Supplementary Information for

Novel Accumulation of Photo-Induced MV^{+*} Embedded in a TiO₂ Shell and Discharge of Electrons to a Pt Electrode

Hirokazu Miyoshi^{**}, Shuhei Katayama^b, Masahi Kurashina^b, and Eiji Kanezaki^{*b}

^a Radioisotope Research Center, The University of Tokushima, 3-18-5 Kuramoto-cho,

Tokushima 770-8503, Japan.Fax: +81 886 33 9417; Tel: +81 886 33 9984;

E-mail: hmiyoshi@ri.tokushima-u.ac.jp.

^b Department of Chemical Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami Josanjima-cho, Tokushima 770-8506, Japan. Fax: +81 886 55 7025; Tel: +81 886 56 9444:

E-mail: kanezaki@chem.tokushima-u.ac.jp

Experimental Details

Absorption spectra, ESR spectra of MV^{2+} @TiO₂ and its time course

Fig. 1S shows the ESR spectra of MV^{2+} @TiO₂ aqueous dispersion with irradiation time of a 500-W Xenon lamp. The typical ESR signals of MV^{++} (g=2.003) were observed from 1 to 4 min of the irradiation. These data were used to plot of Fig. 3S.

Fig. 2S shows the absorption spectra of MV^{2+} @TiO₂ aqueous suspension before irradiation, at 0 min of irradiation, and 33min after irradiation by a 500-W-

high-pressure mercury lamp. The typical absorption peaks of MV^{+} were observed at 395 nm and 600 nm.

Fig. 3S shows the time dependence of the MV^{+•} concentration under continuous UV irradiation. MV^{+•} is produced in both dispersion systems by electron transfer from the UV-irradiated TiO_2 to MV^{2+} . The concentration increases more rapidly in MV^{2+} @TiO₂ than in \Box @TiO₂/ MV^{2+} . This is due to the longer lifetime of MV^{+} in MV^{2+} @TiO₂ (Fig. 3 in the text) probably because more radical cations are stored in a short period of time under the same irradiation condition in this dispersion. The increase in MV^{+•} concentration slows at 1-4 min of irradiation in this dispersion presumably because of bimolecular self-quenching of the radical cation at high Since no absorption of MV²⁺ is observed for this dispersion after 4 concentration. min, the decrease in MV^{+•} concentration in this time region of Fig. 3S is due to the The time course of $MV^{+\bullet}$ concentration decomposition of the radical cation. observed for MV^{2+} @TiO₂ is also observed for \Box @TiO₂/MV²⁺, although bimolecular quenching of the radical cation is absent because of the low concentration of the radical cation before decomposition.

Fig. 1S ESR spectra of MV^{2+} @TiO₂ aqueous dispersion with Mn as a standard material during by a 500-W Xe lamp by using JEOL TE-300. Field modulation: 79µT, Power: 8mW

Fig. 2S Absorption spectra of MV^{2+} @TiO₂ aqueous dispersion before irradiation, at 0 min of irradiation, and 33min after irradiation by a 500-W-high-pressure mercury lamp.

Fig. 3S Time dependence of MV^{+} concentration in aqueous dispersion of MV^{2+} @ TiO₂ (•) and in mixed aqueous dispersion of \square @ TiO₂/ MV^{2+} (•) under the continuous UV irradiation by a filtered 500W Xe lamp. Concentration is calculated from the peak area at g=2. 003.¹ ESR spectra were obtained by a JEOL TE-300 spectrometer.

References

1 A. E. Kaifer and A. J. Bard, J. Phys. Chem., 1985, 89, 4876.