On the mechanism of the photoinduced magnetism in copper octacyanomolybdates

Supporting Information

Maria-Angels Carvajal, Mar Reguero, Coen de Graaf

Index

S1.	Computational Details	.1
S2.	Cartesian coordinates	.3
S3.	Absolute CASSCF and CASPT2 energies	51

S1. Computational Details

Geometry optimization has been carried out using DFT methods, since they are known to yield very reliable results, in order to obtain the optimal geometry for each of the electronic states considered for the metallic centers:

a) $[Cu(CNH)(tris(2-aminoethyl)amine)]^{2+/1+}$: Cu TZV¹ and SV² basis set for N, C, H.

Other basis sets and functionals were used for testing purposes and the results did not vary significantly. Specifically, the functional B3LYP and the following basis sets: Los Alamos ECP LanL2dz for Mo and D95V³ for C, N and H, Cu: TZV, N: DZV, C and H SV.

b) $[Mo(CNH)_4(CN)_2]^{2+/3+}$: LanL2DZ ECP for Mo and SV basis set for N, C, H. Other basis sets were used for testing purposes and the results did not vary significantly. Specifically, Los Alamos ECP LanL2DZ for Mo and D95V for C, N and H, Stuttgart SDD ECP for Mo, and SV for N, C, H, and SDD ECP for Mo, and TZV for N, C, H.

The objective of the ONIOM calculations was to check the reliability of the changes in the coordination sphere of Mo for the different electronic states considered, obtained by optimization of the model $[Mo(CNH)_6(CN)_2]^{2+}$, compared with the behavior of the $[Mo(CN)_2(CN-Cu(tris(2-aminoethyl)amine)_6]^{8+}$ molecule. For this reason only the Mo and the eight CN coordinated to the metal were included in the QM part. The Cu atoms and the tris(2-aminoethyl)amine ligand were left in the MM part. The high level method used was UB3LYP and the basis set LanL2DZ for Mo and D95V for C, N and H, and the UFF force field was used for the MM calculation. To check the formation of seven-coordinated complexes found by optimization of some $[Mo(CNH)_6(CN)_2]^{2+}$ models, one of the Cu(CN)(CuCNL) and one CN- ligand were also included in the QM region, in order to describe properly the hydrogen bond formation, which is probably related to the decoordination process.

Full DFT optimization of the whole $[Mo(CN)_2(CN-Cu(tris(2-aminoethyl)amine)_6]^{8+}$ molecule was attempted but SCF convergence problems forced us to abandon.

The optimization of the dimers in the quartet state was done with the BP86 functional and the same basis set for the two metals (LanL2DZ ECP for Mo and Cu) and SV basis set for N, C and H. The six possible dimers were optimized. The initial geometry was generated by superimposition of the optimized $[Cu(CNH)(tris(2-aminoethyl)amine)]^{2+}$ and $[Mo(CNH)_6(CN)_2]^{2+}$ models in all the possible positions, as it is shown in Figure S1. All the possibilities were calculated and the results do not change substantially from one dimer to the other. For this reason, and to avoid reporting meaningless data, only results for one of the dimers are shown.

Finally, full optimization of whole the molecule for S=4 was carried out, in order to check the reliability of the ligand dissociation obtained in the model dimers and by ONIOM. The basis set used was the Ahlrichs double zeta plus polarization basis set² and the relativistic effects were introduced by the ZORA formalism⁵.

The ONIOM and the DFT geometry optimizations for the dimers were done with Gaussian03 suite of programs.⁶ The DFT optimization of the whole molecule was one with ORCA.⁷

Figure S1. The six possible dimers on the initial structure.

To compute the energy of the excited states, accurate electronic structure calculations were performed using SA-CASSCF and CASPT2 techniques with the MOLCAS package.⁸ A CAS(3,3) was used to have a general picture of the main states involved in the photomagnetic process and five states were averaged. In this way it is possible to map the energy of all the relevant states potentially involved in the process: from the ground state Mo^{IV,CS} till the charge transfer state. This CAS includes the dz² orbital of Cu, and the dz² and dxy orbitals of Mo. However, consistency of these results were checked by using a larger CAS(11,12) including the 3d orbitals plus the polarization d shell for the Cu (so 10 orbitals to describe the Cu) and two d orbitals for Mo. To accelerate the CASPT2 calculations, Cu, Mo and first neighboring atoms (C and N) were selected for defining the correlation orbital space (active sites) in the CASPT2 calculation, and inactive orbitals with less than 0.1 of the density on the active sites were frozen, and no virtual orbitals were deleted.

The ANO-RCC basis set was used and the contraction applied is shown in Table S1.

Atom	Contraction	reference
Мо	21s18p13d6f4g2h/7s6p4d2f	9
Cu	21s15p10d6f4g2h/6s5p3d2f	9
N coordinated to Cu	14s9p4d3f2g/4s3p1d	10
N non coordinated to Cu	14s9p4d3f2g/3s2p	10
C coordinated to Mo	14s9p4d3f2g/4s3p1d	10
C non coordinated to Mo	14s9p4d3f2g/3s2p	10
Н	8s4p3d1f/2s	11

Table S1. Basis set used in the CAS(3,3) calculations for the model dimers.

However, to obtain an accurate value of the energetic splitting between the quartet and triplet state, which has a very small magnitude, it is necessary to improve the description of the electronic dynamic correlation. Since variational methods are not applicable at present to such a large system (even to the model dimers), an extended CASSCF-CASPT2 was used (3 electrons in 11 orbitals, including a double shell Mo d orbitals plus the Cu dz^2 singly occupied orbital), and a contraction which allows more flexibility to describe the Mo and Cu centers (shown in Table S2). Only one doublet and one quartet states were computed, to have the best orbitals for the states of interest.

eompienes:		
Atom	Contraction	reference
Мо	21s18p13d6f4g2h/7s6p5d6f4g2h	9
Cu	21s15p10d6f4g2h/6s5p4d6f4g2h	9
N coordinated to Cu	14s9p4d3f2g/4s3p1d	10
N non coordinated to Cu	14s9p4d3f2g/3s2p	10
C coordinated to Mo	14s9p4d3f2g/4s3p1d	10
C non coordinated to Mo	14s9p4d3f2g/3s2p	10
Н	8s4p3d1f/2s	11

Table S2. Basis set used to compute the doublet-quartet energy splitting for the seven-coordinated Mo complexes.

References

1. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 100 (1994) 5829-35.

2. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 97 (1992) 2571-77.

3. T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1976) 1-28.

4. W. R. Wadt and P. J. Hay, J. Chem. Phys., 82 (1985) 284-98.

5. S. Faas, J.G. Snijders, J.H. van Lenthe, E. van Lenthe, and E.J. Baerends, Chem. Phys. Lett. 246 (1995) 632.

6. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

7. ORCA, version 2.8; Neese, F., Institute for Physical and Theoretical Chemistry at the University of Bonn, Germany, 2008.

8. *MOLCAS* Version 7.2: Karlström, G.; Lindh, R.; Malmqvist, P.-Å.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P.-O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo, L., *Computational Material Science*, **28**, 222 (2003)

9. Roos, B. O.; Lindh, R.; Malmqvist, P.-A.; Veryazov, V.; Widmark, P.-O., J. Phys. Chem. A, 109. 6575-6579 (2005).

10. Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O., J. Phys. Chem. A, 108, 2851, 2004

11. Widmark, P.-O.; Malmqvist, P.-A.; Roos, B. O., Theor. Chim. Acta 77, 291 (1990)

S2. Cartesian coordinates

A. Optimized $[Mo(CNH)_4(CN)_2]^{2+}$ (Mo^{IV} closed shell)

	. (/ / /	
42	-1.686021	12.100284	15.166210
7	-1.630327	12.327604	18.483374
7	-3.371370	9.457334	16.344601
7	-4.787977	13.261872	14.882596
7	-2.602138	10.571707	12.330773
7	-0.466675	13.917581	12.661560
7	0.701742	9.794397	14.988670
7	1.341981	13.193244	16.076123

7	-2.016260	15.329673	15.974711
6	-1.676086	12.205172	17.310843
6	-1.895288	14.176797	15.687283
6	-2.777877	10.387871	15.926901
6	-3.679273	12.861618	14.988260
6	-2.280415	11.108621	13.331161
6	-0.918990	13.242336	13.516726
6	-0.138021	10.625526	15.057281
6	0.259738	12.806274	15.751492
1	1.503702	9.160353	14.970704
1	-5.703077	13.714700	14.827591
1	-2.871044	10.122647	11.450398
1	-3.881949	8.656983	16.728979
1	-1.540487	12.511102	19.485911
1	-0.042423	14.559555	11.987203

B. Optimized $[Mo(CNH)_4(CN)_2]^{2+}$ (Mo^{IV} triplet)

	1 L		
42	-1.658284	12.144425	15.183015
7	-1.943625	13.504037	18.207420
7	-2.549570	9.521867	17.216167
7	-5.143978	12.161477	15.207453
7	-2.676095	11.706703	11.930114
7	0.550387	13.868039	13.385568
7	0.093984	9.349728	14.056499
7	1.258886	11.959632	16.720312
7	-2.765553	15.232362	14.799979
6	-1.826572	12.984715	17.154016
6	-2.365531	14.114299	14.983902
6	-2.353250	10.442921	16.501386
6	-3.969481	12.097738	15.086652
6	-2.260985	11.765446	13.035558
6	-0.264885	13.268944	13.993384
6	-0.578659	10.217841	14.494664
6	0.217439	12.049319	16.127615
1	0.713204	8.611307	13.712062
1	-6.157331	12.266242	15.304674
1	-3.044419	11.676725	10.975543
1	-2.698212	8.724981	17.841171
1	-1.998742	13.997096	19.101855
1	1.262736	14.427407	12.910345

C. Optimized $[Mo(CNH)_4(CN)_2]^{2+}$ (Mo^{IV} open shell singlet). It was obtained by optimizing first the triplet state and in a second step, the open shell singlet by reading the previously computed triplet orbitals and geometry.

42	-1.720438	12.045556	15.144041
7	-1.772467	14.011905	17.823733
7	-2.446290	9.515344	17.184067
7	-5.029288	11.893950	15.503201
7	-2.744352	11.769412	11.987111
7	0.751093	13.956005	14.006776
7	-0.082445	9.519176	13.718285
7	0.991823	11.349556	16.975947

7	-3.039860	14.971765	14.199203
6	-1.772482	13.299133	16.883901
6	-2.575417	13.923720	14.531385
6	-2.221096	10.406253	16.442294
6	-3.856289	11.912027	15.369426
6	-2.376431	11.829735	13.107661
6	-0.125247	13.264442	14.387699
6	-0.694172	10.400760	14.211001
6	0.022250	11.589357	16.322588
1	0.480810	8.754993	13.336608
1	-6.047830	11.928243	15.594356
1	-3.065716	11.770556	11.015775
1	-2.597071	8.756819	17.853898
1	-1.743266	14.647331	18.624425
1	1.505645	14.577213	13.705972

D. Optimized [Cu(CNH)(tris(2-aminoethyl)amine)]²⁺

	optimized Lou		
6	3.820679	-0.002960	0.000226
7	2.643963	-0.002588	0.000030
29	0.658325	-0.000176	0.001120
7	-1.427189	0.002976	-0.002735
6	-1.861224	1.276962	-0.708064
6	-0.925152	2.437284	-0.359228
7	0.494590	2.004460	-0.620837
7	0.484422	-0.465994	2.047665
6	-0.937007	-0.905480	2.286446
6	-1.868412	-0.022387	1.451473
7	0.485988	-1.548379	-1.419892
6	-0.932436	-1.529280	-1.928670
6	-1.868352	-1.242561	-0.751770
1	1.158215	-1.199496	2.340542
1	0.714366	0.380137	2.607343
1	1.165200	-1.443752	-2.198020
1	0.706586	-2.455136	-0.960544
1	1.172095	2.622881	-0.134666
1	0.721876	2.062719	-1.634194
1	-1.219761	-0.847784	3.363002
1	-1.017072	-1.976150	1.995877
1	-2.925349	-0.374637	1.517738
1	-1.852479	1.022847	1.833436
1	-1.216663	-2.489468	-2.417968
1	-1.004386	-0.742010	-2.711427
1	-2.923680	-1.121853	-1.094555
1	-1.856800	-2.093913	-0.035228
1	-1.004530	2.719999	0.714001
1	-1.203669	3.342960	-0.946236
1	-2.918043	1.515802	-0.439297
1	-1.844216	1.083103	-1.804302
1	4.915887	-0.003927	-0.000091

E. Optimized [Cu(CNH)(tris(2-aminoethyl)amine)]¹⁺ 6 -4.040661 0.002963 -0.002205

7	-2.850032	0.001573 -0.000274
29	-0.975225	0.002083 -0.001052
7	1.835428	0.002549 -0.002858
6	2.081976	-0.960971 -1.087717
6	0.962621	-2.010223 -1.248346
7	-0.367897	-1.369832 -1.493648
7	-0.362650	-0.629129 1.924285
6	0.960573	-0.082642 2.361903
6	2.085841	-0.453744 1.373877
7	-0.365493	1.981531 -0.418118
6	0.957024	2.091689 -1.110631
6	2.083605	1.423306 -0.296295
1	-1.113579	-0.330138 2.573417
1	-0.349301	-1.667411 1.938969
1	-1.117640	2.393565 -1.000600
1	-0.353074	2.511880 0.474757
1	-1.115130	-2.087072 -1.534850
1	-0.372692	-0.878669 -2.408549
1	1.247407	-0.443185 3.381231
1	0.858488	1.024748 2.431237
1	3.053137	-0.056274 1.783729
1	2.199489	-1.563721 1.357874
1	1.241228	3.155743 -1.305883
1	0.855367	1.599664 -2.105101
1	3.050548	1.580789 -0.846037
1	2.197415	1.964475 0.673152
1	0.873814	-2.621473 -0.321109
1	1.248033	-2.713295 -2.070201
1	3.054468	-1.508133 -0.957631
1	2.181771	-0.391932 -2.042466
1	-5.129607	0.000922 -0.000663
EO	NIOM antimi	$\frac{1}{100}$
Г. U		$^{\circ}$ 22d structure for the [MO(CuNL)4(CN)2] (MO closed shell singlet)
42 20	10421000	0.001509 4.342503 14.302082 7 206055 7 012417 10 054222
29	10291003	1.290933 7.012417 10.034323
29	10291003	10.279138 0.311030 $11.31242912.042972$ 7.002204 12.597515
29	10291003	12.943675 7.003204 12.367313
29	10291003	12.002840 2.470219 17.389403 0.410040 8.506275 17.802823
29	10291003	9.419940 6.300373 17.692623 5.092727 2.021211 19.270102
29 7	10291005	J.962437 2.051511 16.279192 7.842020 6.124669 11.702054
7	10071001	0.726122 2.002200 12.628864
7	10071001	9.720125 2.002290 12.058804
7	10071001	11.403892 0.033978 13.294237
7	10071001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7	10071001	9.101015 /.051250 10.025395
7	10071001	/.0/05/4 2.921185 10.931904
7	100/1001	J.0702J/ 0.20/700 IJ.107244 6 171022 - 2 788206 - 12 155660
/ 7	100/1001	0.1/1022 2./00300 13.133009 6.763331 7.034818 8.280513
' 7	100/1003	0.702221 7.724010 0.307312 6 102872 8 225615 11 072565
/ 1	100/1003	0.1020 4 2 0.223013 11.0 4 3303 5 568355 7 708637 11 778870
1	10011000	6 667353 8 987375 11 A85293
1	10011000	0.007333 0.707373 11.703273

7	10071003	6.589750	5.334021	9.307830
1	10011000	7.231141	4.533226	9.510661
1	10011000	5.644010	5.142635	9.711539
7	10071003	9.157360	7.540855	9.680989
1	10011000	9.641021	7.860499	10.551180
1	10011000	9 671481	6 729893	9 266459
7	10071003	9 392123	1 299641	9 941130
1	10011000	8 365925	1 101540	9 983018
1	10011000	9 552015	2 332252	9 897551
7	10071003	9 309648	-0 776712	12 641646
1	10011000	8 371382	-0 404456	12 914954
7	10071003	14 487275	8 001170	11 872346
7	10071003	12 062947	8 728603	12 942278
1	10011000	11 370538	8 930655	12.184897
1	10011000	11 580227	8 719401	13 869464
7	10071003	12 749300	6 138908	10.830106
1	10011000	13 174558	5 183752	10.860864
1	10011000	11 743598	6 069664	10 553988
7	10071003	14 139147	6 210498	13 935468
1	10011000	14 020068	6 710833	14 846311
1	10011000	13 940070	5 191480	14 060619
7	10071003	14 125154	1 716616	18 385794
7	10071003	13 037560	1 257887	15 903869
1	10011000	12 170490	0.837141	15 497801
1	10011000	13 556867	1 783430	15 163376
7	10071003	11 411791	1 877930	18 836526
1	10011000	10 707299	2 615396	19.067018
1	10011000	10.926175	0.997112	18 549446
7	10071003	13 469371	4 240372	17 511007
1	10011000	13 391730	4 760908	16 607708
1	10011000	13.025364	4 795174	18 278570
7	10071003	9 689278	9 973186	19 183141
7	10071003	10 094186	9 695574	16 475995
1	10011000	11 093736	9 463133	16 273718
1	10011000	9 524358	9 603664	15 603993
7	10071003	10 683705	7 419975	18 942357
1	10011000	10 152508	6 751426	19 546467
1	10011000	11 333517	6 891513	18 316150
7	10071003	7 506803	8 513834	18 357664
1	10011000	6 970555	9 027480	17 621015
1	10011000	7 138676	7 539247	18 449692
7	10071003	4 879451	1 129298	19 642564
7	10071003	5 502577	3 754647	19 102044
1	10011000	6 291268	4 085570	19.702044
1	10011000	5 289042	4.003570	18 372210
7	10071003	7 537569	1 024576	18 945657
1	10011000	7 731228	0.217148	18 309577
1	10011000	8 380514	1 639433	19 005386
7	10071003	4 822850	1 247595	16 894291
1	10011000	4 139491	1 966978	16 563121
1	10011000	5 387342	0.896931	16 086848
6	10061001	8 1 5 0 5 9 0	5 579178	12 691326
~	10001001	0.1000000	0.01/110	1 <u>4</u> .0/1 <i>3</i> 40

6	10061001	9.350724	2.895363	13.301373
6	10061001	10.458624	5.488066	13.713774
6	10061001	10.240511	3.683110	15.744270
6	10061001	8.964949	6.177282	15.864800
6	10061001	7.681124	3.472137	16.093839
6	10061001	6.867817	5.653953	14.885734
6	10061001	7.045325	3.427298	13.640090
6	10061003	5.182025	8.792201	10.067224
1	10011000	4.366438	8.066038	9.860703
1	10011000	4.721887	9.722694	10.467182
6	10061003	5.941155	9.094853	8.776663
1	10011000	5.229305	9.378311	7.968618
1	10011000	6.577255	9.986504	8.972443
6	10061003	6.484710	5.533242	7.868328
1	10011000	5,786814	4.787965	7.426771
1	10011000	7.482474	5.390518	7.399890
6	10061003	5.983957	6.950147	7.590870
1	10011000	4 905494	6 975454	7 863156
1	10011000	6 045850	7 174005	6 501770
6	10061003	9 097301	8 631509	8 718103
1	10011000	10 078980	8 748321	8 207811
1	10011000	8 868220	9 581828	9 246957
6	10061003	8 003897	8 334713	7 693992
1	10011000	8.383875	7.522706	7.035007
1	10011000	7 833308	9 222990	7 044395
6	10061003	9 974723	0 657879	8 770240
1	10011000	9.306102	0.783565	7.890091
1	10011000	10.950329	1.134273	8.532571
6	10061003	10.184725	-0.826978	9.062577
1	10011000	9.180825	-1.306619	9.058932
6	10061003	13.110252	9.740264	12.938961
1	10011000	13.636037	9.733913	13.918185
1	10011000	12.668871	10.750569	12.790661
6	10061003	14.101019	9.429887	11.819243
1	10011000	14.990169	10.095904	11.895889
1	10011000	13.596539	9.675684	10.858334
6	10061003	13.469985	6.973625	9.878864
1	10011000	12.839782	7.845397	9.598730
1	10011000	13.693738	6.397584	8.953950
6	10061003	14.767755	7.460217	10.522371
1	10011000	15.258719	8.219551	9.872510
1	10011000	15.455873	6.587327	10.572960
6	10061003	15.497661	6.392971	13.442170
1	10011000	15.727579	5.609007	12.688569
1	10011000	16.226230	6.293278	14.276941
6	10061003	15.619311	7.774571	12.800345
1	10011000	16.598765	7.872225	12.279608
1	10011000	15.618731	8.520090	13.626280
6	10061003	14.857588	0.825008	17.457611
1	10011000	15.617786	1.389038	16.872819
6	10061003	12.259852	1.624399	19.993917
1	10011000	11.734134	0.963418	20.718012

1	10011000	12.485918	2.584489	20.506138
6	10061003	13.561326	0.968495	19.533036
1	10011000	13.317150	-0.079339	19.249925
1	10011000	14.284571	0.913163	20.377917
6	10061003	14.870544	3.994972	17.823265
1	10011000	15.338070	4.913799	18.241209
1	10011000	15.416006	3.722981	16.893769
6	10061003	14.966318	2.851207	18.831478
1	10011000	16.028223	2.543734	18.965198
1	10011000	14.620915	3.248626	19.811622
6	10061003	9.997197	11.054330	16.991869
1	10011000	8.953097	11.419413	16.883092
1	10011000	10.662136	11.733454	16.413710
6	10061003	10.394231	11.061231	18.467085
1	10011000	11.497473	10.923453	18.509796
1	10011000	10.176393	12.055075	18.919773
6	10061003	11.440973	8.346371	19.773018
1	10011000	12.251542	8.808881	19.169497
1	10011000	11.910816	7.804600	20.623468
6	10061003	10.503678	9.433264	20.295939
1	10011000	9.861886	8.965304	21.075045
1	10011000	11.088151	10.235998	20.799918
6	10061003	7.391381	9.209742	19.632332
1	10011000	6.346213	9.557655	19.787411
1	10011000	7.649207	8.514205	20.460030
6	10061003	8.348281	10.400690	19.643752
1	10011000	7.917609	11.173347	18.968892
1	10011000	8.391247	10.850335	20.661624
6	10061003	4.321483	3.511969	19.919683
1	10011000	3.417209	3.506548	19.273652
1	10011000	4.201943	4.321936	20.672797
6	10061003	4.462519	2.161246	20.619455
1	10011000	3.506986	1.885510	21.120383
1	10011000	5.222149	2.286260	21.422665
6	10061003	7.185349	0.538808	20.272972
1	10011000	7.327007	1.352736	21.016488
1	10011000	7.846299	-0.308670	20.560200
6	10061003	5.725393	0.089734	20.272586
1	10011000	5.677205	-0.866891	19.706536
1	10011000	5.390959	-0.133575	21.311041
6	10061003	3.716613	0.537422	18.942168
1	10011000	2.882323	1.268547	18.856896
6	10061003	4.113498	0.140376	17.521428
1	10011000	4.773204	-0.753526	17.552609
1	10011000	3.207841	-0.120352	16.930385
1	10011000	3.316327	-0.345044	19.490904
1	10011000	15.402629	0.024281	18.006980
6	10061003	13.884999	0.209068	16.454201
1	10011000	14.446516	-0.298803	15.639052
1	10011000	13.253159	-0.551083	16.962303
1	10011000	9.873158	-0.982944	13.498434
1	10011000	10.770836	-1.301477	8.243211

7	10071003	12.177457	0.898681	11.866955	
1	10011000	12.331173	1.132902	12.874122	
1	10011000	12.489360	1.696526	11.266656	
7	10071003	10.853796	-0.992238	10.373471	
6	10061003	12.327314	-0.911129	10.249893	
1	10011000	12.775774	-1.911608	10.054931	
1	10011000	12.625203	-0.254382	9.402565	
6	10061003	10.429893	-2.239051	11.050976	
1	10011000	10.273180	-3.065915	10.321723	
1	10011000	11.201733	-2.588488	11.772136	
6	10061003	9.150824	-1.988063	11.847953	
1	10011000	8.936348	-2.856169	12.509672	
1	10011000	8.293506	-1.866000	11.151271	
6	10061003	12.921165	-0.304333	11.519502	
1	10011000	13.994925	-0.060529	11.361077	
1	10011000	12.853578	-1.036587	12.352980	
G.	ONIOM optim	ized structure	for the Mo	(CuNL) ₆ (CN) ₂]	⁸⁺ (Mo ^{IV} triplet)
42	10421006	8.883384	4.546790	14.487136	r P
29	10291003	6.650892	7.161816	10.395930	
29	10291003	11.360469	0.340169	12.382493	
29	10291003	12.473669	7.025520	11.463532	
29	10291003	11.503927	2.248250	18.532856	
29	10291003	10 557749	8 255300	17 904045	
29	10291003	4 598776	2 510655	16 857571	
7	10071001	7 470276	6 213855	11 862677	
7	10071001	10 430602	1 851885	13 135008	
7	10071001	11 122533	6 134139	12 514521	
7	10071001	10 570158	3 042856	17 044826	
7	10071001	9,900409	6.937844	16.659315	
7	10071001	6.132330	3.257408	15.960053	
7	10071001	6.649950	6.485114	16.076815	
7	10071001	7 112659	2 073671	13 064442	
7	10071003	5 858386	8 150656	8 881888	
7	10071003	7 260934	8 888234	11 125706	
1	10011000	7.118655	8.928725	12,160920	
1	10011000	8.272209	9.029662	10.902909	
7	10071003	4.855877	6.497682	10.849287	
1	10011000	4.885038	5.486584	11.114490	
1	10011000	4.461528	7.061594	11.637011	
7	10071003	7.742991	6.165677	9.095112	
1	10011000	8.715920	6.021063	9.446000	
1	10011000	7.297508	5.238625	8.904747	
7	10071003	12.713806	1.515049	11.566449	
1	10011000	12.327422	1.938757	10.691652	
1	10011000	13.001657	2.270189	12.230044	
7	10071003	9.770611	-0.194206	11.351197	
1	10011000	9.304280	0.637762	10.922311	
7	10071003	13.863599	7.963175	10.423106	
7	10071003	11.178288	7.494936	10.060208	
1	10011000	11.040771	6.672665	9.429048	
1	10011000	10.264726	7.786421	10.474204	

7	10071003	13.522361	5.369680	11.286373
1	10011000	14.049909	5.190927	12.171672
1	10011000	12.899998	4.557419	11.072573
7	10071003	12.833398	8.269519	12.948853
1	10011000	12.097598	9.012719	12.969144
1	10011000	12.850397	7.762237	13.862948
7	10071003	12.450858	1.471936	20.080478
7	10071003	11.227935	0.426562	17.843375
1	10011000	10.264196	0.311003	17.454351
1	10011000	11 938629	0 223590	17 103953
7	10071003	10.203748	3.023933	19.793780
1	10011000	9 945551	3 998985	19 519694
1	10011000	9 345231	2 426811	19 820854
7	10071003	13 156153	3 218759	18 076833
1	10011000	13 331099	3 197691	17 046062
1	10011000	13 083961	4 209318	18 403666
7	10071003	11 268515	9 579629	19 180790
7	10071003	11 894372	8 877113	16 597889
1	10071003	12 60/262	8 203757	16 567770
1	10011000	12.094202	8.203737	15.646674
17	10011000	11.409640	6 8 4 5 5 4 1	10.202476
/	100/1003	10.146660	0.843341	19.203470
1	10011000	10.140009	6.014941	19.720999
17	10011000	0 00051 <i>4</i>	0.014641	18./20139
/	100/1003	8.809314	9.1313//	18.009424
1	10011000	8.0/9/31	9.764831	1/.1/2120
1	10011000	8.032581	8.453802	18.063194
/	100/1003	3.033456	1./5165/	1/./86296
1	100/1003	3.66/485	4.245172	16.812888
1	10011000	4.041556	4.861372	17.570833
1	10011000	3.788119	4.712225	15.885020
1	100/1003	5.696638	2.021604	18.418275
1	10011000	6.222732	1.141204	18.212715
1	10011000	6.367909	2.786091	18.660664
7	10071003	4.313428	1.205250	15.411644
1	10011000	3.834277	1.673072	14.608144
1	10011000	5.220566	0.794063	15.093098
6	10061001	7.958921	5.649075	12.746064
6	10061001	9.880130	2.762869	13.591137
6	10061001	10.337972	5.596705	13.173512
6	10061001	10.002552	3.542463	16.170197
6	10061001	9.526118	6.131250	15.917391
6	10061001	7.064013	3.708204	15.434434
6	10061001	7.425771	5.804957	15.542407
6	10061001	7.727799	2.918692	13.572044
6	10061003	6.465989	9.921802	10.477495
1	10011000	5.472740	9.991588	10.971213
1	10011000	6.968432	10.909883	10.571676
6	10061003	6.286346	9.562762	9.005006
1	10011000	5.555971	10.253471	8.525923
1	10011000	7.266226	9.731738	8.505172
6	10061003	4.041454	6.674720	9.653860
1	10011000	2.961009	6.646525	9.917035

1	10011000	4.244715	5.846924	8.940543
6	10061003	4.388061	8.012284	8.999529
1	10011000	3.957442	8.811996	9.642028
1	10011000	3.889959	8.095701	8.007064
6	10061003	7.764034	6.963340	7.877814
1	10011000	8.078293	6.338208	7.013074
1	10011000	8.495550	7.792714	7,990499
6	10061003	6.368765	7.533849	7.635804
1	10011000	5 721336	6 689934	7 308646
1	10011000	6 391741	8 265537	6 796625
6	10061003	13 860427	0 675196	11 247056
1	10011000	14 499951	1 171736	10 484068
1	10011000	14 473382	0.519740	12 161048
6	10061003	13 367016	-0.672120	10 722743
1	10011000	12.973222	-0 499785	9 696578
6	10061003	11 761221	8 598382	9 310077
1	10011000	11 608174	9 547812	9 867192
1	10011000	11 264027	8 694782	8 319520
6	10061003	13 256282	8 342818	9 126399
1	10011000	13 749985	9 241330	8 691645
1	10011000	13 359670	7 526232	8 377702
6	10061003	14 453271	5 582/37	10 185036
1	10011000	13 020707	5 /17707	0.103930
1	10011000	15 295017	1 857824	10 2/0113
1	10011000	13.293017	4.857824	10.249113
1	10011003	14.980237	7.013027	0.243081
1	10011000	15.572850	7.063502	9.327048
1	10011000	13.093532	7.003302 8.867545	11.100732
1	10001003	14.130330	0.007 <i>3</i> 4 <i>3</i> 0.166505	12.094974
1	10011000	14.930708	0.000757	13.01/00/
1	10011000	14.24/091	9.808737	13.277038
0	10001003	14.272099	9.134097	11.2021//
1	10011000	13.510275	9.439030	10.902035
1	10011000	12.021112	10.027233	10.973613
0	10001003	12.393/24	0.021374	19.013932
1	10011000	15.525945	-0.193083	19.241307
0	10001003	10.844408	3.030321	21.101003
1	10011000	10.080940	3.134432	21.903342
1	10011000	11.538551	3.890080	21.109800
0	10001003	11.021/83	1./28983	21.280280
1	10011000	10.8/4552	0.919233	21.455020
I (10011000	12.242596	1.//492/	22.20361/
6 1	10061003	14.241/5/	2.546007	18.//69/8
1	10011000	15.125479	3.21/519	18.852416
l	10011000	14.544904	1.639810	18.209411
6	10061003	13.766407	2.145662	20.171909
1	10011000	14.523881	1.495440	20.665317
1	10011000	13.700385	3.078351	20.775235
6	10061003	12.358319	10.179674	17.055781
1	10011000	11.629421	10.961896	16.752376
l	10011000	13.338664	10.424058	16.589995
6	10061003	12.489834	10.160015	18.577188
1	10011000	13.388039	9.549958	18.820139

1	10011000	12.684521	11.187354 18.960219
6	10061003	11.974122	7.421163 20.129849
1	10011000	12.985932	7.405310 19.670233
1	10011000	12.011481	6.822822 21.067059
6	10061003	11 570487	8 860796 20 439959
1	10011000	10 677804	8 815377 21 102561
1	10011000	12 374580	9 370253 21 017852
6	10061003	8 833978	9 961917 19 220444
1	10011000	8 050832	10 750419 19 171289
1	10011000	8 620219	9 319181 20 101610
1	10011000	10 212000	10 601776 10 272408
1	10001003	10.213999	11 406710 18 600160
1	10011000	10.200133	11.00/520 20.268201
1	10011000	10.301410	11.094320 20.308291
0	10001003	2.230/13	3.908838 17.048740
1	10011000	1.781338	3.029410 10.103218
I	10011000	1./34/49	4.892069 17.384473
6	10061003	2.128454	2.8/8060 18.110385
1	10011000	1.070219	2.540528 18.189725
1	10011000	2.393029	3.339417 19.087625
6	10061003	4.775723	1.802185 19.525387
1	10011000	4.486012	2.780003 19.967137
1	10011000	5.266231	1.197106 20.319635
6	10061003	3.531925	1.081433 19.009122
1	10011000	3.826138	0.028900 18.800630
1	10011000	2.750537	1.046172 19.801756
6	10061003	2.398424	0.790294 16.855900
1	10011000	1.665897	1.297669 16.189737
6	10061003	3.460238	0.158013 15.957631
1	10011000	4.076651	-0.552524 16.549591
1	10011000	2.974584	-0.410783 15.134154
1	10011000	1.839210	-0.000139 17.405971
1	10011000	12.662511	-0.561009 20.762614
6	10061003	11.420549	-0.473062 18.972920
1	10011000	11.617325	-1.506708 18.611755
1	10011000	10.498159	-0.493373 19.592636
1	10011000	9.098743	-0.692451 11.979236
1	10011000	14.218898	-1.382661 10.625363
7	10071003	11.671905	-0.417255 14.172684
1	10011000	10.818025	-0.331148 14.770167
1	10011000	12 473960	0 079705 14 624006
7	10071003	12 315596	-1 206498 11 618386
6	10061003	12.895070	-1 966048 12 750000
1	10011000	13 027347	-3 041589 12 493554
1	10011000	13 899661	-1 575240 13 025471
6	10061003	11 3103/7	-1.5752+0 $15.025+71-2.010052$ 10.873542
1	10011005	11.51554/	-2.010052 10.075342 -2.50/050 10.0552/7
1	10011000	10.812/74	-2.37+737 10.03334/ 2.7/2//2 11.520014
1	10011000	10.0134/0	-2.743442 11.339910
1	10001003	10.234949	-1.070071 10.303439 1.702012 0.017504
1	10011000	7.30//09 10640606	-1.703012 $9.9173040.502070 0.460751$
1	10011000	10.048000	-U.JUJY/Y Y.40U/JI
0	10001003	12.003524	-1.822080 13.9820/3
1	10011000	12.323694	-2.219388 14.880686

1	10011000	11.070040	-2.408763	13.839621

		1	0 1 5 6		19^{\pm} (1 c V)
H.	ONIOM optimi	zed structure	for the [Mo	$(CuNL)_6(CN)$	$[2]^{(MO')}$
42	10421006	8.64/581	4.52/896	14.529282	
29	10291003	0.5/3240	5.545958	9.760681	
29	10291003	11.41/408	1./65464	10.891152	
29	10291003	12.1/8352	/.999/04	12.50/458	
29	10291003	11.825139	1.264246	1/.311466	
29	10291003	10.383961	7.681132	18.465774	
29	10291003	5.136594	3.463219	18.359279	
7	10071001	7.256530	5.148856	11.554210	
7	10071001	10.421824	2.764290	12.257294	
7	10071001	10.895886	6.712644	13.247350	
7	10071001	10.628092	2.469544	16.334573	
7	10071001	9.728497	6.455823	17.082010	
7	10071001	6.452770	3.866670	16.963371	
7	10071002	6.696186	7.165899	14.675725	
7	10071002	6.950234	1.793417	13.879559	
7	10071003	5.948743	5.938520	7.932222	
7	10071003	5.039858	6.556915	10.463319	
1	10011000	4.606639	6.063410	11.277052	
1	10011000	5.352901	7.512393	10.751439	
7	10071003	6.369203	3.628702	9.364223	
1	10011000	7.169447	3.077522	9.749453	
1	10011000	5.471231	3.281113	9.772715	
7	10071003	8.250844	6.483571	9.322763	
1	10011000	8 557819	7 091345	10 116527	
1	10011000	8 996125	5 782731	9 105837	
7	10071003	10 318611	2 560381	9 463134	
1	10011000	9 410309	2.046512	9 396657	
1	10011000	10 140500	3 574363	9 645694	
7	10071003	10.906017	0.031979	11 668864	
1	10011000	9 902058	0.032059	11 961124	
7	10071003	13 472134	9 287941	11.762012	
7	10071003	10 977687	9 508418	12 903545	
1	100/1005	10.235910	9 566914	12.705345	
1	10011000	10.536450	0 300830	13 8/5178	
7	10071003	12 110443	7 124475	10 744618	
1	100/1003	12.110445	6 2679/1	10.744018	
1	10011000	11 120032	6 865548	10.750055	
1	10071003	12 545222	0.805548	10.490700	
1	100/1005	13.343233	7.403243	13.019170	
1	10011000	13.331014	7.927304	14./30190	
1	10011000	13.339141	0.424934	13.943138	
7	100/1003	13.049823	0.039294	18.277200	
/	100/1005	12.484205	0.490158	15.022015	
1	10011000	11.094031	0.322003	14.93984/	
1	10011000	13.1/4/43	1.149418	13.183348	
/	100/1003	10.318058	0.41582/	18.230436	
1	10011000	9.625232	1.131269	18.3091/3	
1	10011000	9.851913	-0.2/1213	1/.014252	
/	100/1003	12./56954	2.789944	18.13/483	
1	10011000	12.911942	3.355125	17.441928	

1	10011000	12,192579	3.149891	18.941190
7	10071003	11 057130	8 919854	19 843805
7	10071003	10 807186	9 044171	17 108266
1	10011000	11.705024	8.796533	16.632163
1	10011000	10 040429	9 117200	16 400975
7	10071003	11 762209	6 390258	19 023754
1	10011000	11 330160	5 658000	19 632979
1	10011000	12 210993	5 941084	18 193096
7	10071003	8 634459	7 701609	19 367311
1	10011000	7 983414	8 339383	18 854171
1	10011000	8 227812	6 739835	19 412312
7	10071003	3 814251	3 058100	19 765943
7	10071003	5 482121	5 183605	19 252362
1	10011000	6 356647	5 108975	19.820961
1	10011000	5 575471	5 958500	18 556358
7	10071003	6 135874	1 857385	18 906896
1	10011000	5 929185	1 074194	18 245127
1	10011000	7 164512	2 044362	18 924844
7	10071003	3 692572	3 315232	17 029350
1	10011000	3 368408	4 271923	16 757788
1	10011000	4 016077	2 796233	16 181054
6	10061001	7 706823	4 929597	12 607079
6	10061001	9 824983	3 374251	13 052277
6	10061001	10 138402	5 943056	13 690894
6	10061001	9 936050	3 189271	15 730296
6	10061001	9 349398	5 755062	16 230443
6	10061001	7 224495	4 089540	16 118714
6	10061002	7 402796	6 206527	14 604303
6	10061002	7 559081	2 788390	14 133257
6	10061002	4 079300	6 656026	9 371514
1	10011000	3 497808	5 711428	9 302119
1	10011000	3 364975	7 487166	9 562440
6	10061003	4 826520	6 896978	8 058893
1	10011000	4 125324	6 818806	7 197322
1	10011000	5 193858	7 946946	8 079664
6	10061003	6 335042	3 507744	7 913324
1	10011000	5 891009	2 531406	7 619107
1	10011000	7 371242	3 550419	7 512937
6	10061003	5 510172	4 656209	7 335248
1	10011000	4 443361	4 445360	7 570983
1	10011000	5 597083	4 672047	6 225077
6	10061003	7 985583	7 302229	8 148372
1	10011000	8 940088	7 573070	7 644938
1	10011000	7 479901	8 242503	8 457072
6	10061003	7 088309	6 524105	7 189966
1	10011000	7 716086	5 731606	6 725012
1	10011000	6 740177	7 185934	6 364721
6	10061003	11 067085	2 404237	8 224025
1	10011000	10 388310	2.509780	7 349193
1	10011000	11 842991	3 197198	8 155970
6	10061003	11 732009	1 029562	8 211706
1	10011000	10.928823	0.278133	8.043134

6	10061003	11 799676	10 710710	12 877011
1	10011005	12 342672	10.210633	13 8/1762
1	10011000	12.342072	11.6112.41	12 746704
1	10011000	12,002,490	11.011341	12.740704
0	10001003	12.802480	10.008449	11.726099
1	10011000	13.539830	11.440885	11./86191
Ì	10011000	12.233296	10.747938	10.782927
6	10061003	12.634369	8.084753	9.782962
1	10011000	11.840217	8.815640	9.517469
1	10011000	12.948923	7.563805	8.851640
6	10061003	13.823434	8.817426	10.402287
1	10011000	14.139335	9.661198	9.747973
1	10011000	14.671808	8.098150	10.431563
6	10061003	14.826223	7.916749	13.294704
1	10011000	15.190985	7.196539	12.530814
1	10011000	15.580563	7.965457	14.110877
6	10061003	14 649671	9 294850	12 660205
1	10011000	15 575470	9 589934	12 116347
1	10011000	14 518963	10 023278	13 491031
6	10061003	13 907643	-0 597440	17 264435
1	10011000	1/ 806106	0.018100	17.037281
6	10061003	10.882001	0.010190	10 /01726
1	10001003	10.882991	-0.270000	19.401720
1	10011000	10.1/3924	-1.032418	19.706571
I C	10011000	11.052/18	0.430088	20.225500
0	10061003	12.209943	-0.921295	19.002674
1	10011000	11.968166	-1./9/451	18.361136
I	10011000	12.732110	-1.316/17	19.903343
6	10061003	14.038259	2.289362	18.616226
1	10011000	14.456298	2.976248	19.385309
1	10011000	14.757445	2.240420	17.770293
6	10061003	13.843331	0.894592	19.207783
1	10011000	14.830438	0.430176	19.431543
1	10011000	13.319897	1.022292	20.181193
6	10061003	10.951873	10.310202	17.813812
1	10011000	9.947650	10.745650	18.006359
1	10011000	11.526668	11.032571	17.193024
6	10061003	11.671374	10.068489	19.139127
1	10011000	12.739569	9.869955	18.899863
1	10011000	11 647519	10 989646	19 764344
6	10061003	12 758045	7 140395	19 777161
1	10011000	13 449780	7 651561	19 073180
1	10011000	13 359553	6 4 5 1 9 4 6	20 410847
6	10061003	12 053057	8 177283	20.410047
1	10011005	11 566330	7.626666	20.030073
1	10011000	12 700057	9 864462	21.485500
1	10011000	12./9903/	0.004402	21.109410
0	10001003	0.0049/J	8.200800 8.577076	20./14200
1	10011000	1.9125/4	8.3/19/6	21.104214
1	10011000	9.244736	1.585278	21.359232
6	10061003	9.893241	9.336281	20.659705
1	10011000	9.384948	10.220017	20.214508
1	10011000	10.200778	9.626819	21.689663
6	10061003	4.344719	5.435186	20.126608
1	10011000	3.500862	5.844110	19.530047

1	10011000	4.614539	6.185538	20.902387
6	10061003	3.921055	4.124903	20.787702
1	10011000	2.961261	4.262679	21.335252
1	10011000	4.693260	3.877733	21.549651
6	10061003	5.671503	1.513364	20.244051
1	10011000	6.182155	2.157790	20.991848
1	10011000	5.918196	0.453671	20.476216
6	10061003	4.161449	1.730465	20.322886
1	10011000	3.682269	0.911639	19.741712
1	10011000	3.811674	1.625594	21.374903
6	10061003	2.480489	3.049457	19.122439
1	10011000	2.035478	4.069045	19.103106
6	10061003	2.607200	2.586597	17.672281
1	10011000	2.823536	1.496773	17.644503
1	10011000	1.651883	2.762138	17.130182
1	10011000	1.766159	2.397061	19.673967
1	10011000	14.275801	-1.585670	17.621945
6	10061003	13.134119	-0.763479	15.957675
1	10011000	13.824031	-1.069752	15.140552
1	10011000	12.366240	-1.558390	16.074868
1	10011000	11.517052	-0.175851	12.491566
1	10011000	12.433795	0.948821	7.350919
7	10071003	13.102861	2.624516	11.438092
1	10011000	13.180992	2.666357	12.480170
1	10011000	13.147134	3.590876	11.040118
7	10071003	12.424430	0.795753	9.499846
6	10061003	13.798917	1.346679	9.489202
1	10011000	14.534957	0.598376	9.117115
1	10011000	13.872774	2.231687	8.818909
6	10061003	12.411293	-0.636878	9.876063
1	10011000	12.513156	-1.293896	8.982854
1	10011000	13.257956	-0.883430	10.554461
6	10061003	11.121875	-0.965137	10.628683
1	10011000	11.189323	-1.980922	11.077616
1	10011000	10.263896	-0.956288	9.922287
6	10061003	14.182101	1.813031	10.892092
1	10011000	15.125141	2.402067	10.854579
1	10011000	14.352058	0.931525	11.547331

I. ONIOM final structure for the $[Mo(CuCNL)_6(CN)_2]^{8+}$ $(Mo^{IV,T})$ optimization, including in the QM region, in addition to the Mo and the eight CN fragments, one of the $[Cu(tris(2-aminoethyl)amine)]^+$ ligands, in order to describe accurately the hydrogen bond formation. The initial structure for the optimization is the eight-coordinated complex and the final point is a seven-coordinated complex (structure shown here). The optimization stops because of the changes in the connectivity, which poses problems to the ONIOM calculation. Further optimization of this structure leads, as expected, to a similar seven-coordinated complex.

42	10421006	8.687726	4.551355	14.474994
29	10291003	7.567248	8.784308	12.391084
29	10291003	14.014347	0.667441	12.098417
29	10291003	12.713967	6.677931	11.818104
29	10291003	12.663898	3.022701	17.201079
29	10291003	10.647437	8.211273	17.873165

29	10291003	6.887647	2.723765	18.587134
7	10071001	7.625150	6.870968	12.640002
7	10071001	12,454470	1.690699	12.598056
7	10071001	11.117757	5.946189	12.619122
7	10071001	10 883417	3 246666	16 491106
7	10071001	10 046239	6 849712	16 622282
7	10071001	6 844021	3 356106	16 765163
7	10071001	7 019505	6 881646	16 286776
7	10071001	7 925018	2.060597	12.830724
7	10071003	7 542611	10 737365	12.113875
7	10071003	9 151603	9 026606	13 539844
1	10011000	9 078647	8 440936	14 401473
1	10011000	10.016160	8 769596	13 012009
7	10071003	5 771991	8 916553	13 185330
1	10011000	5 1 5 5 2 7 7	8 140908	12 851582
1	10011000	5 848930	8 886087	14 228035
7	10071003	7 761711	8 570217	10 441666
1	10011000	8 456321	7 824179	10.209574
1	10011000	6 833252	8 327/6/	10.207574
1	10071003	13 68/18/12	0.05/788	10.023032
1	10071003	12 037/28	0.301525	0.850655
1	10011000	12.937420	1 0/3/81	0.000826
1	10071003	13 280/08	_0.023818	13 000752
1	10071003	12 255840	-0.923818	12.000752
1	10071003	1/ 377887	7 407541	12.010021
7	10071003	14.57768	7.407341	10/20210
1	100/1003	11.097708	6 085452	0 660887
1	10011000	10.820601	0.983432	9.009882
17	10011000	12 202670	0.079247	10.643920
1	100/1005	13.3930/9	4.0/24//	11.451591
1	10011000	13.///040	4.433037	12.309073
17	10011000	12.055600	4.203082	11.04/111
1	100/1005	13.1/1100	7.390012 9.497126	13.301371
1	10011000	12.05/25/	6.46/130	15.550055
1	10011000	12.934404	0.992000	14.331021
7	10071003	14.499903	2.909303	1/.900388
/	100/1003	12.914/20	1.2/2/33	16.341244
1	10011000	12.076420	0.002709	10.409334
17	10011000	13.073010	1.404939	13.318070
/	100/1005	12.007757	3.033747	19.030044
1	10011000	11.253010	3.743090	19.103043
1	10011000	11.009110	2.099241	19.318870
/	100/1003	13.200423	4.0/2321	16.259627
1	10011000	12.850184	4.00/248	15.2/02/5
1	10011000	12.82/16/	5.506307	10.101222
<i>,</i>	100/1003	11.238423	9.5/8020	19.181323
/	100/1003	12.019010	0.904514	10.018203
1	10011000	12.849580	8.270199	16.625810
1	10011000	11.040411	8.9/3496	13.030/88
/	100/1003	11.128/3/	0.8249/4	19.209826
1	10011000	10.208813	0.490319	19.098030
1	10011000	11.003003	0.01/398	18./52916
/	100/1003	8.84348/	9.013048	17.070330

1	10011000	8.721682	9.610479	17.048749
1	10011000	8.105823	8.276402	17.922329
7	10071003	6.999509	2.093840	20.452808
7	10071003	4.928456	2.762620	18.755572
1	10011000	4.610842	3.746546	18,913707
1	10011000	4 470625	2 373635	17 899734
7	10071003	7 939321	4 303675	19 122818
1	10011000	8 930821	4 181967	18 817473
1	10011000	7 548180	5 176009	18 699471
7	10071003	7 776559	1 054157	18 032456
1	10011000	7 059816	0 382758	17 672563
1	10011000	8 494831	1 229887	17 294111
6	10061001	7 699981	5 726229	12.801685
6	10061001	11 516004	2 294420	12.903578
6	10061001	10 165459	5 505409	13 105846
6	10061001	9 824720	3 413258	16 055028
6	10061001	9.616269	6.045196	15 877030
6	10061001	6 857268	3 757427	15.678992
6	10061001	7 595933	6.061993	15.674501
6	10061001	7 487803	2 922041	13 467926
6	10061003	9 198727	10 434508	13 909584
1	10011000	8 504771	10.620746	14 756892
1	10011000	10 224620	10 712466	14.730072
6	10061003	8 783709	11 282290	12 710182
1	10011000	8 655532	12 345333	13 015946
1	10011000	9 625884	11 254533	11 983523
6	10061003	5 227090	10 201167	12 765116
1	10011000	4 393496	10.503407	13 436873
1	10011000	4 822931	10 113482	11 733537
6	10061003	6 334067	11 255014	12 795986
1	10011000	6 540184	11 482097	13 865291
1	10011000	5 977294	12 201390	12 329992
6	10061003	8 216692	9 851700	9 919932
1	10011000	8.016308	9.051700	8 827506
1	10011000	0.010508	9.915547	10 074458
6	10061003	7 /00127	10 075050	10.653511
1	10011000	6 440852	10.975555	10.283551
1	10011000	7 03/380	11 061160	10.283551
1	10061003	1/ 030101	0.658878	0 500727
1	10011000	14.959101	0.058878	9.300727
1	10011000	15 623/00	1 530106	0 580204
1	10061003	15.023490	0.568450	9.389204
1	10001003	13.383183	-0.308430 1 452027	0.826101
1	10011000	14.962970	-1.433037	9.830101
1	10011003	12.363606	0.070709	9.920379
1	10011000	12.391010	9.341033	8 040012
1	10011000	12.223038	2.040430 8 111/77	0.740013
1	10011005	13.777032	0.1114/2	7.170214 0 551061
1 1	10011000	14.720017	0.7431/0	8 078082
1	10011000	13.333103	5 072795	0.720703
1	10011003	14.40100/	5 13/565	0/21777
1	10011000	15 101580	1 120065	10 /30/02
1	10011000	13.101300	⊣ .1∠0703	10.400400

6	10061003	15.277497	6.262088 10.778137
1	10011000	15.988942	6.487072 9.951592
1	10011000	15.890471	6.013113 11.672957
6	10061003	14.597924	7.870579 13.450434
1	10011000	15.166636	6.948907 13.700071
1	10011000	14.862476	8.654252 14.194454
6	10061003	14,959904	8.335434 12.042694
1	10011000	16 065567	8 411526 11 934113
1	10011000	14 553080	9 364225 11 922234
6	10061003	15 136240	1 745613 17 247844
1	10011000	15 591806	2 033542 16 276161
6	10061003	13 142367	3 416678 19 896582
1	10011000	12,952080	3 119449 20 951519
1	10011000	13 288297	4 517642 19 871096
6	10061003	14 395593	2 719249 19 371590
1	10011000	14 305515	1 641996 19 634055
1	10011000	15 298499	3 103260 19 898330
6	10061003	14 661696	4 723769 16 251380
1	10011005	15 008236	5 771298 16 107679
1	10011000	15.008230	A 110350 15 A071A7
6	10061003	15 100660	4.175275 17.572027
1	10011003	16 203677	4.175275 17.572027
1	10011000	15.002074	4.055575 17.515578
1	10011000	12/02074	4.952209 18.540210
1	10001003	12.403990	10.239892 17.104303
1	10011000	11.033970	10.983937 10.707000
1	10011000	13.391340	10.333241 $10.08770310.220122$ 18.634020
0	10001003	12.400842	10.220122 18.034939
1	10011000	13.3/003/	9.030497 18.928084
1 C	10011000	12.390194	
0	10001003	12.030803	7.401/21 20.1/0131
1	10011000	13.002081	/.499051 19./50981
I C	10011000	12.0/4602	0.8/2833 21.118290
0	10061005	11.536021	8.8/6925 20.461414
1	10011000	10.624205	8.786222 21.088355
I C	10011000	12.285234	9.436/94 21.0636/2
0	10061003	8.770821	9.83554/ 19.104886
1	10011000	/.94/409	10.578705 19.011058
I	10011000	8.549383	9.189505 19.978490
0	10061003	10.111856	10.553045 19.312934
1	10011000	10.182508	11.353809 18.547905
I	10011000	10.124420	11.055260 20.304894
6	10061003	4.598223	1.941490 19.9138/4
1	10011000	4.601973	0.869129 19.621911
l	10011000	3.580295	2.192823 20.285505
6	10061003	5.632135	2.178136 21.015943
1	10011000	5.486849	1.446708 21.842966
1	10011000	5.432628	3.186479 21.441052
6	10061003	7.873593	4.390610 20.575191
1	10011000	6.921891	4.879098 20.876201
1	10011000	8.713441	5.007531 20.963567
6	10061003	7.942320	2.985359 21.165510
1	10011000	8.992392	2.634605 21.052232

1	10011000	7.727175	3.015266	22.257644
6	10061003	7.491447	0.697583	20.419122
1	10011000	6.652093	-0.023870	20.305703
6	10061003	8.415739	0.504777	19.219841
1	10011000	9.378103	1.029630	19.399842
1	10011000	8.634172	-0.576257	19.074485
1	10011000	8.021599	0.428711	21.360838
1	10011000	15.956853	1.325224	17.872138
6	10061003	14.089687	0.666400	16.957494
1	10011000	14.520216	-0.107822	16.284647
1	10011000	13.795465	0.167654	17.906034
1	10011000	13.448773	-0.852075	14.030327
1	10011000	16.610214	-0.720355	9.742125
7	10071003	15.219594	1.894271	13.056240
1	10011000	14.797698	2.219920	13.952987
1	10011000	15.439368	2.716694	12.450414
7	10071003	15.595185	-0.416137	11.618119
6	10061003	16.791461	0.324047	12.082431
1	10011000	17.638264	-0.364161	12.304680
1	10011000	17.151755	1.036509	11.307204
6	10061003	15.464932	-1.721818	12.304306
1	10011000	15.998045	-2.528499	11.751921
1	10011000	15.904417	-1.686455	13.326210
6	10061003	13.989816	-2.075880	12.463110
1	10011000	13.876671	-2.949379	13.142640
1	10011000	13.561038	-2.348527	11.474625
6	10061003	16.439222	1.145769	13.320204
1	10011000	17.271119	1.840715	13.570058
1	10011000	16.279238	0.469628	14.187625

J. DFT optimized $[Mo(CN)_2(CN-Cu(tris(2-aminoethyl)amine)_6]^{8+}$ for S = 4, with a seven coordinated Mo.

Cu	13.048179	2.388960	17.950508
Cu	9.149407	9.291081	17.846777
Cu	5.698802	2.054758	17.511131
Ν	7.710293	6.312728	12.074369
Ν	10.365653	1.852755	12.515508
Ν	11.981770	6.164899	13.038495
Ν	11.700232	3.255410	16.653907
Ν	9.841546	7.720053	16.741044
Ν	7.439302	2.527767	16.496351
Ν	6.776098	6.056801	16.033804
Ν	6.964153	2.930709	12.710740
Ν	4.295222	7.106649	9.633994
N	5.573791	8.736779	11.603494
Н	5.737397	8.853629	12.613827
Н	6.150138	9.463922	11.151531
N	4.981777	5.143129	11.567088
Н	5.567986	4.312497	11.784402
Н	4.561194	5.419042	12.466862
N	7 049079	6 881021	8 944236
Н	7 915294	7 436565	8 927205
Н	7 338401	5 928578	8 675086
N	11 094242	1 080634	9 496379
Н	10 541157	1 883402	9 161713
Н	12.030394	1 461372	9 692623
N	8 026678	0 237670	11 530261
Н	7 623107	1 172798	11 750430
N	15 138416	8 415060	11 227876
N	12 337464	8 312773	10 781031
Н	12.103714	7 681385	10 000259
Н	11 434269	8 605770	11 180110
N	14 737449	5 615553	11 512586
Н	15 291887	5 2 5 3 3 7 7	12 303783
Н	14 186997	4 811499	11 180440
N	14 212458	8 291846	13 916806
Н	13 545775	9.054062	14 113506
Н	14 216563	7 720267	14 773495
N	14.507189	1.445963	19.372584
N	12 452328	0 346363	17 723748
Н	11 431129	0 244436	17 636666
Н	12.842986	-0.012099	16.838816
N	12 464971	3 417856	19 729797
Н	12.243478	4 408601	19 558782
Н	11 592061	3 003282	20.088800
N	14 855421	2 981961	16 988762
Н	14 791437	2.930528	15 962808
Н	15.010534	3.977076	17.211364
N	8 178348	10 789709	19 159007
N	9,933875	11.166621	16.924583
Н	10.899528	11.346351	17.241546
Н	9.994565	11.159052	15.896757
N	10.255732	8.914340	19.594248
Н	9.952430	7.972086	19.883161

Η	11.272998	8.841684	19.449109
Ν	7.175833	8.956095	17.258009
Η	6.968985	9.517958	16.419781
Η	7.025763	7.959294	16.985199
Ν	3.712906	1.751084	18.393219
Ν	5.320863	4.061052	17.966084
Н	5.758596	4.295877	18.869124
Н	5.732844	4.729134	17.280018
Ν	6 301968	0 874310	19 275262
Н	6 479233	-0 108513	19 013849
Н	7 168342	1 185581	19 735039
N	4 905484	0 787156	16 015346
Н	4 804753	1 378641	15 175302
н	5 545319	0.030190	15 734490
\hat{C}	8 349747	5 739573	12 889068
C	10 195976	2 789946	13 221485
C	11 045500	5 607172	13.502304
C	10.045509	3.00/1/2	15.02394
C	0.007200	5.700001	16.092304
C	9.997299	0./39140	10.000304
C	8.109370	5.152948	15./88/20
C	7.083209	5.500500	13.450555
C	1.176092	3.484322	13.3/1301
C II	4.13/699	8.9/9/69	11.2/6964
H	3.514969	8.414165	11.999064
H	3.848113	10.046885	11.38/881
C	3.874256	8.528338	9.845513
Н	2.799581	8.648656	9.581542
Н	4.438253	9.169255	9.140003
С	3.916244	4.832147	10.578093
Η	3.141839	4.147494	10.986077
Н	4.384371	4.305609	9.721642
С	3.268221	6.134478	10.129616
Η	2.734288	6.602972	10.980986
Η	2.503114	5.955936	9.341272
С	6.083473	7.408880	7.934967
Η	6.382930	7.168818	6.892959
Η	6.079802	8.515020	8.003832
С	4.704275	6.836490	8.223479
Н	4.705928	5.737748	8.071604
Н	3.945799	7.246566	7.518460
С	11.174493	0.040778	8.427786
H	11.333668	0.476828	7.418663
Н	12 060209	-0 593202	8 629325
C	9 893251	-0.782315	8 437460
н	9.031353	-0 148763	8 145641
C	13 103999	9 484838	10 266749
н	13 061736	10 290024	11 028717
Н	12 665158	9 907435	9 337506
C	14 541320	9 0507455	10 011115
н	15 166750	9 910584	0 680700
Н	14 575020	8 313814	9.000299
C	15 650727	6 107084	10 447386
C	13.037434	0.10/004	10.77/300

Н	15.079462	6.205812	9.507526
Н	16.488466	5.399894	10.234606
С	16.230000	7.452128	10.881861
Н	16.881827	7.880397	10.087287
Н	16.874231	7.320705	11.774609
С	15.563912	8.859363	13.645093
Н	16.308468	8.045876	13.763671
Н	15.849114	9.650286	14.370803
С	15.578029	9.431340	12.233861
Н	16.589784	9.814775	11.970268
Н	14.889586	10.298080	12.173970
С	14.405538	-0.030038	19.159612
Н	15.060276	-0.312334	18.308474
С	13.545405	3.287910	20.750461
Н	13.198990	3.542413	21.775666
Н	14.343529	4.019494	20.509818
С	14.075807	1.858528	20.741131
H	13.294310	1.154901	21.093591
Н	14 924726	1 757289	21 455888
C	15 987981	2 1 5 4 9 9 3	17 495659
H	16 980825	2 593808	17 259521
Н	15.955476	1.174360	16.978045
C	15 846086	1 999446	19 004107
Ĥ	16 647649	1 342597	19 412258
Н	15 972312	2 984380	19 499873
C	9 066747	12 292061	17 371355
H	8.135527	12.277946	16.769172
Н	9.527275	13.289038	17.199447
C	8.768823	12.129551	18.856771
H	9 708912	12 234247	19 431235
Н	8.093831	12.938776	19.216695
C	9.951378	9.911027	20.660585
H	10.632358	10.775469	20.530437
Н	10 153350	9 518667	21 679598
C	8 491113	10 334700	20 545999
H	7.824796	9.480054	20.783797
Н	8.258530	11.134438	21.285430
С	6.289971	9.361970	18.378202
Ĥ	5.214901	9.377651	18.095904
Н	6.397529	8.607224	19.185543
С	6.713684	10.746790	18.855795
H	6.508783	11.486897	18.055763
Н	6 123413	11 071422	19 741700
C	3.841581	4.220593	18.055970
H	3.434479	4.193887	17.023852
Н	3 537489	5 200197	18 482548
С	3.271407	3.091539	18.902373
Ĥ	2.159885	3.135038	18.940709
Н	3.619601	3.190323	19.950175
Ċ	5.170057	0.919970	20.244576
H	5.207767	1.896100	20.771957
Н	5.248385	0.144797	21.036532

3.853925	0.748514	19.493176
3.802215	-0.269131	19.055625
2.991311	0.827834	20.193049
2.854475	1.260630	17.273985
2.574961	2.129406	16.644778
3.587188	0.225769	16.431883
3.776872	-0.703467	17.005616
2.957487	-0.066192	15.564879
1.902110	0.842449	17.672670
14.812218	-0.564808	20.048841
12.970261	-0.453635	18.870687
12.931042	-1.548707	18.688769
12.307196	-0.271493	19.742788
7.858913	-0.323995	12.379886
9.950069	-1.605114	7.688618
11.299912	-1.293784	12.109575
11.318009	-1.276216	13.138517
12.285409	-1.196273	11.817846
9.622039	-1.340990	9.797452
10.513534	-2.499606	10.124523
10.074578	-3.444463	9.732885
11.474647	-2.367043	9.588554
8.174319	-1.663829	10.004552
7.763184	-2.161443	9.097977
8.097015	-2.407176	10.825416
7.381978	-0.412618	10.361011
6.319896	-0.677274	10.552723
7.379939	0.310467	9.519424
10.765972	-2.597674	11.623521
11.454101	-3.445923	11.830048
9.826690	-2.812897	12.173587
	3.853925 3.802215 2.991311 2.854475 2.574961 3.587188 3.776872 2.957487 1.902110 14.812218 12.970261 12.931042 12.307196 7.858913 9.950069 11.299912 11.318009 12.285409 9.622039 10.513534 10.074578 11.474647 8.174319 7.763184 8.097015 7.381978 6.319896 7.379939 10.765972 11.454101 9.826690	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

K. One of the Cu^{TB}-Mo^D dimers (dimer 5 according to Figure S1) obtained by overlaying the optimized fragments and fixing the Cu-N-C, Mo-C-N angles, as well as the torsion angle, according to the ONIOM optimized structure (F):

010	optimized optimized by the second sec	Jea Straetare (- <i>)</i> .
Mo	-1.96873	1.88535	0.12516
Cu	1.83368	-1.80163	-0.13116
Ν	-1.90900	2.11490	3.43811
Ν	-3.66972	-0.74144	1.31613
Ν	-5.06034	3.06422	-0.17566
Ν	-2.85429	0.36695	-2.72508
Ν	-0.74518	3.71520	-2.36272
Ν	1.05795	2.99088	1.03832
Ν	-2.28899	5.11537	0.95012
Ν	0.41887	-0.41211	-0.02965
Ν	3.33111	-3.24881	-0.2441
Ν	1.33968	-2.69833	1.7084
Ν	3.41051	-0.40786	-0.2124
Ν	1.12107	-2.64765	-1.9262
С	-1.95579	1.99289	2.26213
С	-2.16995	3.95654	0.65547
С	-3.06896	0.18531	0.89105

С	-3.95195	2.65516	-0.06354
С	-2.54339	0.90058	-1.71562
С	-1.19892	3.03339	-1.50875
С	-0.02953	2.59790	0.71150
С	-0.41887	0.41211	0.02965
С	3.04108	-4.26431	0.84841
С	2.50156	-3.57315	2.10359
С	4.63777	-1.14854	-0.67699
С	4.65209	-2.53139	-0.01968
С	1.78947	-3.98938	-2.08169
С	3.24684	-3.86282	-1.63079
Н	-5.97274	3.51047	-0.23788
Н	-3.11180	-0.07714	-3.60556
Η	-4.18317	-1.53248	1.70264
Η	-1.82342	2.29090	4.43727
Η	-0.32417	4.35242	-3.03601
Η	3.19458333	0.3910079	98 -0.83926447
Η	3.55294390	-0.0034343	53 0.73535038
Η	0.08710325	-2.7405340	03 -1.93253238
Η	1.36167187	-2.0159118	89 -2.71673916
Η	1.13036082	-1.996001	59 2.44379695
Η	0.47312273	-3.2608120	05 1.58741517
Η	5.57712110	-0.6003072	20 -0.43343520
Η	4.59336364	-1.221766	36 -1.78596317
Η	5.49035982	-3.1556666	65 -0.41105042
Η	4.80788963	-2.4341452	23 1.07801558
Η	1.74500991	-4.3623103	32 -3.13101967
Η	1.23020513	-4.7239828	84 -1.46099738
Η	3.75900869	-4.854518	78 -1.63528892
Η	3.80984294	-3.2052980	02 -2.33011766
Η	3.27170134	-2.925478	77 2.57840056
Η	2.21482361	-4.334221	18 2.86580284
Η	3.96455524	-4.8492054	45 1.07476422
Η	2.29182510	-4.9866964	43 0.45294525

L. One of the Cu^{TB}-Mo^{SA} dimers (dimer 5 according to Figure S1) obtained by overlaying the optimized fragments and fixing the Cu-N-C, Mo-C-N angles, as well as the torsion angle, according to the ONIOM optimized structure (G):

Mo	2.8984500	0 0.0148200	0 0.03596000
Cu	-2.4530100	0 0.13583000	0.25653000
Ν	2.61310000	1.37443000	3.06037000
Ν	2.00716000	-2.60774000	2.06911000
Ν	1.88063000	-0.42290000	-3.21694000
Ν	5.10712000	1.73843000	-1.76149000
Ν	4.65071000	-2.77988000	-1.09055000
Ν	5.81562000	-0.16998000	1.57326000
Ν	1.79118000	3.10275000	-0.34707000
Ν	-0.59132000	0.03209000	0.06091000
Ν	-5.24395682	0.30699172	0.54127050
Ν	-2.96906526	-1.06406541	1.92169625
Ν	-3.29729740	-0.61935205	-1.53162279
Ν	-2.91247792	2.17701763	0.55035075

С	2.73016000	0.85511000	2.00696000
С	2.19120000	1.98469000	-0.16315000
С	2.20348000	-1.68669000	1.35433000
С	2.29574000	-0.36416000	-2.11150000
С	4.29184000	1.13934000	-1.15367000
С	3.97807000	-1.91177000	-0.65239000
С	4.77417000	-0.08029000	0.98056000
С	0.59132000	-0.03209000	-0.06091000
С	-5.42378986	-0.54349960	1.72886935
С	-4.34926326	-1.64115711	1.87111782
С	-4.62944529	-0.03299435	-1.88185228
С	-5.66162140	-0.24930184	-0.75581238
С	-4.14697258	2.42602936	1.35953735
С	-5.38622481	1.76006982	0.72722639
Н	5.26993000	-3.51830000	-1.43499000
Н	1.51231000	-0.45288000	-4.17151000
Η	1.85852000	-3.40463000	2.69412000
Η	2.55799000	1.86749000	3.95480000
Η	5.81947000	2.29780000	-2.23671000
Н	-2.60477062	-0.42307174	-2.27764131
Н	-3.36558432	-1.65235683	-1.45000977
Н	-2.08277175	2.59094422	1.01407213
Н	-2.99185181	2.62886477	-0.38141625
Н	-2.25959793	-1.81916990	1.95278287
Η	-2.84232602	-0.49767263	2.78277411
Η	-5.04057858	-0.46130108	-2.82991803
Η	-4.47835408	1.05617109	-2.06194347
Η	-6.64503980	0.16963324	-1.10075789
Η	-5.82996426	-1.34489834	-0.62715622
Η	-4.35377314	3.51816014	1.48442820
Η	-3.96628240	2.01557872	2.37947020
Η	-6.28026132	2.02235847	1.35484653
Η	-5.57381683	2.22227646	-0.27118065
Н	-4.39054264	-2.33370403	0.99935616
Н	-4.58206094	-2.25277445	2.77828597
Н	-6.43146540	-1.03976121	1.74786381
Η	-5.39268554	0.11008599	2.63283358

M. One of the Cu^{TD}-Mo^D dimers (dimer 5 according to Figure S1) obtained by overlaying the optimized fragments and fixing the Cu-N-C, Mo-C-N angles, as well as the torsion angle, according to the ONIOM optimized structure (H):

Mo	2.49128	0.44295	1.16688
Cu	-2.22882	-0.43969	-0.96980
Ν	0.39364	2.06056	3.22024
Ν	2.01172	3.09425	-0.86824
Ν	5.51380	0.99712	-0.22861
Ν	2.97308	-2.20275	-0.87494
Ν	4.58616	-1.18082	3.21813
Ν	0.93617	-1.89118	2.92642
Ν	4.04391	2.77202	2.93529
Ν	-0.55065683	-0.149848	95 -0.18580358
Ν	-4.74453624	-0.873721	19 -2.14563184

Ν	-2.62213067	1.23647304	-2.20050791
Ν	-3.62707304	-0.58148361	0.61304373
Ν	-2.08738774	-2.23981736	-2.06683011
С	1.12753	1.51610 2	.47653
С	3.46006	1.92435 2	.29912
С	2.16253	2.14408 -0	.18688
С	4.45297	0.78282 0	.23590
С	2.82167	-1.25444 -0).19114
С	3.85308	-0.63414 2	.47528
С	1.52102	-1.04175 2	.29353
С	0.51640898	0.03342896	0.30955173
С	-4.84674648	0.34335312	-2.96683582
С	-4.07459801	1.54643161	-2.38712918
С	-4.81651567	-1.43919134	0.31196397
С	-5.57773866	-0.94152950	-0.93424277
С	-2.99774987	-2.31829780	-3.25251903
С	-4.47547228	-2.13845168	-2.84870756
Η	6.44244	1.20578 -0	0.61464
Η	3.09797	-3.03771 -1	.45978
Η	1.88728	3.93080 -1	.45089
Η	-0.21270	2.53644 3	6.89787
Η	5.19189	-1.65870 3	6.89489
Η	-3.10146708	-0.95803507	1.42335543
Η	-3.92775697	0.37857358	0.87050650
Η	-1.09650135	-2.31523364	-2.36218093
Η	-2.26779881	-3.03014748	-1.41762842
Η	-2.13449869	2.03347991	-1.75162164
Н	-2.16180226	1.08154599	-3.11833251
Η	-5.53043267	-1.48391913	1.17197274
Η	-4.44706228	-2.47761779	0.14850867
Η	-6.47943851	-1.59631526	-1.07505590
Η	-5.97701436	0.07992545	-0.72828154
Η	-2.89290416	-3.28877313	-3.79866849
Η	-2.69122313	-1.51636586	-3.96268503
Η	-5.10477511	-2.25316443	-3.77218111
Η	-4.77064638	-2.97977814	-2.17738725
Н	-4.48825853	1.82359802	-1.39045267
Н	-4.23299669	2.42819962	-3.05691868
Н	-5.91265455	0.65979774	-3.12729257
Н	-4.44477367	0.11288167	-3.98202885

N. Optimized Cu^{TB}-Mo^{SA} dimer 2 with seven-coordinated Mo. Similar result is obtained for dimers 4, 5 and 6.

42	0.612406	1.987664	-1.406392
29	-0.758021	-2.077826	1.648980
7	0.249830	3.797542	1.390572
7	-2.306387	1.955170	-3.020374
7	0.980350	3.641092	-6.206413
7	3.527491	3.428856	-2.156693
7	1.567445	-0.151985	-3.798049
7	2.668273	0.192366	0.482043
7	-0.084984	5.059526	-2.352788

7	-0.799609	-0.503610	0.340145
7	-0.600956	-3.753849	2.979404
7	-2.514398	-1.608081	2.818664
7	1.146132	-1.562548	2.432682
7	-1.136199	-3.580185	0.164260
6	-0.428779	0.403373	-0.343516
6	0.345333	3.129908	0.421084
6	0.179551	3.928890	-2.041637
6	-1.273003	1.963357	-2.449833
6	0.965192	2.960323	-5.231012
6	2.490926	2.926318	-1.907271
6	1.191972	0.627051	-2.993694
6	2.048536	0.917585	-0.236308
6	-1.877949	-3.786036	3.798612
6	-2.379822	-2.371604	4.107395
6	1.726269	-2.808415	3.041904
6	0.630136	-3.519035	3.838647
6	-1.375159	-4.887227	0.870699
6	-0.452155	-4.972894	2.089850
1	1.780401	-1.134217	1.711968
1	0.986874	-0.831301	3.154954
1	-1.934484	-3.305309	-0.438229
1	-0.286153	-3.610253	-0.432498
1	-2.585651	-0.585094	2.973820
1	-3.353728	-1.898607	2.278981
1	2.593882	-2.581967	3.705394
1	2.118058	-3.443963	2.216942
1	0.991762	-4.492857	4.248486
1	0.324814	-2.898073	4.710704
1	-1.198272	-5.762321	0.202560
1	-2.447412	-4.926959	1.162835
1	-0.659665	-5.897576	2.681785
1	0.611097	-5.029665	1.765747
1	-1.668723	-1.818217	4.760280
1	-3.344154	-2.430191	4.665205
1	-1.702956	-4.360824	4.739942
1	-2.647564	-4.345415	3.221833
1	1.906063	-0.740844	-4.562034
1	-3.180886	2.031411	-3.545871
1	0.992081	4.229779	-7.040619
1	0.172830	4.439711	2.183451
1	4.413268	3.891386	-2.378308

O. Optimized Cu^{TB}-Mo^{SA} dimer1 with eight-coordinated Mo. A similar result is obtained for dimer 3.

42	0.088534	-1.059029	-2.314964
29	-0.386513	0.617793	2.450605
7	-0.807772	-4.212219	-1.569115
7	-3.251751	-1.080541	-3.007725
7	-0.258416	-2.013588	-5.588199
7	1.451525	1.435676	-4.127086
7	2.857258	-2.886916	-2.992782
7	2.592912	0.107307	-0.452978

7	-1.274579	1.784983	-1.161735
7	-0.467484	-0.781613	0.976706
7	-0.229124	2.034262	4.070284
7	1.376315	1.548718	1.788545
7	-0.976981	-0.718244	3.966520
7	-1.938420	1.940772	1.717104
6	-0.864071	0.808587	-1.715906
6	-0.521300	-3.079706	-1.765411
6	-2.083408	-1.146471	-2.823745
6	-0.078618	-1.606759	-4.490348
6	0.953490	0.587617	-3.471726
6	1.831888	-2.336965	-2.771397
6	1.795585	-0.348204	-1.220243
6	-0.295156	-1.007563	-0.185540
6	1.045457	2.835524	3.853730
6	2.059803	2.032299	3.034024
6	-1.171983	0.028060	5.261218
6	-0.171424	1.186295	5.325969
6	-1.824397	3.204431	2.508051
6	-1.479107	2.886000	3.971342
1	3.769122	-3.322573	-3.151225
1	-4.255930	-0.978972	-3.170386
1	-0.410531	-2.355850	-6.540719
1	-1.050816	-5.191255	-1.403310
1	1.880086	2.188825	-4.669521
1	-1.823135	-1.244584	3.676193
1	-0.194040	-1.402261	4.019180
1	-1.782378	2.067846	0.681426
1	-2.844712	1.454684	1.860189
1	1.973368	0.910842	1.197722
1	1.094632	2.336534	1.170830
1	-1.037670	-0.638233	6.144915
1	-2.223980	0.385796	5.296651
1	-0.359671	1.825491	6.223299
1	0.868180	0.796940	5.418504
1	-2.770452	3.796557	2.475335
1	-1.046328	3.841647	2.032171
1	-1.336938	3.825852	4.558323
1	-2.316581	2.331967	4.449538
1	2.434114	1.143850	3.590475
1	2.951466	2.661182	2,798573
1	1.469565	3.140633	4.839412
1	0.777428	3.772385	3.316347

S3. Absolute CASSCF and CASPT2 energies

Table S3. Absolute energies in a.u. of the five lowest doublet states calculated by using the CAS(3,3) level and the basis set shown in Table S1, for one of the Cu_{TB} -Mo_D dimers (dimer 5 according to Figure S1).

State	SA-CASSCF	CASPT2
Cu ^{II} -Mo ^{IV-CS}	-6895.1928590	-6899.1838542
Cu ^{II} -Mo ^{IV-T}	-6895.1138200	-6899.0908643
Cu ^{II} -Mo ^{IV-OS}	-6895.0902880	-6899.0725897
Cu ^{II} -Mo ^{IV-CS*}	-6894.9416940	-6898.9188689
MMCT	-6894.7578030	(a)

a) CASPT2(3,3) calculation for the MMCT state was not successful because of intruder state problems.

Table S4. Absolute energies in a. u. of the five lowest doublet states calculated by using the CAS(3,3) level and the basis set shown in Table S1, for one of the Cu_{TB} -Mo_{SA} dimers (dimer 5 according Figure S1).

State	SA-CASSCF	CASPT2	
Cu ^{II} -Mo ^{IV-CS}	-6895.1664640	-6899.1065095	
Cu ^{II} -Mo ^{IV-T}	-6895.1629010	-6899.0891151	
Cu ^{II} -Mo ^{IV-OS}	-6895.1323050	-6899.0644945	
Cu ^{II} -Mo ^{IV-CS*}	-6895.0546050	-6898.9792330	
ММСТ	-6894.7594210	(a)	

a) CASPT2(3,3) calculation for the MMCT state was not successful because of intruder state problems.

Table S5. Absolute energies in a. u. of the five lowest doublet states calculated by using the CAS(3,3) level and the basis set shown in Table S1, for one of the Cu_{TD} -Mo_{SA} dimers (dimer 5 according Figure S1).

State	SA-CASSCF	CASPT2
Cu ^{II} -Mo ^{IV-CS}	-6895.1864530	-6899.1397170
Cu ^{II} -Mo ^{IV-T}	-6895.1150140	-6899.0591778
Cu ^{II} -Mo ^{IV-OS}	-6895.0849870	-6899.0346484
Cu ^{II} -Mo ^{IV-CS*}	-6894.9369450	-6898.8832756
MMCT	-6894.7834510	(a)

a) CASPT2(3,3) calculation for the MMCT state was not successful because of intruder state problems.

Table S6. Absolute energies in a. u. of the five lowest doublet states calculated by using the CAS(3,3) level and the basis set shown in Table S1, for one of the Cu_{TB} -Mo_{SA} optimized dimers (dimer 2 according Figure S1) in which Mo is seven-coordinated.

State	SA-CASSCF	CASPT2
Cu ^{II} -Mo ^{IV-T}	-6895.227059	-6899.133391
Cu ^{II} -Mo ^{IV-CS}	-6895.194917	-6899.107779
Cu ^{II} -Mo ^{IV-OS}	-6895.191826	-6899.102881
Cu ^{II} -Mo ^{IV-CS*}	-6895.152854	-6899.068363
MMCT	-6894.817381	(a)

a) CASPT2(3,3) calculation for the MMCT state was not successful because of intruder state problems.

Table S7. Absolute energies in a. u. of the five lowest doublet states calculated by using the CAS(3,3) level and the basis set shown in Table S1, for one of the Cu_{TB} -Mo_{SA} optimized dimers (dimer 2 according Figure S1) in which Mo is eight-coordinated.

State	SA-CASSCF	CASPT2
Cu ^{II} -Mo ^{IV-CS}	-6895.188998	-6899.1422538

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Cu ^{II} -Mo ^{IV-T}	-6895.173625	-6899.1194506
Cu ^{II} -Mo ^{IV-OS}	-6895.143300	-6899.0942095
Cu ^{II} -Mo ^{IV-CS*}	-6895.063635	-6899.0032938
ММСТ	-6894.808241	(a)

a) CASPT2(3,3) calculation for the MMCT state was not successful because of intruder state problems.

Table S8. Absolute energies in a. u. of the lowest energy doublet and quartet states, calculated at CASSCF and CASPT2 level, using a CAS(3,11) and the basis set shown in Table S2, for the optimized dimer with Mo seven-coordinated.

State	SA-CASSCF	CASPT2
Doublet Cu ^{II} -Mo ^{IV-T}	-6895.285375	-6899.377433
Quartet Cu ^{II} -Mo ^{IV-T}	-6895.285407	-6899.377593

Table S9. Relative CASPT2 energy (in eV) of the fifth doublet state (the MMCT state) with respect the ground state calculated by using the CAS(3,3) level and the basis set shown in Table S1, for one of the Cu_{TB}-Mo_D dimers (dimer 5 according to Figure S1). Relative energies of the rest of the states do not change more than 0.1 eV. At CASSCF level ΔE is 11.8 eV

Imaginary shift	$\Delta E CASPT2$	reference weight	CASPT2 convergence
0	4.4	0.01498	NO
0.1	2.7	0.17710	NO
0.2	-7.7	0.16753	NO
0.3	-4.7	0.27052	NO
0.4	3.9	0.40598	YES
0.5	4.5	0.42531	YES
0.6	5.0	0.44178	YES
0.7	5.3	0.45768	YES
0.8	5.7	0.47354	YES
0.9	6.0	0.48947	YES

Table S10. Absolute energies in a.u. and relative energies to the ground state in eV of the nine lowest doublet states calculated by using the CAS(11,12) level and the basis set shown in Table S1, for one of the Cu_{TB} -Mo_D dimers (dimer 5 according to Figure S1).

State	SA-CASSCF	CASPT2	ΔE SA-CASSCF	$\Delta E CASPT2$
ground state	-6895.380424	-6899.120492	0.00	0.00
Cu-Cu	-6895.344255	-6899.070475	0.98	1.36
Cu-Cu	-6895.344024	-6899.070898	0.99	1.35
Cu-Cu	-6895.335862	-6898.938284	1.21	4.96
Mo-Mo	-6895.335510	-6899.058970	1.22	1.67
Mo-Mo	-6895.289745	-6899.021469	2.47	2.69
Mo-Mo, Cu-Cu	-6895.261506	-6899.002254	3.24	3.22
Mo-Mo, Cu-Cu	-6895.253704	-6898.971244	3.45	4.06
Mo-Mo, Cu-Cu	-6895.253477	-6898.971615	3.45	4.05

Figure S2. Active orbitals used in the calculations CAS(11,12) on the model dimers.

