Electronic Supporting Infirmation

The first example of metallocene-like coordination mode of fully deprotonated 2,3,5,6-tetrahydroxy-1,4-benzoquinone (THBQ⁴⁻): A mixed-valence heptanucler palladium complex [Pd₇(THBQ)₂(tben)₆](PF₆)₄ (tben = N,N,N',N'-tetrabenzylethylenediamine)

Eiji Asato, Ayano Kyan, Tomokura Madanbashi, Toshihide Tamura, Makoto Tadokoro and Motohiro Mizuno

- 1) X-ray structure report
- 2) ¹H NMR spectrum of complex 1 measured in deuterated DMF

1) X-ray structure report

Experimental

Data Collection

A black prism crystal of $C_{198}H_{201}F_{24}N_{15}O_{12}P_4Pd_7$ having approximate dimensions of 0.38 x 0.35 x 0.31 mm was mounted on a glass fiber. All measurements were made on a Rigaku Mercury CCD area detector with graphite monochromated Mo-K α radiation.

Indexing was performed from 0 images that were exposed for 0 seconds. The crystal-to-detector distance was 55.17 mm.

Cell constants and an orientation matrix for data collection corresponded to a R-centered trigonal cell (laue class: -3) with dimensions:

a = 19.3100(7) Å c = 40.620(2) Å V = 13117.0(10) Å³

For Z = 3 and F.W. = 4307.52, the calculated density is 1.636 g/cm³. Based on the systematic absences of:

hkil: $-h+k+l \pm 3n$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 20 value of 54.9°. A total of 1400 oscillation images were collected. A sweep of data was done using ϕ scans from -80.0 to 100.0° in 0.3° step, at ω =0.0° and χ = 0.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle was 24.97°. A second sweep was performed using ω scans from -15.0 to 45.0° in 0.3° step, at χ =90.0° and ϕ = 0.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle was 24.97°. A second sweep was

was performed using ω scans from -15.0 to 45.0° in 0.3° step, at χ =90.0° and ϕ = 90.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle was 24.97°. Another sweep was performed using ω scans from -15.0 to 45.0° in 0.3° step, at χ =90.0° and ϕ = 180.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle was 24.97°. Another sweep was performed using ω scans from -15.0 to 45.0° in 0.3° step, at χ =90.0° and ϕ = 270.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle was 24.97°. Another sweep was performed using ω scans from -15.0 to 45.0° in 0.3° step, at χ =90.0° and ϕ = 270.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle in 0.3° step, at χ =90.0° and ϕ = 270.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle in 0.3° step, at χ =90.0° and ϕ = 270.0°. The exposure rate was 33.3 [sec./°]. The detector swing angle was 24.97°.

Data Reduction

Of the 32304 reflections that were collected, 6609 were unique ($R_{int} = 0.037$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). Net intensities and sigmas were derived as follows:

 $F^2 = [\Sigma(P_i - mB_{ave})] \cdot Lp^{-1}$

where P_i is the value in counts of the ith pixel m is the number of pixels in the integration area B_{ave} is the background average Lp is the Lorentz and polarization factor

 $B_{ave} = \Sigma(B_j)/n$

where n is the number of pixels in the background area B_i is the value of the jth pixel in counts

$$\sigma^2(F^2_{hkl}) = [(\Sigma P_i) + m((\Sigma(B_{ave} - B_j)^2)/(n-1))] \cdot Lp \cdot errmul + (erradd \cdot F^2)^2$$

where erradd = 0.00errmul = 1.00

The linear absorption coefficient, μ , for Mo-K α radiation is 8.349 cm⁻¹. A numerical absorption correction was applied which resulted in transmission factors ranging from 0.727 to 0.772. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by heavy-atom Patterson methods² and expanded

using Fourier techniques³. Some non-hydrogen atoms were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 6609 observed reflections and 389 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

R1 = Σ IIFoI - IFcII / Σ IFoI = 0.0478

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1091$$

The standard deviation of an observation of unit weight⁵ was 1.11. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 1.43 and -1.00 $e^{-}/Å^3$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All calculations were performed using the CrystalStructure¹⁰ crystallographic software package except for refinement, which was performed using SHELXL-97¹¹.

SPECIAL DETAILS OF THE REFINEMENT

One phenyl ring including C16 is separated into two components, thus treated as being disordering. The disorder and its occupancy are refined. Two PF6 anions are also treated as a disorder model. Since the P1, F1, and F2 are located on the three-fold axis, F3--F6 are treated with the occupation of 1/3. The other PF6 anion exhibited strong disorder, and separated into three components present on the three-fold axis. The occupancy of each PF2 part as the asymmetric unit was also refined, and converged to 0.456, 0.298 and 0.248 (= total 1.00). At the final stage of refinement, any reasonable peaks for acetonitrile molecules expected from the elemental analysis were not found. A possible reason should be strong disorder or low occupancy of the molecules. Based on the assumption that the acetonitrile is disordering, the solvent molecules were included in crystal's formula and SQEESE program in PLATON¹² was used to refine the structure at the final refinement process.

References

(1) <u>CrystalClear</u>: Rigaku Corporation, 1999. CrystalClear Software User's Guide, Molecular Structure Corporation, (c) 2000.J.W.Pflugrath (1999) Acta Cryst. D55, 1718-1725.

(2) <u>PATTY</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., Garcia-Granda, S., Gould, R.O., Smits, J.M.M. and Smykalla, C. (1992). The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

(3) <u>DIRDIF99</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1999). The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

(4) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(5) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_o = number of observations N_v = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H.,; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(10) <u>CrystalStructure 3.8</u>: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr. The Woodlands TX 77381 USA.

(11) <u>SHELX97</u>: Sheldrick, G.M. (1997).

(12) PLATON (Speck, 2003). Speck, A.L. (2003). J. Appl. Cryst. 36, 7-13.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	$C_{198}H_{201}F_{24}N_{15}O_{12}P_4Pd_7$
Formula Weight	4307.52
Crystal Color, Habit	black, prism
Crystal Dimensions	0.38 X 0.35 X 0.31 mm
Crystal System	trigonal
Lattice Type	R-centered
Detector Position	55.17 mm
Pixel Size	0.137 mm
Lattice Parameters	a = 19.3100(7) Å
	$V = 13117.0(10) Å^3$
Space Group	R-3 (#148)
Z value	3
D _{calc}	1.636 g/cm ³
F ₀₀₀	6564.00
μ(ΜοΚα)	8.349 cm ⁻¹

B. Intensity Measurements

Detector Goniometer	Rigaku Mercury Rigaku AFC7
Radiation	MoK α (λ = 0.71070 Å) graphite monochromated
Detector Aperture	70 mm x 70 mm
Data Images	1400 exposures
ϕ oscillation Range (ω =0.0, χ =0.0)	-80.0 - 100.0 ⁰
Exposure Rate	33.3 sec./ ⁰
Detector Swing Angle	24.970
ω oscillation Range (χ=90.0, φ=0.0)	-15.0 - 45.0 ⁰
Exposure Rate	33.3 sec./ ⁰
Detector Swing Angle	24.97 ⁰
ω oscillation Range (χ=90.0, φ=90.0)	-15.0 - 45.0 ⁰
Exposure Rate	33.3 sec./ ⁰
Detector Swing Angle	24.970
ω oscillation Range (χ=90.0, φ=180.0)	-15.0 - 45.0 ⁰
Exposure Rate	33.3 sec./ ⁰
Detector Swing Angle	24.970
ω oscillation Range (χ=90.0, φ=270.0)	-15.0 - 45.0 ⁰
Exposure Rate	33.3 sec./ ⁰

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

24.97 ⁰
55.17 mm
0.137 mm
54.90
Total: 32304 Unique: 6609 (R _{int} = 0.037)
Lorentz-polarization Absorption (trans. factors: 0.727 - 0.772) Decay (0.00% increase)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

C. Structure Solution and Refinement

Structure Solution	Patterson Methods (DIRDIF99 PATTY)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0422 · P) ² + 120.7983 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
2θ _{max} cutoff	54.90
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	6609
No. Variables	389
Reflection/Parameter Ratio	16.99
Residuals: R1 (I>2.00 σ (I))	0.0478
Residuals: R (All reflections)	0.0514
Residuals: wR2 (All reflections)	0.1091
Goodness of Fit Indicator	1.111
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	1.43 e⁻/Å ³
Minimum peak in Final Diff. Map	-1.00 e ⁻ /Å ³

2) ¹H NMR spectrum of complex 1 measured in deuterated DMF

