SUPPORTING INFORMATION

for

Unusual Reactivities of N-Heterocyclic Carbenes upon Coordination to the Platinum(II)-Dimethyl Moiety

George C. Fortman, Natalie M. Scott, Anthony Linden, Edwin D. Stevens, Reto Dorta, and Steven P. Nolan

TABLE OF CONTENTS

Experimental Details	S2
Selected bond lengths and angles for complexes 1-7	S7
Summary of crystallographic data for complexes 1-7	S8
¹ H and ¹³ C NMR spectra for all new compounds	S9
SambVuca Output	S16

General Considerations. Unless stated otherwise all reactions were preformed in an MBraun drybox or under Schlenk techniques. Solvents were obtained from Sigma Aldrich and were dried and degassed as necessary utilizing conventional methods. (COD)PtMe₂ was obtained from Strem Chemicals and used as received. ^{Me}IMe,^[1] ^{Me}IPr ,^[1] ICy,^[2] IMes,^[2] IPr^[3] and I^tBu^[4] were synthesized by literature methods. ¹H and ¹³C NMR were obtained on either a Burker 400 MHz or a Bruker 300 MHz NMR spectrometer. Spectra were referenced to benzene at δ 7.16 (¹³C, δ 128.0), toluene at δ 2.04, or THF-d₈ at δ 3.58 (¹³C, δ 67.6) ppm. Elemental Analyses were performed at the Universität Zürich, Organisch-chemisches Institut.

Synthesis of *cis*-Pt(^{Me}IMe)₂Me₂ (1). Toluene (3 mL) was added to the solids (COD)PtMe₂ (100 mg, 0.3 mmol) and ^{Me}IMe (75.2 mg, 0.6 mmol) in a reaction vial. The resulting solution was stirred for 20 minutes, and then the volatiles were removed in vacuo, yielding a white solid. The compound was washed with pentane (3 x 2 mL), affording 131 mg (92 %) of the desired complex. X-ray quality crystals were obtained by slow evaporation of a saturated CH₂Cl₂/pentane solution at room temperature. Anal. Calcd for C₁₆H₃₀N₄Pt (MW 473.53): C, 40.58; H, 6.39; N, 11.83. Found: C, 40.72; H, 6.16; N, 11.89. ¹H NMR (C₆D₆, 400 MHz, δ): 3.53 (s, 12H, N(1,3)-CH₃), 1.45 (s, 12H, C(4,5)-CH₃), 1.08 (s, 6H, ²J_{Pt} = 65.1 Hz, CH₃). ¹³C NMR (C₆D₆, 400 MHz, δ): 187.3 (s, N-C-N), 122.6 (s, C(4,5)), 34.1 (s, ³J_{Pt} = 47.2 Hz, N(1,3)-CH₃), 9.06 (s, C(4,5)-CH₃), -7.76 (s, ¹J_{Pt} = 553.9 Hz, CH₃).

Synthesis of *cis*-Pt(ICy)₂Me₂ (2). Benzene (25mL) was added to the solids (COD)PtMe₂ (200 mg, 0.6 mmol) and ICy (365 mg, 1.2 mmol) in a reaction vial. The resulting solution was stirred for 1 hour, and then the volatiles were removed in vacuo, yielding a white solid. The compound was washed with pentane (3 x 5 mL), affording 414 mg (85 %) of the desired complex. X-ray quality crystals were obtained by slow evaporation of a saturated CH₂Cl₂/pentane solution at room temperature. Anal. Calcd for C₃₂H₅₄N₄Pt (MW 689.90): C, 55.71; H, 7.89; N, 8.12. Found: C, 56.28 ; H, 7.67 ; N, 8.13. ¹H NMR (C₆D₆, 400 MHz, δ): 6.50 (s, 4H, ⁴J_{Pt} = 6.7 Hz. NCH=CHN), 5.37 (m, 4H, ICy-CH), 2.15

(m, 4H, *p*-ICy-CH₂), 1.82 (m, 4H, *p*-ICy-CH₂), (1.63 – 0.94 (m, 36H, *m/o*-ICy-CH₂), 0.89 (s, 6H, ${}^{2}J_{Pt}$ = 65.9 Hz, CH₃). 13 C NMR (CD₂Cl₂, 400 MHz, δ): 185.55 (s, ${}^{1}J_{CPt}$ = 1700.56Hz, N-C-N), 116.29 (s, ${}^{3}J_{CPt}$ = 44.0 Hz, NHC=CHN), 52.58 (s, SIPr-NCH₂CH₂N), 28.67 (s, SIPr-CH), 25.42 (s, SIPr-CH₃) 24.81 (s, SIPr-CH₃), -8.36 (s, ${}^{1}J_{CPt}$ = 1104.4 Hz, CH₃).

Synthesis of *cis*-Pt(^{Me}IPr)₂Me₂ (3). Toluene (10 mL) was added to the solids (COD)PtMe₂ (100 mg, 0.30 mmol) and ^{Me}IPr (108.2 mg, 0.60 mmol) in a reaction vial. The resulting solution was stirred for 1 h, and then the volatiles were removed in vacuo, yielding a light cream colored solid. The compound was washed with pentane (3 x 5 mL), affording 185.4 mg (89 %) of the desired complex. X-ray quality crystals were obtained by slow evaporation of a saturated CH₂Cl₂/pentane solution at room temperature. Anal. Calcd for C₂₄H₄₆N₄Pt (MW 585.34): C, 49.21; H, 7.92; N, 9.57. Found: C, 49.49; H, 7.88; N, 9.67. ¹H NMR (tol-d⁸, 400 MHz, δ): 6.36 (s, 4H, sept, *J* = 7.21 Hz, CH(CH₃)₂), 1.78 (s, 12H, s, C(4,5)-CH₃), 1.38 (d, 12H, *J* = 7.13 Hz, CH(CH₃)₂), 1.00 (s, 6H, ²*J*_{Pt} = 65.6 Hz, Pt-CH₃). ¹³C NMR (tol-d₈, 400 MHz, δ): 188.2 (s, N-C-N), 122.8 (s, ³*J*_{Pt} = 17.5 Hz C(4,5)), 51.3 (s, ³*J*_{Pt} = 52.8 Hz, CH(CH₃)₂), 22.6 (s, CH(CH₃)₂), 20.4 (s, CH(CH₃)₂) 10.2 (s, C(4,5)-CH₃), -7.75 (s, Pt-CH₃).

Synthesis of *cis*-Pt(IMes)₂Me₂ (4).^[5] Benzene (25mL) was added to the solids (COD)PtMe₂ (200 mg, 0.6 mmol) and IMes (365 mg, 1.2 mmol) in a Schenk flask. The resulting colourless solution was stirred for 10 minutes, and then the volatiles were removed in vacuo, yielding a white solid. The compound was washed with pentane (3 x 5 mL), affording 380 mg (76 %) of the desired complex. X-ray quality crystals were obtained by slow evaporation of a saturated benzene/Et₂O solution at room temperature. Anal. Calcd for C₄₄H₅₄N₄Pt (MW 833): C, 63.37; H, 6.53; N, 6.72. Found: C, 63.75 ; H, 6.72 ; N, 6.67 . ¹H NMR (C₆D₆, 400 MHz, δ): 6.68 (s, 4H, IMes-CH-Ar), 6.52 (s, 4H, IMes-CH-Ar), 6.13 (s, 4H, NCH=CHN), 2.38 (s, 12H, IMes-CH₃), 2.22 (s, 12H, IMes-CH₃), 1.87 (s, IMes-CH₃), 0.39 (s, 6H, ²*J*_{Pt} = 68.1 Hz , Me). ¹³C NMR (C₆D₆, 400 MHz, δ): 193.1 (s,N-C-N), 139.2 (s, SIPr-C), 136.8 (s, SIPr-C), 136.3 (s, SIPr-C), 135.8 (s,

SIPr-C), 130.23 (s, SIPr-C) 129.3 (s, overlapping with C₆D₆, SIPr-C), 123.3 (s, SIPr-NCH₂CH₂N), 21.6 (s, SIPr-CH), 20.4 (s, SIPr-CH₃), -0.03 (s, Pt-CH₃).

Synthesis of Pt(IMes)(IMes')Me (5).^[5] Toluene (10 mL) was added to the solids (COD)PtMe₂ (50.0 mg, 0.15 mmol) and IMes (91.4 mg, 0.30 mmol) in a Schlenk flask. The sealed flask was removed from the glove box and attached to a Schlenk line under argon. The clear colorless solution was heated with stirring for 16 hr at 60 °C. The final color of the solution was light yellow. The solvent was removed in vacuo and washed with cold pentane (3 x 2 mL) followed by one wash with cold toluene (1 mL) to yield 46.2 mg (46 %) of an off white colored powder. X-ray quality crystals were obtained by slow evaporation of a saturated benzene/Et₂O solution at room temperature. Anal. Calcd for C₄₃H₅₀N₄Pt (MW 817.96) C, 63.14; H, 6.16; N, 6.85. Found: C, 63.57; H, 6.34; N, 6.34. ¹H NMR (C_6D_6 , 400 MHz, δ): 7.00 (s, Mes-CH); 6.76 (s, 1H, Mes-CH); 6.70 (s, 1H, Mes-CH); 6.64 (s, 1H, Mes-CH); 6.60 (s, 1H, Mes-CH); 6.57 (s, 2H, CH=CH) 6.55 (s, 1H, Mes-CH); 6.47 (s, 1H, Mes-CH); 6.15 (s, 1H, Mes-CH); 6.09 (d, 1H); 6.00 (d, 1H, J = 2.2 Hz; 2.59 (s, 3H, Mes-CH₃); 2.40 (s, 3H, Mes-CH₃); 2.25 (s, 3H, Mes-CH₃); 2.23 (s, 6H, Mes-CH₃); 2.22 (s, 2H, Pt-CH₂); 2.15 (s, 3H, Mes-CH₃); 1.97 (s, 3H, Mes-CH₃); 1.92 (s, 3H, Mes-CH₃); 1.83 (s, 3H, Mes-CH₃); 1.39 (s, 3H, Mes-CH₃); 0.66 (s, 3H, ²J_{Pt} =70.0 Hz, Pt-Me). ¹³C NMR (C₆D₆, 400 MHz, δ): 193.7 (s, ¹J_{Pt} = 887.7 Hz, N-C-N), 188.1 (s, ${}^{1}J_{Pt} = 945.08$ Hz, N-C-N) 138.89 (s, Mes-C), 138.72 (s, Mes-C), 138.33(s, Mes-C), 138.13 (s, Mes-C), 137.72 (s, Mes-C), 136.95 (s, Mes-C), 136.58 (s, Mes-C), 136.42 (s, Mes-C), 136.26 (s, Mes-C), 135.60 (s, Mes-C), 134.05 (s, Mes-C), 133.98 (s, Mes-C), 130.85 (s, Mes-C), 130.05 (s, Mes-C), 129.09 (s, Mes-C), 128.90 (s, Mes-C), 126.95 (s, Mes-C), 123.35 (s, NCH=CHN), 122.30 (s, NCH=CHN), 120.99 (s, NCH=CHN) 120.43 (s, NCH=CHN), 23.04 (s, Pt-CH₂-Mes), 21.86 (s, Mes-CH₃), 21.80 (s, Mes-CH₃), 21.51 (s, Mes-CH₃), 21.26 (s, Mes-CH₃), 20.09 (s, Mes-CH₃), 19.83 (s, Mes-CH₃), 19.56 (s, Mes-CH₃), 19.27 (s, Mes-CH₃), 19.08 (s, Mes-CH₃), 18.82 (s, Mes-CH₃), -4.85 (s, Pt-Me).

Synthesis of $Pt(IPr)_2$ (6). Toluene (25mL) was added to the solids (COD)PtMe₂ (200 mg, 0.6 mmol) and IPr (466 mg, 1.2 mmol) in a Schlenk flask. The resulting yellow

solution was heated at 80 °C for 12 h, and then the volatiles were removed in vacuo, yielding a bright yellow solid. The compound was washed with pentane (3 x 5 mL), affording 390 mg (67 %) of the desired complex. X-ray quality crystals were obtained by slow evaporation of a saturated Et₂O solution at room temperature. Anal. Calcd for C₅₄H₇₂N₄Pt (MW 972.28): C, 66.71; H, 7.96; N, 5.76. Found: C, 66.65; H, 8.09; N, 5.92. ¹H NMR (C₆D₆, 400 MHz, δ): 7.31 (m, 4H, *p*-Ar-H), 7.09 (d, 8H, *J* = 7.6 Hz, *o*-Ar-H) 6.23 (s, 4H, C(4,5)-H), 2.94 (sept, 4H, *J* = 6.9 Hz, CH(CH₃)₂), 1.24 (d, 24H, *J* = 6.9 Hz, CH(CH₃)₂), 1.12 (d, 24H, *J* = 7.0 Hz, CH(CH₃)₂). ¹³C NMR (C₆D₆, 400 MHz, δ): 198.3 (s, ¹J_{CPt} = 1880 Hz, N-C-N), 146.27 (s, IPr-C), 139.43 (s, IPr-C), 129.03 (s, overlapping with C₆D₆, IPr-C), 123.79 (s, IPr-C), 121.59 (s, NCH=CHN), 29.10 (s, IPr-CH), 25.47 (s, IPr-CH₃), 24.41 (s, IPr-CH₃).

Synthesis of $Pt(nI^{t}Bu)(aI^{t}Bu)_2Me_2$ (7). Et₂O (10 mL) was added to the solids (COD)PtMe₂ (200 mg, 0.6 mmol) and I^tBu (21.6 mg, 1.2 mmol) in a reaction vial. The resulting solution was stirred for 2 weeks or until an appearance of a white solid. The solution was decanted and the white precipitate was washed with Et₂O (3 x 5 mL), affording 157 mg (51 % yield) of $Pt(nI^{t}Bu)(aI^{t}Bu)_{2}Me_{2}$. X-ray quality crystals were obtained by slow evaporation of a saturated CH₂Cl₂/Et₂O solution at room temperature. Anal. Calcd for C₂₄H₄₆N₄Pt (MW 585.74): C, 49.21; H, 7.92; N, 9.57. Found: C, 49.32 ; H, 7.66; N, 9.60. ¹H NMR (C_6D_6 , 400 MHz, δ): 7.28 (d, 1H, ${}^4J_H = 2.2$; Hz, $J_{Pt}^4 = 7.2$ Hz, C(2)-H), 6.82 (d, 1H, ${}^{4}J_{H} = 2.2$; ${}^{3}J_{Pt} = 17.1$ Hz, C(4)=CH) 6.77 (s, 2H, ${}^{4}J_{Pt} = 6.1$ Hz C(4,5)=CH), 1.97 (s, 18H, C(CH₃)₃), 1.70 (s, 9H, C(CH₃)₃), 1.10 (s, 3H, ${}^{2}J_{Pt} = 67.0$ Hz, CH₃), 0.89 (s, 3H, ${}^{2}J_{Pt} = 67.5$ Hz, CH₃), 0.87 (s, 9H, C(CH₃)₃). ${}^{13}C$ NMR (THF-d₈, 400 MHz, δ): 191.8 (s, N-C-N), 165.2 (s, Pt-C=C), 125.9 (s, ${}^{3}J_{Pt} = 19.6$ Hz, N-C(H)-N), 124.7 (s, ${}^{3}J_{Pt} = 59.4$ Hz, C(H)=C-Pt), 117.4 (s, ${}^{3}J_{Pt} = 27.6$ Hz, C(4,5)-*n*ItBu), 59.1 (s, N-C(CH₃)₃), 58.9 (s, N-C(CH₃)₃), 56.5 (s, N-C(CH₃)₃), 32.3 (s, C(CH₃)₃), 31.1 (s, $C(CH_3)_3$, 30.3 (s, $C(CH_3)_3$), -5.89 (s, ${}^1J_{Pt} = 604.2 \text{ Hz}$ Pt-CH₃), -9.05 (s, ${}^1J_{Pt} = 616.2 \text{ Hz}$, Pt-CH₃).

Crystallographic Structure Determinations. Single-crystal x-ray diffraction data for *cis*-Pt(^{Me}Ime)₂Me₂ (1) were measured using an Enraf-Nonius Kappa CCD 4-circle diffractometer. Data for the remaining complexes (2-7) were measured using a Bruker SMART 1K CCD 3-circle diffractometer. The crystals were cooled and maintained at the data collection temperature using a stream of cold N2 gas. Integrated intensities were calculated from the raw detector data using the program SAINT^[6]. Empirical corrections for crystal absorption were calculated using the program *SADABS*^[6], and the structures were solved and refined using SHELX97^[7]. cis-Pt(ICy)₂Me₂, **2**, which crystallizes in the noncentrosymmetric space group, Cc, has a Flack^[8] parameter of 0.021(5). For each complex, all hydrogen atoms were located in difference Fourier maps. However, independent refinement yielded unrealistic geometries of some of the hydrogen atoms due to the influence of the highly absorbing Pt atom. Therefore, hydrogen positions were constrained to idealized geometry using a model in which the hydrogen atoms ride on the atoms to which they are attached. However, for the (IMes)(IMes*)Pt(Me) complex, 5, the hydrogen parameters on C42 were refined, since the constrained geometry may be inappropriate because of the C42-Pt1 interaction. To improve the initial convergence, 'rigid bond' restraints^[9] on the anisotropic thermal displacement parameters were included in the refinements of complexes 2-7 with weighting factors of 0.007 Å². Refinement of the thermal displacement parameters of the N3 atom of complex 5 yielded values corresponding to a non-positive definite tensor. To correct this result, isotropic restraints on the thermal parameters on N3 were imposed with a weighting factor of 0.005 $Å^2$.

Complex	Pt–NHC	Pt–NHC Pt–C		Pt–C	
1	2.013(4)	2.027(5)	2.090(6)	2.117(5)	
2	2.032(3)	2.065(3)	2.099(3)	2.107(3)	
3	2.040(2)	2.053(2)	2.093(2)	2.095(2)	
4	2.043(3)	2.044(3)	2.091(3)	2.093(3)	
5	2.027(4)	2.053(4) ^[a]	2.105(4) ^[a]	2.096(4)	
6	1.968(6)	1.985(6)			
7	2.058(4)	2.074(4) ^[b]	2.079(4)	2.101(4)	
Complex	NHC-Pt-NHC	NHC-Pt	–C (<i>cis</i>)	C–Pt–C	
1	92.8(2)	90.5(2),	91.2(2)	85.6(2)	
1 2	92.8(2) 94.0(1)	90.5(2), 88.6(1),	91.2(2) 93.3(1)	85.6(2) 84.4(1)	
1 2 3	92.8(2) 94.0(1) 96.7(1)	90.5(2), 88.6(1), 88.5(1),	91.2(2) 93.3(1) 90.6(1)	85.6(2) 84.4(1) 84.5(1)	
1 2 3 4	92.8(2) 94.0(1) 96.7(1) 113.0(1)	90.5(2), 88.6(1), 88.5(1), 82.4(1),	91.2(2) 93.3(1) 90.6(1) 83.6(1)	85.6(2) 84.4(1) 84.5(1) 81.1(1)	
1 2 3 4 5	92.8(2) 94.0(1) 96.7(1) 113.0(1) 108.4(2)	90.5(2), 88.6(1), 88.5(1), 82.4(1), 87.3(2),	91.2(2) 93.3(1) 90.6(1) 83.6(1) 79.8(2) ^[a]	85.6(2) 84.4(1) 84.5(1) 81.1(1) 84.3(2) ^[a]	
1 2 3 4 5 6	92.8(2) 94.0(1) 96.7(1) 113.0(1) 108.4(2) 178.3(2)	90.5(2), 88.6(1), 88.5(1), 82.4(1), 87.3(2), 7	91.2(2) 93.3(1) 90.6(1) 83.6(1) 79.8(2) ^[a]	85.6(2) 84.4(1) 84.5(1) 81.1(1) 84.3(2) ^[a]	

Table S1. Selected bond lengths and angles for complexes 1-7

^[a] Bond lengths and angles of cyclometallated IMes. ^[b] Bond lengths and angles of abnormally bound I^tBu.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

cis-Pt(^{Me}I^{*i*}Pr)₂Me₂ (3) ¹H NMR

¹³C NMR

cis-Pt(ICy)₂Me₂ (2) ¹H NMR

cis-Pt(IMes)₂Me₂ (4) ¹H NMR

¹³C NMR

Pt(IMes)(IMes')Me (5) ¹H NMR

SpinWorks 3: 07302009-22-georgeM Pt(IMes)(IMes*)Me (C6D6

$\frac{Pt(nI^{t}Bu)(aI^{t}Bu)Me_{2}(7)}{^{1}H NMR}$

SpinWorks 3: 08312009-2-georgeM Pt(nItBu)(aItBu)Me2 (c6D6)

Burried volume of ^{Me}I^{*i*}Pr ligand:

file:///Cl/...s/Georg

Pt(dMeIPr)2Me29620with9620H.htm[7/21/2009 1:04:43 PM]

9620H.htm[7/21/2009 1:04:43 PM]

Burried volume of ICy ligand:

Burried volume of IMes ligand:

Burried volume of IPr ligand:

SambVc Resi	a @ MoLNaC ılts page		0 178 F 1.72 P 2.11 C1 2.05	
S A M Buried Vo http://www.molnac.u L. Gavallo et al.	B V C A lume in Salerno nisa.it/08-tools/SambVca email: lcavallo@unisa.it			Coordinates scaled to put the mstal at the origin Coordinates scaled to put the mstal at the origin -1.0249 1.68478
Molecule from input : Molecule from input : ./terp/cfcm3054dcoie16130 Number of atome Actor that is concerned to a these store Badius of sphere (Ange) Badius of sphere (Ange) Madius of sphere (Ange) Madius of sphere (Ange) H store Included in the	2005364fa117.c301 d = 6 d = 1 d = 1 d = 1 d = 2 d = 2			0 -0.014 -1.7179 0 -0.014 -1.7179 0 -0.004 -0.0219 0 -0.004 0.0219 0 -0.004 0.0219 0 -0.0149 -0.0122 0 -0.0149 -0.0122 0 -0.0149 -0.0122 0 -0.0149 -0.0122 0 -0.0149 -0.0122 0 -0.0149 -0.0122 0 -0.0149 -0.0121 0 -0.0149 -0.0121 0 -0.0149 -0.0121 0 -0.0149 -0.01421 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0 -0.0149 -0.0149 0
Cartesian ocordinates from input : Cartesian coordinates from input : .66000 4.41400 c 2.0100 5.90100 -1.99700 -1.9000 3.16000 6.57900				3.98461 0.064891 3.56679 0.64581 3.3891 4.00578 - 0.64582 2.6991 4.45978 - 0.64682 3.44801 4.24578 - 0.78462 2.93001 3.59378 - 1.78301 1.62078 - - 0.74812 1.62031 3.15278 - 1.73330 1.21921 3.77478 -
ings/George%i20Fortman/Desktop/Nolan/(NCH)2P0Me	2/Kay/Moun/Equadistance/Pf(IPr)2%20with%20H.htm(7/21/20	09 1:04:45 PM] //ie;///C[/054	ttings/George%20Fortman/Desktop/Nolary(NCH)2	Mil2/Xray/Vouri/Equadistance/Pf(IP/)2%22with%20H.htm[7
Image: select	n/Andioundamon@QD93Niderfit201.mt/222202.18	545191 *#c///C/L.Bittings Seeting Bitting	Sangeliki Kirumon Gradago Makan (1740) 2014	2.909 3.121 9.1419 9.1414 2.909 3.121 9.1419 1.4514 2.909 3.121 3.1414 1.5194 2.909 3.1414 1.5194 2.909 3.1214 3.1597 2.910 3.1597 3.5397 2.910 3.1597 3.1597 2.910 3.1597 3.1597 2.910 3.1397 -1.322 2.910 3.1394 -1.322 2.910 3.1394 -1.322 2.910 3.1394 -0.1322 2.911 3.1394 -0.1322 2.912 3.1394 -0.1322 2.913 -1.1324 1.0171 2.914 -1.1324 1.0171 2.915 -1.1324 1.0171 2.914 -1.1324 1.0171 2.914 -1.1324 1.0171 2.914 -1.1324 1.0171 2.915 -1.1324 1.0171 2.914 -1.1242 1.0171
H. 57300 1.68000 1.70300 H. 48000 1.3400 1.48000 H. 48000 1.3400 3.47800 H. 48000 1.3400 3.47800 H. 48000 1.3400 3.47800 H. 3370 4.13200 1.4800 H. 3370 1.3370 4.3320 H. 3700 1.3700 1.44700 H. 79900 1.13500 6.44800 H. 4.5500 6.41800 1.37200 H. 4.5500 5.42700 1.48500			Results : Volumes in Ang	0 1 1 1 1 1 1 1 1 1 1 1 1 1
			Results : Volumes in Ang No f voyale meaning Volume of vosal V Prece V Burled V.70 135-260 V Burled V.70 64,204 357,796 925,9 The W_Bur of your molect	-3 -3 -144077 -14077 -140
-2.08100 N 4.16100 5.69100 -2.09400				
		L		

(2009 1:04:45 PM] file:///C[/...05e

t(IPr)2%2Dwith%20H.htm[7/21/2009 1:04:45 PM]

Burried volume of *n*I^tBu ligand:

file:///C[/...tings/0

rge%20Fortman/Desktop/Nolan/(NCH)2PtMe2/Xray/Vburr/Equadistance/Pt([tBu)2Me2%20with%20H.htm[7/21/2009 1:04:46 PM]

th%20H.htm[7/21/2009.1:04:45.PM] file:///Cl/...tir

Burried volume of ^{Me}IMe:

SambVca@MoLNnaC

Burried volume of *a*I^tBu ligand:

References:

- [1] N. Kuhn, T. Kratz, Synthesis 1993, 1993, 561.
- [2] A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, *Tetrahedron* **1999**, *55*, 14523.
- [3] L. Jafarpour, E. D. Stevens, S. P. Nolan, *Journal of Organometallic Chemistry* **2000**, *606*, 49.
- [4] N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo, S. P. Nolan, *Journal* of the American Chemical Society **2005**, *127*, 3516.
- [5] Reactivity of IMes depends on the source of Platinum-dimethyl precursor used. Reactions run with non-commercial (COD)Pt(Me)₂ gave faster conversion of complex 4 to 5. More detailed discussion and possible causes are now being investigated.
- [6] SAINT and SADABS, 2007, Bruker AXS Inc., Madison, Wisconsin, USA.
- [7] SHELX97, G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- [8] H. D. Flack, Acta Crystallogr. Sect. A, 1983, 39, 876-881.
- [9] F. L. Hirshfeld, Acta Crystallogr. Sect. A, 1976, 32, 239-244.

Table S2. Summary of crystallographic data for complexes 1-7

Complex	1	2	3	4	5	6	7
Chemical Formula	$C_{16}H_{30}N_4Pt$	$C_{32}H_{54}N_4Pt + CH_2Cl_2$	$C_{24}H_{46}N_4Pt$	$C_{44}H_{54}N_4Pt$	$C_{43}H_{50}N_4Pt$	$C_{54}H_{72}N_4Pt$	C ₂₄ H ₄₆ N ₄ Pt
Formula Weight (M)	473.44	774.81	585.74	834.00	817.96	972.25	585.74
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Unit-cell dimensions, V _{cell}	a=14.8926(2) Å b=8.1788(1) Å c=16.1119(2) Å β=113.5403(8)° V= 1799.17(4)Å	a=15.5185(7) Å b=12.9037(2) Å c=17.4636(8) Å β =105.354(1)° ³ V= 3372.2(3) Å ³	a=15.9482(6) Å b=9.6101(3) Å c=17.6283(6) Å β =105.619(1)° V=2601.0(2) Å ³	a=16.7156(10) Å b=13.1785(8) Å c=17.6422(10) Å β =99.411(1)° V=3834.0(4) Å ³	$\begin{array}{l} a=10.7787(5) \mbox{ \AA} \\ b=20.0707(9) \mbox{ \AA} \\ c=17.2875(8) \mbox{ \AA} \\ \beta=91.064(1)^{\circ} \\ V=3739.3(3) \mbox{ \AA}^{3} \end{array}$	a=12.8035(7) Å b=26.9007(16) Å c=14.1517(8) Å β =92.184(1)° V=4870.6(5) Å ³	a=12.0260(9) Å b=14.6685(11) Å c=14.7642(10) Å β =91.103(1)° V= 2604.0(3) Å ³
Temperature	160(1) K	150(2) K	150(2) K	150(2) K	150(2) K	150(2) K	173(2)
Space group	$P2_1/n$	Cc	$P2_1/c$	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$
Formula units/unit cell (Z)	4	4	4	4	4	4	4
N_{ref} (measured)	50417	27974	41062	40209	53108	63794	31831
N _{ref} (independent)	5253	10221	7606	11107	9017	10593	6239
R _{int}	0.0753	0.0195	0.0336	0.0373	0.0706	0.0478	0.0706
$2\theta_{max}$	60.0	61.0	60.0	60.0	56.0	54.0	56.0
R_{F}^{2}	0.0439	0.0252	0.0223	0.0420	0.0548	0.0584	0.0584
$R_{F^{2}}\left(I > 2\sigma_{I}\right)$	0.0375	0.0196	0.0187	0.0312	0.0422	0.0475	0.0325
CCDC no.	741809	741810	741808	741811	741812	741813	756172