The [2+2] Cycloaddition of Alkynes at a Ru-P $\boldsymbol{\pi}$-Bond

Eric J. Derrah, Robert McDonald, ${ }^{\ddagger}$ Lisa Rosenberg*
Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC, V8W 3V6, Canada; ${ }^{\ddagger}$ X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
lisarose@uvic.ca

Table of contents

General experimental S2
Preparation of cycloaddition products 2a-b and deprotonation product 3a S3
NMR scale reactions of $\mathbf{1 a - b}$ S6

Preliminary NMR scale reactions relevant to catalytic hydrophosphination
NMR data

References

General experimental

Unless otherwise noted, all reactions and manipulations were performed under an atmosphere of nitrogen in an MBraun Unilab 1200/780 glovebox or using conventional Schlenk line techniques. All solvents were sparged with nitrogen for 25 minutes and dried using an MBraun Solvent Purification System (SPS). Phenylacetylene and 1-hexyne were dried over MgSO_{4} prior to distillation under nitrogen; all other reagents were used without further purification. Deuterated solvents were purchased from Cambridge Isotope Labs (CIL), freeze-pump-thaw degassed, and vacuum transferred from sodium/benzophenone (d_{6}-benzene, $d_{8^{-}}$ toluene) or calcium hydride (d-chloroform) before use. All other chemicals were purchased from SigmaAldrich ${ }^{\circledR}$ Canada. $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\mathrm{PCy}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1 a})^{1}, \mathrm{Ru}\left(\eta^{5}\right.$-indenyl $\left.)\left(\mathrm{PPr}_{2}^{i}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{1 b})^{1}$ and $\left[\mathrm{RuCl}\left(\eta^{5}-\right.\right.$ indenyl $\left.)\left(\mathrm{PCy}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right]^{2}$ were prepared as reported previously. Dicyclohexylphosphine was purchased as a 10% wt solution in hexanes from Strem Chemicals; its 0.6 M concentration was confirmed by quantitative ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy of a known volume with a known mass of triphenylphosphine oxide added as an internal standard. NMR spectra were recorded on a Bruker AVANCE 500 operating at 500.13 MHz for ${ }^{1} \mathrm{H}$, 125.77 MHz for ${ }^{13} \mathrm{C}$, and 202.46 MHz for ${ }^{31} \mathrm{P}$, or on a Bruker AVANCE 360 operating at 360.13 MHz for ${ }^{1} \mathrm{H}$, 55.28 MHz for ${ }^{2} \mathrm{H}$, and 145.78 MHz for ${ }^{31} \mathrm{P}$. Chemical shifts are reported in ppm at ambient temperature unless otherwise noted. ${ }^{1} \mathrm{H}$ chemical shifts are referenced against residual protonated solvent peaks at 7.16 ppm $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right), 2.09 \mathrm{ppm}\left(\mathrm{PhCD}_{2} \mathrm{H}\right)$, and $7.24 \mathrm{ppm}\left(\mathrm{CHCl}_{3}\right) .{ }^{13} \mathrm{C}$ chemical shifts are referenced against d_{6}-benzene at 128.4 ppm and CDCl_{3} at 77.5 ppm . All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported relative to tetramethylsilane, while ${ }^{31} \mathrm{P}$ chemical shifts are reported relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$. Melting/decomposition temperatures were measured using a Gallenkamp apparatus for capillary samples (uncorrected for ambient pressure). Microanalysis was performed by Canadian Microanalytical Service Ltd., Delta, BC, Canada. IR spectra were recorded on a Perkin-Elmer FTIR Spectrum One spectrophotometer using KBr pellets under a nitrogen atmosphere. EI- and FAB-MS was performed by Dr. David McGillivray, Department of Chemistry, University of Victoria. EI-MS was also performed by Dr. Yun Ling, Department of Chemistry, University of British Columbia.

Preparation of cycloaddition products $2 \mathrm{a}-\mathrm{b}$ and deprotonation product 3a

Synthesis of $\left[\mathbf{R u}\left(\boldsymbol{\eta}^{5}\right.\right.$-indenyl) $\left.\left(\boldsymbol{\kappa}^{2}-\mathbf{P h} \underline{C}=\mathbf{C H P C y}\right)\left(\mathbf{P P h}_{3}\right)\right](2 a)$

To a Schlenk flask containing a blue solution of $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\mathrm{PCy}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1 b}, 100 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 5 mL toluene was added phenylacetylene ($15 \mathrm{mg}, 0.15 \mathrm{mmol}$). The resulting yellow solution was allowed to stir for 5 min before the solvent was evaporated under vacuum. The resulting orange oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtered. The volume of the solution was reduced to $\sim 1.5 \mathrm{~mL}$ under vacuum and 30 mL of acetonitrile was added to give $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\kappa^{2}-\mathrm{PhC} \underline{=} \mathrm{CPhPCy}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{2 a}, 75 \mathrm{mg}, 0.099 \mathrm{mmol}, 64 \%$ yield $)$ as a dark orange crystalline solid. The product hung onto some $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ despite multiple washings with pentane and hexanes and extensive drying under vacuum at $56^{\circ} \mathrm{C}$. EI-MS; m / z (relative intensity): 778 (12\%) [$\left.\mathrm{M}^{+}\right], 740$ (83\%) $\left[\mathrm{M}^{+}-\mathrm{C}=\mathrm{C}(\mathrm{H})-\mathrm{C}-3 \mathrm{H}\right], 514$ (55\%) $\left[\mathrm{M}^{+}-\mathrm{PPh}_{3}-2 \mathrm{H}\right], 477$ (100\%) $\left[\mathrm{M}^{+}-\mathrm{PhC}=\mathrm{C}(\mathrm{H}) \mathrm{PCy}_{2}-2 \mathrm{H}\right], 433$ (13\%) $\left[\mathrm{M}^{+}-\mathrm{PPh}_{3}-\mathrm{Cy}\right], 400(44 \%)\left[\mathrm{M}^{+}-\mathrm{PhC}=\mathrm{C}(\mathrm{H}) \mathrm{PCy}_{2}-\mathrm{Ph}\right], 351$ (55\%) $\left[\mathrm{M}^{+}-\mathrm{PPh}_{3}-\mathrm{Cy}-\mathrm{C}_{6} \mathrm{H}_{10}\right], 318$ (35\%) [$\mathrm{M}^{+}-$ $\left.\mathrm{PPh}_{3}-\mathrm{PCy}_{2}-\mathrm{H}\right], 295$ (65\%) $\left[\mathrm{M}^{+}-\mathrm{Ru}-\right.$ indenyl- $\left.\mathrm{PPh}_{3}-\mathrm{C}=\mathrm{C}(\mathrm{H})-2 \mathrm{H}\right]$. FAB-MS (+LSIMS matrix mNBA); m / z (relative intensity): 779.1 (100\%) [$\left.\mathrm{M}^{+}\right]$. HR-MS (+LSIMS matrix mNBA): exact mass (monoisotopic) calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{Ru}, 778.2431$; found, 779.2514 ± 0.0010 (average of 3 trials); Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 72.57$; H, 6.48. Found: C, $70.15 ; \mathrm{H}, 6.25$; Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{Ru} \bullet 0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 70.12; H, 6.31 (See ${ }^{1} \mathrm{H}$ NMR below). Mp: $161-162{ }^{\circ} \mathrm{C}$ (dec).
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ showing purity:

Synthesis of $\left[\mathbf{R u}\left(\boldsymbol{\eta}^{5}\right.\right.$-indenyl) $\left.\left(\boldsymbol{\kappa}^{\mathbf{2}} \mathbf{-} \mathbf{P h} \underline{\mathbf{C}}=\mathbf{C H P} \operatorname{Pr}^{i}{ }_{2}\right)\left(\mathbf{P P h}_{3}\right)\right](\mathbf{2 b})$

To a Schlenk flask containing a blue solution of $\left[\operatorname{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\operatorname{PPr}_{2}{ }_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1 b}, 77 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 5 mL toluene was added $\sim 0.1 \mathrm{~mL}$ phenylacetylene (0.9 mmol). The resulting yellow solution was allowed to stir for 30 min before the solvent was evaporated under vacuum. Hexanes $(10 \mathrm{~mL})$ were added to the yellow powder and the resulting suspension was stirred for 1 h . The suspension was filtered and the resulting powder was washed with hexanes $(3 \times 10 \mathrm{~mL})$ to give analytically pure $\left[\mathrm{Ru}\left(\eta^{5}-\right.\right.$ indenyl $\left.)\left(\kappa^{2}-\mathrm{Ph} \underline{\mathrm{C}}=\mathrm{CPh} \underline{\operatorname{Pr}}{ }^{i}{ }_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{2 b}$, $64 \mathrm{mg}, 0.092 \mathrm{mmol}, 71 \%$ yield) as a yellow powder. EI-MS; m / z (relative intensity): $698(50 \%)\left[\mathrm{M}^{+}\right], 436$
(12\%) $\left[\mathrm{M}^{+}-\mathrm{PPh}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 70.57$; H, 6.07. Found: C, 70.53; H, 6.10. $\mathrm{Mp}: 184-187{ }^{\circ} \mathrm{C}$ (dec).

Synthesis of $\left[\mathbf{R u}(\mathbf{C C P h})\left(\boldsymbol{\eta}^{5}\right.\right.$-indenyl) $\left.\left(\mathbf{P C y}_{2} \mathbf{H}\right)\left(\mathbf{P P h}_{3}\right)\right](\mathbf{3 a})$

In a Schlenk flask equipped with a condenser, a mixture of $\left[\mathrm{RuCl}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\mathrm{PCy}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right](54 \mathrm{mg}$, 0.076 mmol) and phenylacetylene ($77 \mathrm{mg}, 0.76 \mathrm{mmol}$) in methanol (15 mL) was heated to reflux for 15 minutes. To the resulting clear, orange solution was added 0.5 mL of KOH in methanol $(0.01 \mathrm{M}, 0.09 \mathrm{mmol})$. There was no immediate colour change. As the mixture cooled to RT, an orange precipitate formed, which lightened to yellow in colour as the mixture stood for 24 h . The mixture was filtered and the resulting yellow powder was washed with hexanes $(3 \times 10 \mathrm{~mL})$ and dried under vacuum, to give $\left[\mathrm{Ru}(\mathrm{CCPh})\left(\eta^{5}-\right.\right.$ indenyl) $\left.\left(\mathrm{PCy}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right]$ (3a, $40 \mathrm{mg}, 0.051 \mathrm{mmol}, 68 \%$ yield). EI-MS; m / z (relative intensity): $778(24 \%)\left[\mathrm{M}^{+}\right]$, $677(5 \%)\left[\mathrm{M}^{+}-\mathrm{CCPh}\right], 580(4 \%)\left[\mathrm{M}^{+}-\mathrm{HPCy}_{2}\right], 516(4 \%)\left[\mathrm{M}^{+}-\mathrm{PPh}_{3}\right], 262(100 \%)\left[\mathrm{PPh}_{3}{ }^{+}\right] ;$HR-MS (EI): exact mass (monoisotopic) calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{Ru}, 778.24313$; found, 778.24233 (1ppm error); Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 72.57$; H, 6.48. Found: C, 71.98 ; H, 6.58.; mp: $167-169{ }^{\circ} \mathrm{C}$ (dec). IR: $2347 \mathrm{~cm}^{-1}\left(\mathrm{w} . v_{\mathrm{P}-\mathrm{H}}\right)$, $2071 \mathrm{~cm}^{-1}\left(\mathrm{~s}, v_{\mathrm{CC}}\right)$.
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ showing purity:

NMR scale reactions of 1a-b

Stock solutions (38 mM) of the appropriate reagents were prepared by dissolving 0.19 mmol of each reagent (phenylacetylene $(21 \mu \mathrm{~L})$, 1-hexyne $(21 \mu \mathrm{~L})$, or diphenylacetylene $(34 \mathrm{mg})$) in d_{8}-toluene in a 5 mL volumetric flask. In the glovebox solid $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\mathrm{PR}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1 a}: 20 \mathrm{mg}, 0.030 \mathrm{mmol} ; \mathbf{1 b}: 18 \mathrm{mg}, 0.030$ mmol) was placed in a sealable NMR tube. The stock solution ($0.8 \mathrm{~mL}, 0.03 \mathrm{mmol}, 1$ equiv) was added to the tube, which was then capped with a Teflon needle valve adaptor, removed from the glovebox and connected to
a Schlenk line. Each sample was degassed using three freeze-pump-thaw cycles, and flame-sealed. The thawed solution was shaken to mix the reagents before the tube was placed in the NMR spectrometer.

Addition of phenylacetylene to 1a-b

The mixed reagents gave a dark yellow/orange solution, indicative of the formation of $\left[\mathrm{Ru}\left(\eta^{5}-\right.\right.$ indenyl) $\left.\left(\kappa^{2}-\mathrm{PhC}=\mathrm{CHPR}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{2 a - b})$, prior to the tube being placed in the NMR spectrometer. For 1a: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows $\mathbf{2 a}$ as the major product (94\%), alkynyl complex $\mathbf{3 a}(6 \%)$ as the minor product. For $\mathbf{1 b}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows 2b as the major product (92%), alkynyl complex $\mathbf{3 b}(7 \%)$ as the minor product and one unidentified product (1\%).

Addition of 1-hexyne to 1a-b

The mixed reagents gave a dark yellow/orange solution, indicative of the formation of $\left[\mathrm{Ru}\left(\eta^{5}-\right.\right.$ indenyl $\left.)\left(\kappa^{2}-\mathrm{Bu}^{n} \underline{\mathrm{C}}=\mathrm{CHPR}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{4 a - b})$, prior to the tube being placed in the NMR spectrometer. For $\mathbf{1 a}$: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows $\mathbf{4 a}$ as the major product (96%), alkynyl complex $\mathbf{5 a}$ (2%) as the minor product and two unidentified products (2\%). For $\mathbf{1 b}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows $\mathbf{4 b}$ as the major product (95\%), alkynyl complex $\mathbf{5 b}(3 \%)$ as the minor product and two unidentified products (2%).

Addition of diphenylacetylene to 1a-b

The mixed reagents maintained the dark blue colour of 1a-b prior to the tube being placed in the NMR spectrometer. The progress of the reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectroscopy periodically for 10 (1a) or 17 (1b) days at which point the solution was dark black-yellow and contained mostly $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl) $\left(\kappa^{2}-\right.$ $\left.\left.\operatorname{Ph} \underline{C}=\operatorname{Ch} \underline{P_{2}}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{6 a - b})$. For 1a: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum recorded after 10 days shows $\mathbf{6 a}$ as the major product (59\%), along with 6-7 unidentified products (7\%), free $\mathrm{PPh}_{3}(1 \%)$, unreacted $\mathbf{1 a}(22 \%)$, and the orthometallation product derived from $\mathbf{1 a}$, complex $\mathbf{7 a}(11 \%){ }^{1}$. For $\mathbf{1 b}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum recorded after 17 days shows $\mathbf{6 b}$ as the major product (64\%), along with $7-8$ unidentified products (11%), free $\mathrm{PPh}_{3}(1 \%)$, unreacted 1b (7%), and the the orthometallation product derived from $\mathbf{1 b}$, complex $\mathbf{7 b}(17 \%)^{1}$.

Preliminary NMR scale reactions relevant to catalytic hydrophosphination

In the glovebox, reagents and solvents in the specified amounts were added to sealable NMR tubes, which were then capped with Teflon needle valve adaptors, removed from the glovebox and connected to a Schlenk line. Each sample was degassed using three freeze-pump-thaw cycles, and flame-sealed.

Reaction of a $1: 1$ mixture of phenylacetylene and dicyclohexylphosphine with catalytic amounts of $\left[\operatorname{RuCl}\left(\boldsymbol{\eta}^{\mathbf{5}}\right.\right.$-indenyl) $\left.\left(\mathbf{P C y}_{2} \mathbf{H}\right)\left(\mathbf{P P h}_{3}\right)\right]$ and KOBu^{t}

The sealed sample contained an orange d_{8}-toluene solution of the Ru complex ($0.010 \mathrm{mg}, 0.014 \mathrm{mmol}$), $\mathrm{KOBu}^{t}(3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{HPCy}_{2}(0.2 \mathrm{~mL}$ of a 0.6 M solution in hexanes, 0.1 mmol$)$, and phenylacetylene (14 $\mathrm{mg}, 0.14 \mathrm{mmol}$. Initial ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed unreacted starting materials as well as a small amount of $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl) $\left.\left(\kappa^{2}-\mathrm{Ph} \underline{C}=\mathrm{CHPCy}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right](\mathbf{2 a})$ and traces of PPh_{3} and unidentified Ru-containing complexes. After the sample was heated at $65^{\circ} \mathrm{C}$ in an oil bath for $\sim 21 \mathrm{~h}$, the solution remained red-orange. Aside from unreacted HPCy_{2} and a small amount of unreacted starting Ru complex, the major products observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right.$ NMR) were complex 2a, a second, unidentified Ru complex showing signals at $75.8 \mathrm{ppm}\left(\mathrm{br} \mathrm{s}, \omega_{1 / 2} \sim 100 \mathrm{~Hz}\right.$) and $-29.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PP}} \sim 31 \mathrm{~Hz}\right)$, free PPh_{3} at -5.1 ppm , and a product giving a singlet at 65.2 ppm of comparable intensity to the PPh_{3} signal.

Addition of phenylacetylene to 2a

The sealed sample contained a golden d_{8}-toluene solution of $\mathbf{2 a}(0.010 \mathrm{mg}, 0.013 \mathrm{mmol})$ and phenyacetylene ($25 \mathrm{mg}, 0.14 \mathrm{mmol}$). The mixture was monitored periodically by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR over 24 h at RT. No new products were observed.

Addition of dicyclohexylphosphine to 2a

The sealed sample contained a golden d_{8}-toluene solution of $\mathbf{2 a}(0.010 \mathrm{mg}, 0.013 \mathrm{mmol})$ and $\mathrm{HPCy}_{2}(0.2$ mL of a 0.6 M solution in hexanes, 0.1 mmol$)$. The mixture was monitored periodically by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR over 24 h at RT. No new products were observed.

NMR data

Table S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for new compounds at $300 \mathrm{~K}: \delta$ in ppm (multiplicity in Hz). ${ }^{a}$

Complex	Number	$\mathrm{Ru}-\mathrm{PR}_{2}{ }^{-}$	$\mathrm{Ru}-\mathrm{PPh}_{3}$
$\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl) $\left.\left(\kappa^{2}-\mathrm{Ph} \underline{\mathrm{C}}=\mathrm{CHPCy}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	$2 a^{\text {b }}$	-36.9 (d, 28)	58.0 (d)
$\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\kappa^{2}-\mathrm{Ph} \underline{C}=\mathrm{CHP} \mathrm{Pr}^{i}{ }_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	$2 \mathbf{b}^{\text {c }}$	-26.5 (d, 26)	57.9 (d)
$\left[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})\left(\eta^{5}\right.\right.$-indenyl) $\left.\left(\mathrm{PCy}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right]$	3 a	64.7 (d, 34)	58.1 (d)
$\left[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})\left(\eta^{5}\right.\right.$-indenyl) $\left.\left(\mathrm{PPr}^{i}{ }_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right]$	3b	73.3 (d, 35)	57.1(d)
$\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\kappa^{2}-\mathrm{Bu}^{n} \underline{\mathrm{C}}=\mathrm{CHP}_{\underline{\mathrm{P}}}^{2} 2\right)\left(\mathrm{PPh}_{3}\right)\right]$	4 a	-35.8 (d, 26)	55.9 (d)
$\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\kappa^{2}-\mathrm{Bu}^{n} \underline{\mathrm{C}}=\mathrm{CHPPr}{ }^{i}\right)\left(\mathrm{PPh}_{3}\right)\right]$	4b	-24.8 (d, 26)	54.2 (d)
$\left[\mathrm{Ru}\left(-\mathrm{C} \equiv \mathrm{CPBu}{ }^{n}\right)\left(\eta^{5}\right.\right.$-indenyl) $\left.\left(\mathrm{PPr}^{i}{ }_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right]$	5a	66.9 (d, 36)	58.2 (d)
$\left[\mathrm{Ru}\left(-\mathrm{C} \equiv \mathrm{CBu}^{n}\right)\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\mathrm{Prr}_{2}{ }_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)\right]$	5b	75.4 (d, 35)	58.0 (d)
$\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\kappa^{2}-\mathrm{Ph} \underline{\mathrm{C}}=\mathrm{CPh} \underline{\mathrm{Cb}} y_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	6 a	-18.6 (d, 29)	50.7 (d)
$\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$-indenyl $\left.)\left(\kappa^{2}-\mathrm{Ph} \underline{\mathrm{C}}=\mathrm{CPh} \underline{\operatorname{Pr}}{ }^{i}{ }_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	6b	-7.8(d, 29)	50.3 (d)

Table S2. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data for isolated complexes at $300 \mathrm{~K}: \delta$ in ppm (multiplicity, RI, $\mathrm{J}_{\text {avg }}$ or $\omega_{1 / 2}$ in
$\mathrm{Hz}) .{ }^{a}$

	$\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}$				PPh_{3}	Others
	$\mathrm{H}_{7}, \mathrm{H}_{4}$	$\mathrm{H}_{6}, \mathrm{H}_{5}$	H_{2}	$\mathrm{H}_{3}, \mathrm{H}_{1}$		
$2 a^{\text {b }}$	$\begin{aligned} & \hline \hline 7.46(\mathrm{~d}, 1 \mathrm{H}, 9) \\ & 6.06(\mathrm{~d}, 1 \mathrm{H}, 9) \end{aligned}$	$\begin{aligned} & \hline 6.85(\mathrm{t}, 1 \mathrm{H}, 7) \\ & 6.54(\mathrm{t}, 1 \mathrm{H}, 7) \end{aligned}$	5.07 (s, 1H)	$\begin{aligned} & \hline 5.29(\mathrm{~s}, 1 \mathrm{H}) \\ & 4.27(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	$\begin{gathered} \hline \hline \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{p}} 7.34(\mathrm{br} \mathrm{~s}, 3 \mathrm{H}, \\ 21), 7.14-7.09(\mathrm{om}, \\ 3 \mathrm{H}) \\ \mathrm{H}_{\mathrm{p}} 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}) \\ \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{o}} 7.00-6.94(\mathrm{br} \\ \mathrm{m}, 4 \mathrm{H}) \\ \mathrm{H}_{\mathrm{o}} 7.40(\mathrm{br}, 2 \mathrm{H}, 19), \\ 6.56-6.51(\mathrm{br}, 2 \mathrm{H}, \\ \text { overlaps with } \left.\mathrm{H}_{5}\right) \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{CH}=\mathrm{CPh}: 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}, \\ \left.\mathrm{H}_{\mathrm{o}}\right), 7.20(\mathrm{dd}, 1 \mathrm{H}, 7,4, \mathrm{CH}), \\ 7.12-7.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{p}},\right. \\ \text { overlaps with } \left.\mathrm{H}_{\mathrm{m}, \mathrm{p}} \text { of } \mathrm{PPh}_{3}\right) . \\ \left.\mathrm{Cy}(\mathrm{PCy})_{2}\right): 2.25-2.22(\mathrm{~m}), 2.13- \\ 2.10(\mathrm{~m}), 2.03-1.82(\mathrm{~m}), 1.65- \\ 1.56(\mathrm{~m}), 1.48-1.15(\mathrm{~m}), 1.00- \\ 0.88(\mathrm{~m}), \\ 0.79-0.74(\mathrm{~m}), 0.51- \\ 0.44), 0.09-0.01(\mathrm{~m}) \end{gathered}$
$\mathbf{2 b}{ }^{\text {c }}$	$\begin{aligned} & 7.55(\mathrm{~d}, 1 \mathrm{H}, 8) \\ & 6.43(\mathrm{~d}, 1 \mathrm{H}, 8) \end{aligned}$	$\begin{aligned} & 6.93(\mathrm{t}, 1 \mathrm{H}, 8) \\ & 6.72(\mathrm{t}, 1 \mathrm{H}, 7) \end{aligned}$	$\begin{gathered} 5.20-5.19 \\ (\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	$\begin{aligned} & 5.36(\mathrm{~s}, 1 \mathrm{H}) \\ & 4.59(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{p}} \sim 7.15-7.01(\mathrm{br} \\ & \text { om }, \sim 6 \mathrm{H}), 6.86(\mathrm{br}, \\ & \sim 3 \mathrm{H}, \sim 50) \\ & \mathrm{H}_{\mathrm{o}} 7.76(\mathrm{br}, 2 \mathrm{H}, 35), \\ & \sim 7.22(\mathrm{br}, 2 \mathrm{H}), \\ & \sim 6.73(\mathrm{br}, 2 \mathrm{H}, \\ & \text { overlaps with } \left.\mathrm{H}_{5}\right) \end{aligned}$	$\mathrm{CH}=\underline{\mathrm{CPh}}: 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}$, H_{o}), 7.36 (dd, $\left.1 \mathrm{H}, 7,4, \mathrm{CH}\right)$, 7.20-7.16 (m, 2H, H , overlaps with H_{0} of PPh_{3}), 7.13-7.10 (m, 1H, Hp) $\operatorname{Pr}^{i}\left(\operatorname{PPr}^{i}{ }_{2}\right): 2.20$ (d sept, $1 \mathrm{H}, 10$, 7, CH), 1.41 (dd, 3H, 15, 7, CH_{3}), 1.33 (dd, $3 \mathrm{H}, 15,7$, CH_{3}), 1.11 (d sept, $1 \mathrm{H}, 5,7$, CH), 0.68 (dd, $3 \mathrm{H}, 11,7$, CH_{3}), 0.62 (dd, $3 \mathrm{H}, 14,7$, CH_{3})
$3 a^{c}$	$\begin{array}{r} \text { 6.99-6.82 (om, } \\ \text { CC-P } \end{array}$	rlaps with Rup, 4H)	$5.56(\mathrm{t}, 1 \mathrm{H}, 3)$	$\begin{aligned} & 5.25(\mathrm{~s}, 1 \mathrm{H}) \\ & 4.86(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{o}} 7.53-7.42(\mathrm{~m}, 6 \mathrm{H}) \\ & \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{p}} 7.09-7.02(\mathrm{~m}, \\ & 9 \mathrm{H}) \end{aligned}$	Ru-CC-Ph: 7.29-7.26 (dm, 2H, H_{o}), 7.15-7.12 (m, 2H, H_{m}), 6.99-6.82 (m, overlaps with indenyl $\mathrm{H}_{4-7}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{p}}$) H-PCy $: 4.00\left(\mathrm{~d} \mathrm{~m}, 1 \mathrm{H}, 315^{d}\right)$ $\mathrm{Cy}\left(\mathrm{H}-\mathrm{PCy}_{2}\right): ~ 2.34-2.22(\mathrm{~m}$, 1H), 2.05-1.71 (om, 7H), $1.69-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.44$ (om, 3H), 1.38-0.86 (om, 9H)

Table S3. $125 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for isolated complexes at $300 \mathrm{~K}: \delta$ in ppm (multiplicity, J_{PC} or $\omega_{1 / 2}$ in
Hz). ${ }^{a}$

	$\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}$						PPh_{3}	Others
	$\mathrm{C}_{6}, \mathrm{C}_{5}$	$\mathrm{C}_{7}, \mathrm{C}_{4}$	$\mathrm{C}_{3 \mathrm{a}}, \mathrm{C}_{7 \mathrm{a}}$	$\Delta \delta\left(\mathrm{C}_{3 \mathrm{a}, 7 \mathrm{a}}\right)^{b}$	C_{2}	$\mathrm{C}_{3}, \mathrm{C}_{1}$		
2a ${ }^{\text {c,e }}$	$\begin{aligned} & \hline \hline 123.9(\mathrm{~s}) \\ & 121.2(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \hline \hline 124.6(\mathrm{~s}) \\ & 120.8(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \hline 111.1(\mathrm{~s}) \\ & 105.6(\mathrm{~s}) \end{aligned}$	-22.4 (av)	94.3 (s)	$\begin{aligned} & \hline \hline 69.7(\mathrm{~d}, 10) \\ & 66.2(\mathrm{~d}, 11) \end{aligned}$	$\begin{gathered} \hline \hline \mathrm{C}_{\mathrm{i}} 143.6(\mathrm{~d}, 36), \\ 136.0(\mathrm{~d}, 44), \\ \sim 134.7 \text { (overlaps } \\ \text { with } \mathrm{C}_{\mathrm{o}} \text {) } \\ \mathrm{C}_{\mathrm{o}} 135.7(\mathrm{~d}, 13, \\ 134.6(\mathrm{~d}, 8), \\ 132.7(\mathrm{~d}, 10) \\ \mathrm{C}_{\mathrm{m}} 127.4(\mathrm{~d}, 10), \\ 127.2(\mathrm{~d}, 8 \\ \sim 126.9 \text { (overlaps } \\ \text { with } \mathrm{H}_{\mathrm{m}} \text { of } \\ \mathrm{CH}=\mathrm{CPh} \\ \mathrm{C}_{\mathrm{p}} 129.0(\mathrm{br}, 8), \\ 128.4(\mathrm{br}, 11), \\ 128.2(\mathrm{br}, 8) \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{CH}=\mathrm{CPh}: 180.3(\mathrm{dd}, \\ \left.25,15, \mathrm{C}_{\alpha}\right), 147.2 \\ \left(\mathrm{~d}, 21 \mathrm{C}_{\mathrm{i}}\right), 127.3(\mathrm{~s}, \\ \left.\mathrm{C}_{\mathrm{m}}\right), 127.0(\mathrm{~d}, 1, \\ \left.\mathrm{C}_{\mathrm{o}}\right), 126.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{p}}\right), \\ 121.2\left(\mathrm{dd}, 45,3, \mathrm{C}_{\beta}\right) \\ \text { PCH: } 40.2(\mathrm{~d}, 20), \\ 38.6(\mathrm{~d}, 9) \\ \text { Other PCy } \mathrm{C}_{2}: 32.4(\mathrm{~s}), \\ 30.0(\mathrm{~s}), 29.1(\mathrm{~d}, \\ 8), 28.9(\mathrm{~s}), 28.1 \\ (\mathrm{~d}, 10), 27.9(\mathrm{~d}, \\ 11), 27.3(\mathrm{~d}, 11), \\ 27.1(\mathrm{~s}), 27.0(\mathrm{~s}), \\ 26.4(\mathrm{~s}) \end{gathered}$
$\mathbf{2 b}^{\text {d,e }}$	$\begin{aligned} & 124.7 \text { (s) } \\ & 121.8(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 125.3(\mathrm{~s}) \\ & 121.7(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 112.4(\mathrm{~s}) \\ & 106.8(\mathrm{~s}) \end{aligned}$	-21.1 (av)	95.5 (s)	$\begin{aligned} & 70.8(\mathrm{~d}, 10) \\ & 66.2(\mathrm{~d}, 11) \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{i}} 144.3(\mathrm{br} \text { in } \\ \text { baseline) } \\ \mathrm{C}_{\mathrm{o}} 136.4(\mathrm{br}, 56), \\ 135.4,(\mathrm{br}, 28), \\ 133.3(\mathrm{br}, 42) \\ \mathrm{C}_{\mathrm{m}} \sim 127.4(\mathrm{br}, \\ \text { overlaps with } \\ \text { solvent peak) } \\ \mathrm{C}_{\mathrm{p}} 128.9(\mathrm{~d}, 4) \end{gathered}$	$\begin{gathered} \mathrm{CH}=\mathrm{CPh}: 182.2(\mathrm{dd}, \\ \left.26,14, \mathrm{C}_{\alpha}\right), 148.1 \\ \left(\mathrm{~d}, 22, \mathrm{C}_{\mathrm{i}}\right), 128.0(\mathrm{~s}, \\ \left.\mathrm{C}_{\mathrm{m}}\right), 127.8(\mathrm{~d}, 2, \\ \left.\mathrm{C}_{\mathrm{o}}\right), 127.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{p}}\right), \\ 122.9\left(\mathrm{dd}, 44,2, \mathrm{C}_{\beta}\right) \\ \mathrm{PCH}: 28.0(\mathrm{~d}, 9), 27.0 \\ (\mathrm{~d}, 20) \\ \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}: 22.7(\mathrm{~d} \\ 2), 21.1(\mathrm{~d}, 1), 19.0 \\ (\mathrm{~d}, 7), 18.5(\mathrm{~s}) \end{gathered}$
$3 \mathbf{a}^{d}$	$\begin{gathered} 125.0 \\ \text { (os) } \end{gathered}$	$\begin{gathered} 124.8(\mathrm{~s}) \\ 123.5(\mathrm{~s}) \end{gathered}$	$\begin{aligned} & 109.4(\mathrm{~d}, 2) \\ & 109.0(\mathrm{~d}, 2) \end{aligned}$	-21.5 (av)	91.7 (s)	$\begin{aligned} & 70.6(\mathrm{~d}, 3) \\ & 69.5(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{i}} 137.6(\mathrm{~d}, 40) \\ & \mathrm{C}_{\mathrm{o}} 134.9(\mathrm{~d}, 8) \\ & \mathrm{C}_{\mathrm{m}} 127.9(\mathrm{~d}, 9) \\ & \mathrm{C}_{\mathrm{p}} 129.5(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \text { Ru- } \mathrm{C}_{\alpha} \mathrm{C}_{\beta}-\mathrm{Ph}: 131.8(\mathrm{~s}, \\ & \left.\mathrm{C}_{\mathrm{i}}\right), 131.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{o}}\right), \\ & 123.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{p}}\right), 114.5 \\ & \left(\mathrm{t}, 25, \mathrm{C}_{\alpha}\right), 113.3(\mathrm{~s}, \\ & \left.\mathrm{C}_{\beta}\right) \\ & \mathrm{PCH}: 40.9(\mathrm{~d}, 22), \\ & 37.7(\mathrm{dd}, 27,2) \\ & \text { Other HPCy } 2: 34.0(\mathrm{~d}, \\ & 5), 33.2(\mathrm{~s}), 32.7(\mathrm{~d}, \\ & 3), 29.5(\mathrm{~s}), 28.4(\mathrm{~s}), \\ & 28.3(\mathrm{~d}, 4), 28.2(\mathrm{~d}, \\ & 4), 28.1(\mathrm{~s}), 26.8(2 \\ & \mathrm{x} \mathrm{~s}) \end{aligned}$

[^0]$=130.7 \mathrm{ppm} .{ }^{3,4{ }^{4} \text { Sample in } \mathrm{CDCl}_{3},{ }^{d} \text { Sample in } \mathrm{C}_{6} \mathrm{D}_{6},{ }^{e} \text { General numbering scheme for metallacycle carbons: }}$

References

1. E. J. Derrah, D. A. Pantazis, R. McDonald and L. Rosenberg, Organometallics, 2007, 26, 1473.
2. E. J. Derrah, J. C. Marlinga, D. Mitra, D. M. Friesen, S. A. Hall, R. McDonald and L. Rosenberg, Organometallics, 2005, 24, 5817.
3. R. T. Baker and T. H. Tulip, Organometallics, 1986, 5, 839.
4. V. Cadierno, J. Diez, M. P. Gamasa, J. Gimeno and E. Lastra, Coord. Chem. Rev., 1999, 193-5, 147.

[^0]: ${ }^{a}$ Numbering scheme: , ,${ }^{b} \Delta \delta\left(C_{3 \mathrm{a}, 7 \mathrm{a}}\right)=\delta\left(\mathrm{C}_{3 \mathrm{a}, 7 \mathrm{a}}(\eta\right.$-indenyl complex $\left.)\right)-\delta\left(\mathrm{C}_{3 \mathrm{a}, 7 \mathrm{a}}(\eta\right.$-sodium indenyl $\left.)\right) . \delta\left(\mathrm{C}_{3 \mathrm{a}, 7 \mathrm{a}}\right)$ for sodium indenyl

