-5000, Hokuto Denko). Irradiation by using a xenon lamp with a monochromator (fwhm, 10 nm) (HM-5, JASCO) led to a shift of *U* in the cathodic direction.

Fig. S1 Plots of concentrations of PySH under visible light irradiation in the presence of TiO₂, Au/ZrO₂ (d = 19, x = 0.57 mass%) and Au/TiO₂ (d = 13.1, x = 0.43 mass%).

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2009

Fig. S2 Plots of concentrations of PySH under Vis-irradiation in the presence of Au/TiO₂ with various size *d* as a function of $t_{p:}$ Au/TiO₂ (x = 0.43 mass%) and TiO₂(A) and Au/TiO₂ (x = 0.25 mass%) (B)