Supporting information

Synthesis of Cytotoxic Ferrocenyl Flavones via a Ferricenium-Mediated 1,6-Oxidative Cyclization

Jean-Philippe Monserrat, Guy G. Chabot, Louis Hamon, Lionel Quentin, Daniel Scherman, Gérard Jaouen and Elizabeth A. Hillard

General remarks

All aldolic condensation reactions were carried out under argon, using standard Schlenk techniques. Cyclization reactions were done in air. THF was distilled over sodium-benzophenone. All other chemical reagents and solvents were used without further purification. Preparative HPLC was performed using a Shimadzu LC-8A machine. Silica gel chromatography was done with Merck 60 (40-63 μ m) silica. ¹H and ¹³C NMR spectra were measured with a 300 or 400 MHz Bruker Advance spectrometer, and δ are given in ppm. LR-MS mass spectra were measured on a Thermoscientific ITQ1100 spectrometer using the direct exposure probe method by the mass spectrometry service at the Ecole Nationale Supérieure de Chimie de Paris.

General preparation of ferrocenyl chalcones

Ferrocenyl chalcones were prepared following the literature procedure.¹ Ferrocene carboxaldehyde (1 equiv, (50-200 mg)) and the appropriate 2-hydroxyacetophenone (1 equiv) were dissolved in absolute EtOH in a round bottom flask. After stirring the mixture 10 to 15 min at r.t., NaOH (3 equiv) was added, and the solution was stirred overnight. The mixture was poured into H₂O and HCl 12 M, extracted with CH₂Cl₂, and washed with H₂O. The organic phase was dried over MgSO₄, filtered, and the solvent removed by evaporation. The product was purified by silica gel chromatography, using a mixture of petroleum ether/CH₂Cl₂ 4:1 as an eluent, and again using HPLC in MeCN/H₂O (90:10). After HPLC purification, the acetonitrile was removed under reduced pressure and the aqueous phase extracted with CH₂Cl₂. The NMR spectra of all purified compounds showed residual CH₂Cl₂, even after being dried under vacuum for several hours.

(*E*)-1-(2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1a. Violet solid. Found: C 64.43, H 4.89. Calc. for $C_{19}H_{16}O_2Fe \cdot 0.35$ CH₂Cl₂: C 64.22, H 4.65. $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 7.90 (d, *J*=15.1 Hz, 1H, H_{vinyl}), 7.86 (d, *J*=7.7 Hz, 1H, H_{ar}), 7.48 (t, *J*= 7.8 Hz, 1H, H_{ar}), 7.25 (d, *J*=15.1 Hz, 1H, H_{vinyl}), 7.02 (d, *J*=7.8 Hz, 1H, H_{ar}), 6.93 (t, *J*=7.7 Hz, 1H, H_{ar}), 4.64 (s, 2H, C₅H₄), 4.55 (s, 2H, C₅H₄), 4.20 (s, 5H, C₅H₅). $\delta_{C}(75 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 192.7 (C_{ketone}), 162.6 (C_{ar}), 147.9 (C_{vinyl}), 135.9 (C_{ar}), 129.3 (C_{ar}), 120.0 (C_{vinyl}), 118.7 (C_{ar}), 118.6 (C_{ar}), 116.7 (C_{ar}), 78.9 (C₅H₄, C_{quad}), 71.8 (C₅H₄), 69.9 (C₅H₅), 69.3 (C₅H₄). MS (APCI) *m*/z 332.07 [M+H]⁺. This compound has been previously reported.¹

(*E*)-1-(5'-chloro-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1b. Violet solid. Found: C 61.75, H 4.02. Calc. for $C_{19}H_{15}O_2FeCl \cdot 0.06 CH_2Cl_2$: C 61.59, H 4.1. $\delta_{H}(300 \text{ MHz}; CDCl_3; Me_4Si)$ 7.94 (d, *J*= 15 Hz, 1H, H_{vinyl}), 7.80 (d, *J*=2.4 Hz, 1H, H_{ar}), 7.42(dd, ³*J*=9 Hz, ⁴*J*=2.4 Hz, 1H, H_{ar}), 7.14 (d, *J*=15 Hz, 1H, H_{vinyl}), 6.96(d, *J*=9 Hz 1H, H_{ar}), 4.66(s, 2H, C₅H₄), 4.51 (s, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅). $\delta_C(75 \text{ MHz}; CDCl_3; Me_4Si)$ 191.7 (C_{ketone}), 162.1 (C_{ar}), 149.4 (C_{vinyl}), 135.6 (C_{ar}), 128.5 (C_{ar}), 123.3 (C_{vinyl}), 120.7 (C_{ar}), 120.2 (C_{ar}), 115.9 (C_{ar}), 78.6 (C₅H₄, C_q), 72.2 (C₅H₄), 70.0 (C₅H₅), 69.5 (C₅H₄). MS (APCI) *m*/*z* 366.03 [M+H]⁺.

(*E*)-1-(5'-bromo-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1c. Violet solid. Found: C 55.04, H 3.73. Calc. for $C_{19}H_{15}O_2FeBr \cdot 0.05 CH_2Cl_2$: C 55.09, H 3.66. $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 7.94 (d, *J*=14.4 Hz, 1H, H_{vinyl}), 7.92 (m, 1H, H_{ar}), 7.55(d, *J*=8.1Hz, 1H, H_{ar}), 7.13 (d, *J*=14.5 Hz, 1H, H_{vinyl}), 6.92 (d, *J*=8.1 Hz 1H, H_{ar}), 4.66 (s, 2H, C₅H₄), 4.58 (s, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅). $\delta_C(75 \text{ MHz}; CDCl_3; \text{ Me}_4\text{Si})$ 191.6 (C_{ketone}), 162.5 (C_{ar}), 149.4 (C_{vinyl}), 138.4 (C_{ar}), 131.6 (C_{ar}), 121.3 (C_{vinyl}), 120.6 (C_{ar}), 115.9 (C_{ar}), 110.3 (C_{ar}), 78.6 (C₅H₄, C_q), 72.3 (C₅H₄), 70.1 (C₅H₅), 69.5 (C₅H₄). MS (APCI) *m*/*z* 410.05 [M+H]⁺.

 $\begin{array}{l} \textbf{(E)-1-(3',5'-dichloro-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1d. Violet solid. Found: C 55.72, H 3.49. Calc. for C_{19}H_{14}O_2FeCl_2 0.125 CH_2Cl_2: C 55.80, H 3.49. <math>\delta_{H}(300 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si}) 8.00 \text{ (d, } \textit{J}=15 \text{ Hz}, 1\text{ H}, \text{H}_{vinyl}), 7.74 \text{ (s, 1H, H}_{ar}), 7.57 \text{ (s, 1H, H}_{ar}), 7.01 \text{ (d, } \textit{J}=15 \text{ Hz}, 1\text{ H}, \text{H}_{vinyl}), 4.67 \text{ (s, 2H, C}_5H_4), 4.62 \text{ (s, 2H, C}_5H_4), 4.23 \text{ (s, 5H, C}_5H_5). \\ \delta_{C}(75 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si}) 190.2 \text{ (C}_{ketone}), 157.0 \text{ (C}_{ar}), 149.8 \text{ (C}_{vinyl}), 134.1 \text{ (C}_{ar}), 126.1 \text{ (C}_{ar}), 122.9 \text{ (C}_{ar}), 122.0, \text{ (C}_{ar}), 120.2 \text{ (C}_{ar}), 114.2 \text{ (C}_{vinyl}), 77.3 \text{ (C}_5H_4, C_q), 71.6 \text{ (C}_5H_4), 69.1 \text{ (C}_5H_5), 68.7 \text{ (C}_5H_4). \text{ MS} \text{ (APCI) } \textit{m/z} 400.08 \text{ [M+H]}^+. \end{array}$

(*E*)-1-(3',5'-dibromo-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1e. Violet solid. Found: C 45.24, H 2.70. Calc. for $C_{19}H_{14}O_2FeBr_2 \cdot 0.25$ CH₂Cl₂: C 45.23, H 2.86. $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 7.99 (d, *J*=14.7 Hz, 1H, H_{vinyl}), 7.91 (d, ⁴*J*=1.8 Hz, 1H, H_{ar}), 7.86 (d, ⁴*J*=1.8 Hz, 1H, H_{ar}), 7.10 (d, *J*=14.7 Hz, 1H, H_{vinyl}), 4.67 (s, 2H, C₅H₄), 4.62 (s, 2H, C₅H₄), 4.23 (s, 5H, C₅H₅). $\delta_C(75 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 191.0 (C_{ketone}), 159.3 (C_{ar}) 150.8 (C_{vinyl}), 140.7 (C_{ar}), 130.8 (C_{ar}), 121.7 (C_{ar}), 115.1 (C_{vinyl}), 113.3(C_{ar}), 110.1 (C_{ar}), 78.37 (C₅H₄, C_q) 72.6 (C₅H₄), 70.1 (C₅H₅), 69.7 (C₅H₄). MS (APCI) *m/z* 488.01 [M+H]⁺.

((*E*)-1-(3',5'-difluoro-2'-hydroxyphenyl)-3-ferrocenylprop-2-en-1-one 1f. Violet solid. Found: C 60.25, H 4.04. Calc. for C₁₉H₁₄O₂FeF₂·0.2 CH₂Cl₂: C 59.88, H 3.77. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.98 (d, *J*=15 Hz, 1H, H_{vinyl}), 7.34 (s, 1H, H_{ar}), 7.06 (m, 1H, H_{vinyl}, H_{ar}), 4.66 (s, 2H, C₅H₄), 4.61 (s, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 191.6 (C_{ketone}), 153.3 (dd, ¹*J*=238.6 Hz, ³*J*=9 Hz, C_{ar}), ~151 (C_{ar} overlap) 150.5 (C_{vinyl}), 148.8 (d, ²*J*=11.9 Hz, C_{ar}) 120.9 (C_{ar}), 115.7 (C_{vinyl}), 110.5 (dd, ²*J*=26 Hz, ²*J*=21 Hz, C_{ar}), 109.6 (d, ²*J*=23 Hz, C_{ar}), 78.4 (C₅H₄, C_q), 72.6 (C₅H₄), 70.2 (C₅H₅), 69.7 (C₅H₄). MS (APCI) *m*/z 368.07 [M+H]⁺.

General preparation of ferrocenyl flavones

Ferrocene chalcone (10 mg) was dissolved in THF (15 mL) in a 50 mL two-necked round bottom flask. NaH (3 equiv) was added and the solution went from deep violet to a light red. After stirring for 5 min at room temperature, AgOTf (2.5 equiv) was added, and the mixture was stirred for another 5 min, before being poured into a H₂O (100 mL) and HCl 12 M (15 mL). The mixture was extracted with CH₂Cl₂ (3x50 mL), and washed with water. The organic phase was dried over MgSO₄, filtered and evaporated. The product was purified using a silica gel column, using a mixture of petroleum ether/dichloromethane 1/1, and again by HPLC using CH₃CN/H₂O, and the 1H NMR spectra showed the presence of residual H₂O. Yields were calculated after purification on the silica gel column.

2-ferrocenyl-chromen-4-one 2a. Yield: 8.0 mg, 80%. Violet solid. Found: C 67.60, H 4.66. Calc. for $C_{19}H_{14}O_2Fe\cdot0.5$ H₂O: C 67.28, H 4.46. $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 7.80 (d, *J*=7.5 Hz, 1H, H_{ar}), 7.64 (t, *J*=7.2 Hz, 1H, H_{ar}), 7.29 (d, *J*=7.2 Hz 1H, H_{ar}), 7.19 (t, *J*=7.5 Hz 1H, H_{ar}), 6.89 (s, 1H, H_{vinyl}), 4.92 (s, 2H, C_5H_4), 4.60 (s, 2H, C_5H_4), 4.22 (s, 5H, C_5H_5). $\delta_C(75 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 182.9 (C_{ketone}), 165.4

(Car), 146.0 (Cvinyl), 136.1 (Car), 124.5 (Car), 123.1 (Cvinyl), 122.6 (Car), 116.4 (Car), 112.9 (Car), 75.1 (C₅H₄, C_q), 71.8 (C₅H₄), 71.5 (C₅H₄), 70.0 (C₅H₅). MS (APCI) m/z 331.07 [M+H]⁺.

6-chloro-2-ferrocenyl-chromen-4-one 2b. Yield: 7.8 mg, 78%. Violet solid. Found: C 61.65, H 3.67. Calc. for C₁₉H₁₃O₂FeCl·0.25 H₂O: C 61.66, H 3.69. $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 7.77 (d, *J*=2.1 Hz, 1H, H_{ar}), 7.57 (dd, ^{*4*}*J*=2.1 Hz, ³*J*=8.7 Hz, 1H, H_{ar}), 7.24 (m, 1H, H_{ar}), 6.92 (s, 1H, H_{vinyl}), 4.91 (s, 2H, C₅H₄), 4.63 (s, 2H, C₅H₄), 4.24 (s, 5H, C₅H₅). $\delta_{\rm C}$ (75 MHz; CDCl₃; Me₄Si) 181.4 (C_{ketone}), 163.5 (C_{ar}), 146.1 (C_{vinyl}), 135.8 (C_{ar}), 128.8 (C_{ar}), 124.0 (C_{vinyl}), 123.8 (C_{ar}), 117.9 (C_{ar}), 114.2 (C_{ar}), 74.7 (C₅H₄, C_q), 72.2 (C₅H₄), 71.6 (C₅H₄), 70.0 (C₅H₅). MS (APCI) *m/z* 364.02 [M+H]⁺.

6-bromo-2-ferrocenyl-chromen-4-one 2c. Yield: 6.4 mg, 64%. Violet solid. Found: C 55.77, H 3.65. Calc. for $C_{19}H_{13}O_2FeBr \cdot 0.165 H_2O$: C 55.39, H 3.26. $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 7.93 (d, *J*=2.1Hz, 1H, H_{ar}), 7.72 (dd, ^{*4*}*J*=2.1Hz, ³*J*=8.7 Hz, 1H, H_{ar}), 7.20 (d, *J*=8.7 Hz, 1H, H_{ar}), 6.94 (s, 1H, H_{vinyl}), 4.86 (m, 2H, C₅H₄), 4.60 (m, 2H, C₅H₄), 4.19 (s, 5H, C₅H₅). $\delta_C(75 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 181.2 (C_{ketone}), 163.9 (C_{ar}), 145.9 (C_{vinyl}), 138.5 (C_{ar}), 127.1 (C_{ar}), 124.4 (C_{vinyl}), 118.0 (C_{ar}), 115.9 (C_{ar}), 114.7 (C_{ar}), 74.7 (C₅H₄, C_q), 72.2 (C₅H₄), 71.7 (C₅H₄), 70.1 (C₅H₅). MS (APCI) *m/z* 408.08 [M+H]⁺.

6,8-dichloro-2-ferrocenyl-chromen-4-one 2d. Yield: 6.2 mg, 62%. Blue solid. Found: C 56.05, H 3.31. Calc. for $C_{19}H_{12}O_2FeCl_2\cdot0.5$ H₂O: C 55.93, H 3.21. $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 7.69 (d, *J*=2.1 Hz, 1H, H_{ar}), 7.64 (d, *J*=2.1 Hz, 1H, H_{ar}), 7.06 (s, 1H, H_{vinyl}), 4.93 (s, 2H, C₅H₄), 4.66 (s, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅). $\delta_C(75 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 179.3 (C_{ketone}), 158.2 (C_{ar}), 144.8 (C_{vinyl}), 134.0 (C_{ar}), 127.9 (C_{ar}), 124.1 (C_{ar}), 121.4 (C_{vinyl}), 118.9 (C_{ar}), 118.4 (C_{ar}), 73.3 (C₅H₄, C_q), 71.7 (C₅H₄), 71.0 (C₅H₄), 69.2 (C₅H₅). MS (APCI) *m/z* 398.00 [M+H]⁺.

6,8-dibromo-2-ferrocenyl-chromen-4-one 2e. Yield: 8.0 mg, 80%. Blue solid. Found: C 46.47, H 2.60. Calc. for $C_{19}H_{12}O_2FeBr_2\cdot0.25$ H₂O: C 46.34, H 2.56. $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 7.92 (d, *J*=1.5 Hz, 1H, H_{ar}), 7.86 (d, *J*=1.5 Hz, 1H, H_{ar}), 7.03 (s, 1H, H_{vinyl}), 4.93 (s, 2H, C₅H₄), 4.67 (s, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅). $\delta_C(75 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 179.3 (C_{ketone}), 159.9 (C_{ar}), 144.4 (C_{vinyl}), 139.2 (C_{ar}), 129.8 (C_{ar}), 125.0 (C_{vinyl}), 124.5 (C_{ar}), 119.0 (C_{ar}), 115.0 (C_{ar}), 73.3 (C₅H₄, C_q), 71.7 (C₅H₄), 71.0 (C₅H₄), 69.2 (C₅H₅). MS (APCI) *m/z* 485.99 [M+H]⁺.

6,8-difluoro-2-ferrocenyl-chromen-4-one 2f. Yield: 8.6 mg, 86%. Violet-blue solid. Found: C 61.04, H 3.22. Calc. for $C_{19}H_{12}O_2FeF_2\cdot0.5$ H₂O: C 60.83, H 3.49. $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 7.31-7.29 (m, 1H, H_{ar}), 7.22 -7.15 (m, 1H, H_{ar}), 7.02 (s, 1H, H_{vinyl}), 4.91 (s, 2H, C₅H₄), 4.65 (s, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅). $\delta_{C}(100 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 180.7 (C_{ketone}), 157.9 (dd, ¹*J*=246.5 Hz, ³*J*=7.3 Hz, C_{ar}), 148.8 (d, ²*J*=11.3 Hz, C_{ar}), 148.1 (dd, ¹*J*=254.7 Hz, ³*J*=11.2 Hz, C_{ar}), 145.9 (C_{vinyl}), 125.6 (d, ³*J*=7.7 Hz, C_{ar}), 119.8 (C_{vinyl}), 110.9 (dd, ²*J*=19.7 Hz, ²*J*=24.3 Hz, C_{ar}), 105.5 (dd, ²*J*=23.8 Hz, ⁴*J*=4.1 Hz, C_{ar}), 74.3 (C₅H₄, C_q), 72.6 (C₅H₄), 71.9 (C₅H₄), 70.2 (C₅H₅). MS (APCI) *m/z* 366.04 [M+H]⁺.

Theoretical calculations

A coarse drawing of the structure led to a geometry that was first improved using Hartree-Fock abinitio calculations at a STO3G level; the resulting structure was then optimized using a 321G basis (a more sophisticated, but time and memory consuming, 631G basis only led to minor improvements over 321G). No symmetry constraint was imposed during optimization, allowing the full (3N - 6) degrees of freedom. The energy minimum was obtained by minimizing the gradient norm using the default (BFGS) algorithm; for the neutral **1a** and derived anionic species we used the RHF method and the ROHF for the treatment of the radical species. This suite of programs in GAMESS² was run on RS/6000 System Regatta Power4 machines.

Biological evaluation.

Murine B16 melanoma cells were grown in Dulbecco's modified essential medium (DMEM) containing 2 mM L-glutamine, 10% fetal bovine serum, 100 U/mL penicillin and 100 μ g/mL streptomycin (37°C, 5% CO₂). Stock solutions of the compounds were prepared in DMSO and further diluted in DMEM at the indicated concentrations with a final DMSO concentration of not exceeding 1%. Exponentially growing cells were plated onto 96-well plates at a density of 5000 cells per well in 200 μ L DMEM, and 24 h later the compounds were added for another 48 h. Control cells were exposed to 1% DMSO. Viability was assessed using the MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium) test and absorbance was read at 562 nm in a microplate reader (BioKinetics Reader, EL340).³ Results are presented as the inhibitory concentrations for 50% of cells (IC₅₀) for a 48 h exposure time (mean ± S.D. of three determinations).

- 1 X. Wu, P. Wilairat, M. L. Go, *Bioorg. Med. Chem. Lett.* 2002, **12**, 2299.
- 2 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaya, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
- J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, J. B. Mitchell, *Cancer Res.* 1987, 47, 936.