Electronic Supplementary Information for

5-Hydroxy-2,2,6,6-tetramethyl-4-(2-methylprop-1-en-yl)cyclohex-4-ene-1,3dione, a novel cheletropic trap for nitric oxide EPR detection

Robert Lauricella, ^a Mathilde Triquigneaux,^a, Christiane André-Barrès,^b Laurence Charles^a and Béatrice Tuccio^{*a}

^a Laboratoire Chimie Provence, Equipe SACS, Aix-Marseille Université-CNRS-UMR 6264,13397 Marseille cedex 20, France. Fax: (+33) 491 288 678; Tel: (+33) 491 288 743; E-mail: beatrice.tuccio-lauricella@univ-provence.fr

^b Laboratoire SPCMIB, Université Paul Sabatier-CNRS-UMR 5068, 31062 Toulouse cedex, France.

Table of contents :

Figure S1: Large-scale EPR spectrum of **3**, with its superimposed simulation (as shown in figure 1a). The instrument settings were as follows: non saturating microwave power, 20 mW; modulation amplitude, 0.1 G; receiver gain, 10^6 ; time constant, 1.28 ms; scan time, 671 s; 4 scans. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S2: Details of the central line of the EPR spectrum of **3** showing long range hyperfine couplings, and its superimposed simulation obtained with the following parameters: $a_N = 14.44$ G, $a_{H\gamma} = 0.46$ G (*3H*), $a_{H\gamma} = 0.31$ G (*1H*), and g = 2.00404. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S3: Details of the central line of the EPR spectrum of **3** showing long range hyperfine couplings, and its superimposed simulation performed by considering an exchange between two conformers with the following parameters: first species (60%), $a_N = 14.44$ G, $a_{H\gamma} = 0.43$ G (*3H*), $a_{H\gamma} = 0.25$ G (*1H*), and g = 2.004041; second species (40%), $a_N = 14.45$ G, $a_{H\gamma} = 0.42$ G (*3H*), $a_{H\gamma} = 1.00$ G (*1H*), and g = 2.004051; exchange rate constant, 2.64 10⁶ s⁻¹. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S4: Enlargement of the baseline of the spectrum shown in fig.S1 revealing the ¹³C satellite lines, and its superimposed simulation obtained with the following parameters: $a_{^{13}C} = 7.8 \text{ G} (1^{^{13}}C)$ and $a_{^{13}C} = 3.9 \text{ G} (6^{^{13}}C)$.

Figure S5: Large-scale EPR spectrum of **4** with its superimposed simulation (as shown in figure 2a). The instrument settings were as follows: non saturating microwave power, 20 mW; modulation amplitude, 0.8 G; receiver gain, 10^5 ; time constant, 1.28 ms; scan time, 671 s; 9 scans. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S6: Central line of the EPR spectrum of **4** showing long range hyperfine couplings, recorded with in the following conditions: non saturating microwave power, 20 mW; modulation amplitude, 0.2 G; receiver gain, 2.5 10^6 ; time constant, 1.28 ms; scan time, 336 s; 6 scans. Its superimposed simulation obtained with the following parameters: $a_N = 29.80$ G, $a_{H\gamma} = 0.25$ G (*3H*), $a_{H\gamma} = 0.17$ G (*1H*), and g = 2.00415. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S7: Central line of the EPR spectrum of **4** showing long range hyperfine couplings, recorded with in the following conditions: non saturating microwave power, 20 mW; modulation amplitude, 0.2 G; receiver gain, 2.5 10^6 ; time constant, 1.28 ms; scan time, 336 s; 6 scans. Its superimposed simulation was performed by considering an exchange between two conformers with the following parameters: first species (70%), $a_N = 29.80$ G, $a_{H\gamma} = 0.21$ G (*3H*), $a_{H\gamma} = 0.22$ G (*1H*), and g = 2.004068; second species (30%), $a_N = 29.80$ G, $a_{H\gamma} = 0.21$ G (*3H*), $a_{H\gamma} = 0.68$ G (*1H*), and g = 2.004070; exchange rate constant, 2.83 10^5 s⁻¹. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S8: Enlargement of the baseline of the spectrum shown in fig.S2 revealing ¹³C and ¹⁵N satellite lines, and its superimposed simulation obtained with the following parameters: $a_{3N} = 12.14$ G, $a_{3C} = 11.27$ G $(1^{-13}C)$, $a_{3C} = 6.76$ G $(1^{-13}C)$ and $a_{3C} = 4.83$ G $(1^{-13}C)$. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S1: Large-scale EPR spectrum of **3**, with its superimposed simulation (as shown in figure 1a). The instrument settings were as follows: non saturating microwave power, 20 mW; modulation amplitude, 0.1 G; receiver gain, 10^6 ; time constant, 1.28 ms; scan time, 671 s; 4 scans. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S2: Details of the central line of the EPR spectrum of **3** showing long range hyperfine couplings, and its superimposed simulation obtained with the following parameters: $a_N = 14.44$ G, $a_{H\gamma} = 0.46$ G (*3H*), $a_{H\gamma} = 0.31$ G (*1H*), and g = 2.00404. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S3: Details of the central line of the EPR spectrum of **3** showing long range hyperfine couplings, and its superimposed simulation performed by considering an exchange between two conformers with the following parameters: first species (60%), $a_N = 14.44$ G, $a_{H\gamma} = 0.43$ G (*3H*), $a_{H\gamma} = 0.25$ G (*1H*), and g = 2.004041; second species (40%), $a_N = 14.45$ G, $a_{H\gamma} = 0.42$ G (*3H*), $a_{H\gamma} = 1.00$ G (*1H*), and g = 2.004051; exchange rate constant, 2.64 10⁶ s⁻¹. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S4: Enlargement of the baseline of the spectrum shown in fig.S1 revealing the ¹³C satellite lines, and its superimposed simulation obtained with the following parameters: $a_{^{13}C} = 7.8 \text{ G} (1 \, {}^{13}C)$ and $a_{^{13}C} = 3.9 \text{ G} (6 \, {}^{13}C)$.

Figure S5: Large-scale EPR spectrum of **4** with its superimposed simulation (as shown in figure 2a). The instrument settings were as follows: non saturating microwave power, 20 mW; modulation amplitude, 0.8 G; receiver gain, 10^5 ; time constant, 1.28 ms; scan time, 671 s; 9 scans. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S6: Central line of the EPR spectrum of **4** showing long range hyperfine couplings, recorded with in the following conditions: non saturating microwave power, 20 mW; modulation amplitude, 0.2 G; receiver gain, 2.5 10^6 ; time constant, 1.28 ms; scan time, 336 s; 6 scans. Its superimposed simulation obtained with the following parameters: $a_N = 29.80$ G, $a_{H\gamma} = 0.25$ G (*3H*), $a_{H\gamma} = 0.17$ G (*1H*), and g = 2.00415. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S7: Central line of the EPR spectrum of **4** showing long range hyperfine couplings, recorded with in the following conditions: non saturating microwave power, 20 mW; modulation amplitude, 0.2 G; receiver gain, 2.5 10^6 ; time constant, 1.28 ms; scan time, 336 s; 6 scans. Its superimposed simulation was performed by considering an exchange between two conformers with the following parameters: first species (70%), $a_N = 29.80$ G, $a_{H\gamma} = 0.21$ G (*3H*), $a_{H\gamma} = 0.22$ G (*1H*), and g = 2.004068; second species (30%), $a_N = 29.80$ G, $a_{H\gamma} = 0.21$ G (*3H*), $a_{H\gamma} = 0.68$ G (*1H*), and g = 2.004070; exchange rate constant, 2.83 10^5 s⁻¹. The experimental signal is in black dotted lines, its simulation in red full lines.

Figure S8: Enlargement of the baseline of the spectrum shown in fig.S2 revealing ¹³C and ¹⁵N satellite lines, and its superimposed simulation obtained with the following parameters: $a_{sN} = 12.14$ G, $a_{sC} = 11.27$ G $(1^{-13}C)$, $a_{sC} = 6.76$ G $(1^{-13}C)$ and $a_{sC} = 4.83$ G $(1^{-13}C)$. The experimental signal is in black dotted lines, its simulation in red full lines.