A bis-salicylaldoximato-copper(II) receptor for selective sulfate uptake

Marco Wenzel,^a Quintin W. Knapp^a and Paul G. Plieger,*^a

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X First published on the web Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

Further experimental details:

Experimental section

Synthesis of L: N,N'-Dimethyl-N,N'-hexamethylenedi(3-hydroxyiminomethyl-2-hydroxy-5-tert-¹⁰ butylbenzylamine) (L) was prepared as reported previously.¹

Synthesis of complexes $[SO_4 \subset Cu_2L_2]Cl_2 \cdot 2.5H_2O$ and $[SO_4 \subset Cu_2L_2](NO_3)_2 \cdot H_2O \cdot 3EtOH \cdot MeCN$: A suspension of L (100 mg, 0.18 mmol) in 15 mL methanol was heated to 40°C and 4 equivalents of either NaCl or NaNO₃, dissolved in 4 mL water was added. CuSO₄ (29 mg, 0.18 mmol) dissolved in 3 mL water was added and an ¹⁵ immediate colour change to green was observed. The reaction mixture was cooled down to room temperature and stirred overnight. The volume of the reaction mixture was reduce *in vacuo*. The crude reaction product was filtered, washed with diethyl ether (2 x 5 mL) and dried.

Synthesis of $[SO_4 \subset Cu_2L_2](H_2PO_4)_2$: A suspension of L (105 mg, 0.19 mmol) in 15 mL methanol was heated to ²⁰ 40°C and K₂HPO₄ (66 mg, 0.38 mmol), followed by CuSO₄ (31 mg, 0.19 mmol), each dissolved in 3 mL water were added. After 3 drops of otho-phosphoric acid were added to the reaction mixture changed colour to dark green. The reaction mixture was refluxed (30 mins.), cooled to RT and stirred overnight. The dark green solution was reduced in volume resulting in the formation of a dark green precipitate. This was collected by filtration and washed with diethyl ether (2 x 5 mL). The crude complex was crystallised by vapour diffusion of ²⁵ diethyl ether into an ethanol/acetonitrile mixture (1:1) and dried.

Synthesis of $[SO_4 \subset Cu_2L_2](NO_3)_2 \cdot 2H_2O$: A suspension of L (0.28 mmol, 154 mg) in 15 mL methanol was heated to 40°C, 2 equivalents of K₂HPO₄ (0.56 mmol, 97 mg) and NaNO₃ (0.56 mmol, 47 mg) and one equivalent of CuSO₄ (0.28 mmol, 45 mg), each dissolved in 3 mL water, were added. The reaction mixture was stirred at ³⁰ 40°C (30 mins.), cooled to RT and stirred overnight. The solution was reduced in volume resulting in the formation of a bright green precipitate. This was collected by filtration and washed with diethyl ether (2 x 5 mL). The crude complex was crystallised by vapour diffusion of diethyl ether into an ethanol / acetonitrile mixture (1:1) and dried. Yield: 86%, High-Res. ESI-MS m/z 665.2922 [Cu₂L₂SO₄]²⁺, anal calc. for C₆₄H₁₀₀Cu₂N₁₀O₁₈S·2H₂O: C 51.50, H 7.02, N 9.38, S 2.15%, found: C 51.27, H 7.27, N 9.54, S 1.99%.

35

Synthesis of [NO₃⊂Cu₂L₂](NO₃)₃·2H₂O: A suspension of L (95 mg, 0.17 mmol) in 15 mL methanol was heated to 40°C and treated with Cu(NO₃)₂·3H₂O (42 mg, 0.17 mmol), dissolved in 3 mL water. The reaction mixture was cooled to RT and stirred overnight. The volume was reduced and the crude product was filtered, washed with diethyl ether (2 x 5 mL) and dried *in vacuo*. Yield 92%, MS(ESI) m/z 649 [Cu₂L₂NO₃-H]²⁺; anal calc. for ⁴⁰ C₆₄H₁₀₀Cu₂N₁₂O₂₀·2H₂O: C 50.55, H 6.89, N 11.05%, found: C 50.59, H 6.79, N 10.89%.

Liquid-Liquid Extraction Protocol

Bulong: The complex $Cu_2(L-2H)_2$ (0.05 M) in CHCl₃ (1 mL) was stirred intensely (24h) at RT with Na₂SO₄ (1.0 ⁴⁵ M) and NaCl (2.25 M) in H₂O (1 mL) under constant ionic strength and pH (HEPES/HCl pH 5.0).

100 times excess: $Cu_2(L-2H)_2$ (0.005 M) in CHCl₃ (1 mL) was stirred intensely (24h) at RT with the sodium salt of the desired anion (0.5 M) in H₂O (1 mL) combinations of Na₂SO₄+NaNO₃, Na₂SO₄+NaCl and Na₂SO₄+KH₂PO₄ –1:100 excess, respectively), buffered with HEPES/HCl to pH of 3.5

ARTICLE TYPE

The organic phases were then spun to separate phases. The CHCl₃ phase was then diluted with MeOH in a 1:1 ratio and transferred to the ESMS.

Crystal structure descriptions:

 $[SO_4 \subset Cu_2 L_2](NO_3)_2$: the $SO_4^{2^-}$ anion is disorder over two positions with an occupancy of 0.8 : 0.2. In $[SO_4 \subset Cu_2 L_2]Cl_2$ one of the two Cl⁻ anions are disordered over two positions with an occupancy of 0.9 : 0.1. Only the major species are considered in the following discussion.

- The receptor is formed by two Cu(II) centres, coordinated by two head-to-tail hydrogen-bonded salicylaldoxime units of two ligand molecules. Interligand hydrogen bonding between the oximic hydrogen atoms and phenolate oxygen atoms (O…O distances of 2.606(4) to 2.696(4) Å) support the well know trans coordination of Cu(II) by two salicylaldoxime units.²⁻⁶ The bis-salicylaldoximato units bind the Cu(II) centres in distorted square pyramidal Cu(II)-coordination spheres (τ⁷ = 0.30 for Cu1 and 0.32 for Cu2 in [SO₄⊂Cu₂L₂]Cl₂ and τ⁷ = 0.37 for Cu1 and 0.22 for Cu2 in [SO₄⊂Cu₂L₂](NO₃)₂, respectively) arising from Cu-O-SO₃ interactions toward the encapsulated SO₄²⁻ anion (Cu-O distances of 2.257(3) to 2.294(3) Å) (Table S1 and S3). The Cu-Cu distances are 6.6004(15) and 6.5368(18) Å in [SO₄⊂Cu₂L₂]Cl₂ and [SO₄⊂Cu₂L₂](NO₃)₂, respectively.
- In both structures the ligand L is in its zwitterionic form with phenol groups deprotonated and tertiary amines in ²⁰ the 'straps' protonated. Intramolecular H-bonds are formed between these subunits with N-H···O distances of 2.40 to 2.55 Å (N···O distances: 2.975(4) to 3.083(4) Å; N-H···O angles: 118 to 122 ° (see Table S2 and S4). The encapsulated $SO_4^{2^-}$ anion is bound by multiple H-bonds of the protonated tertiary amines (N-H···O distances: 1.88 to 2.47 Å; N···O distances: 2.707(5) to 3.229(5) Å, N-H···O angles: 141 to 162 °) and β-methylene substituents on the 'straps' (C-H···O distance 2.33 to 2.49 Å; C···O distance 3.100(5) to 3.422(5) Å; ²⁵ C-H···O angle 136 to 169°) (Fig. S1 and S2 and Table S2 and S4)

Fig. S1. Structure of [SO₄⊂Cu₂L₂]Cl₂·2MeOH showing selected intramolecular interactions (dotted lines) with ³⁰ atom labels. Major species only are shown (Cl3 deleted), non H-bonded hydrogen atoms have also been omitted for clarity.

Fig. S2. Structure of $[SO_4 \subset Cu_2L_2](NO_3)_2 \cdot H_2O \cdot 3EtOH \cdot MeCN$ showing selected intramolecular interactions (dotted lines) with atom labels. Major species only shown, non H-bonded hydrogen atoms have been omitted for clarity

From the above figures it can be seen that the spherical chloride (Fig. S1) and the trigonal planar nitrate anions (Fig. S2), are placed outside the $[SO_4 \subset Cu_2 L_2]^{2+}$ cationic complex. Both types of anions are involved in numerous H-bonds towards co-crystallised solvent molecules and connected to the complex cation by weak CH-O interactions (Fig. S1 and S2). A summary of the weak interactions in $[SO_4 \subset Cu_2 L_2]Cl_2 \cdot 2EtOH$ and 10 [SO₄ $\subset Cu_2 L_2](NO_3)_2 \cdot H_2O \cdot 3EtOH \cdot MeCN$ is listed in Table S2 and S4.

Additional information for [SO₄⊂Cu₂L₂]Cl₂·2EtOH

atoms	Bond lengths	atoms	Angles [°]	atoms	Angles [°]
Cu1-O2	2.294(3)	O2-Cu1-O11	98.69(12)	O11-Cu1-N212	91.27(13)
Cu1-O11	1.897(3)	O2-Cu1-O14	85.24(12)	011-Cu1-N242	87.94(13)
Cul-O14	1.899(3)	O2-Cu1-N212	83.44(12)	O14-Cu1-N212	89.02(13)
Cu1-N212	1.966(3)	O2-Cu1-N242	118.21(12)	O14-Cu1-N242	90.34(13)
Cu1-N242	1.969(3)	O11-Cu1-O14	176.07(12)	N212-Cu1-N242	158.21(13)
Cu2-O1	2.277(3)	O1-Cu2-O12	101.66(12)	O12-Cu2-N222	91.87(14)
Cu2-O12	1.910(3)	O1-Cu2-O13	81.92(11)	O12-Cu2-N232	86.90(13)
Cu2-O13	1.917(3)	O1-Cu2-N222	89.93(12)	O13-Cu2-N222	88.69(14)
Cu2-N222	1.979(3)	O1-Cu2-N232	112.50(12)	O13-Cu2-N232	91.21(13)
Cu2-N232	1.981(3)	O12-Cu2-O13	176.38(12)	N222-Cu2-N232	157.33(13)
15					

Table S1. Selected bond lengths and angles in $[SO_4 \subset Cu_2L_2]Cl_2 \cdot 2EtOH$

D-H	А	D-H [Å]	H-A [Å]	D-A [Å]	D-H-A[°]
O213-H213	014	0.82	2.01	2.650(4)	134
O223-H223	013	0.82	2.06	2.696(4)	134
О233-Н233	012	0.82	1.96	2.610(4)	135
O243-H243	011	0.82	1.96	2.606(4)	135
N612-H612	011	0.91	2.55	3.083(4)	118
N622-H622	012	0.91	2.50	3.031(4)	118
N632-H632	013	0.91	2.40	2.975(4)	121
N642-H642	O14	0.91	2.50	3.040(4)	119
N612-H612	04	0.91	1.88	2.707(5)	150
N622-H622	03	0.91	1.92	2.754(4)	151
N632-H632	01	0.91	2.02	2.898(4)	162
N642-H642	02	0.91	2.40	3.229(5)	152
N642-H642	O3	0.91	2.47	3.186(4)	136
C615-H61I	O4	0.97	2.33	3.100(5)	136
С625-Н62Н	O4	0.97	2.45	3.389(5)	163
С635-Н63Н	O2	0.97	2.46	3.422(5)	169
O100-H100	Cl1 ⁱ	0.82	2.36	3.113(4)	154
O200-H200	Cl2	0.82	2.53	3.145(5)	133
С631-Н63В	O100	0.97	2.37	3.303(6)	161
С422-Н42С	Cg1 ⁱⁱ	0.96	2.62	3.549 (6)	163
C444-H44G	Cg2 ⁱⁱⁱ	0.96	2.70	3.581(5)	153

Table S2. H-bond interactions in	$[SO_4 {\subset} Cu_2L_2]Cl_2{\cdot} 2EtOH$
----------------------------------	---

Symmetry codes: i = 1-x,-y,-z; ii = 1-x,-1/2+y,1/2-z; iii = 1-x,1/2+y,1/2-z

CH−π-stacking in [SO₄⊂Cu₂L₂]Cl₂·2EtOH:

Fig. S3. CH $-\pi$ -stacking in [SO₄ \subset Cu₂L₂]Cl₂·2EtOH, selected atom labels, Cl⁻ anions, EtOH and non CH $-\pi$ s interaction H-atoms removed for clarity. Viewed along the c-axis.

Additional information for $[SO_4 \subset Cu_2L_2](NO_3)_2 \cdot H_2O \cdot 3EtOH \cdot MeCN$

atoms	bond lengs [Å]	atoms	angles [°]	atoms	angles [°]
Cu1-O3	2.266(4)	O3-Cu1-O11	96.09(17)	O11-Cu1-N212	90.68(16)
Cu1-O11	1.898(3)	O3-Cu1-O13	85.91(17)	O11-Cu1-N232	87.67(16)
Cu1-O13	1.907(3)	O3-Cu1-N212	82.82(17)	O13-Cu1-N212	89.68(16)
Cu1-N212	1.979(4)	O3-Cu1-N232	121.61(18)	O13-Cu1-N232	91.18(16)
Cu1-N232	1.975(4)	O11-Cu1-O13	177.99(14)	N212-Cu1-N232	155.55(18)
Cu2-O1	2.257(3)	O1-Cu2-O12	103.64(13)	O12-Cu2-N222	91.83(15)
Cu2-O12	1.922(3)	O1-Cu2-O14	83.15(13)	O12-Cu2-N242	88.58(15)
Cu2-O14	1.919(3)	O1-Cu2-N222	92.32(15)	O14-Cu2-N222	87.66(15)
Cu2-N222	1.971(4)	O1-Cu2-N242	106.81(15)	O14-Cu2-N242	89.61(15)
Cu2-N242	1.985(4)	O12-Cu2-O14	173.20(14)	N222-Cu2-N242	160.21(18)

Table S3 . Selected	bond lengths and	angles in	$[SO_4 \subset Cu_2L_2]$	$_{2}$](NO ₃) ₂ ·H ₂ O·3EtOH·MeCN
----------------------------	------------------	-----------	--------------------------	--

ARTICLE TYPE

D-H	А	D-H [Å]	H-A [Å]	D-A [Å]	D-H-A[°]
O213-H213	013	0.82	2.07	2 695(5)	133
O213-H213	014	0.82	1.06	2.000(5)	136
O223-H233	014	0.82	2.01	2.012(5) 2.642(5)	130
O243-H243	012	0.82	2.01	2.042(5) 2.649(5)	134
0245-11245	012	0.82	2.00	2.049(3)	150
N612-H612	011	0.91	2.48	3.048(5)	121
N622-H622	012	0.91	2.45	3.015(5)	120
N632-H632	013	0.91	2.44	2.992(5)	119
N642-H642	O14	0.91	2.44	3.019(5)	122
	~~	0.01	1.07	0 - 15 (-)	1.40
N612-H612	02	0.91	1.96	2.745(7)	143
N622-H622	04	0.91	2.10	2.873(6)	142
N632-H632	04	0.91	2.30	3.058(6)	141
N642-H642	01	0.91	1.97	2.844(5)	160
С615-Н61Н	02	0.97	2.32	3.137(8)	141
C625-H62I	02	0.97	2.47	3.384(8)	156
С645-Н64Н	O3	0.97	2.46	3.394(6)	162
O100-H10A	020	0.82	1 90	2 704(8)	166
O200-H20A	021	0.82	2.00	2.819(11)	177
O300-H30A	024	0.82	1.92	2,735(8)	179
0000 110011	021	0.02	1.72	2.755(0)	1,7
C611-H61B	O23	0.97	2.44	3.377(7)	164
C624-H62F	O24 ¹	0.97	2.49	3.341(7)	145
C644-H64F	O20 ¹¹	0.97	2.48	3.439(7)	172
C101-H10C	O23 ⁱⁱⁱ	0.96	2.45	3.347(12)	156
C634-H63F	O1W ⁱⁱⁱ	0.97	2.45	3.310(8)	148
O100	O1W			2.721(11)	
O200	O1W ^{iv}			2.799(9)	

Table	S4. H-bond	interactions	in	[SO	Cu	L	$1(NO_{2})$	h_{1}	·3EtOH·	MeCN
1 ant	5 - . 11-00110	meractions	111	1004	$u \subset u_2$	212	11103	$J_2 I I_2 O$	JLIOII	IVICCI V

Symmetry codes: i = 1-x,1-y,-z; ii = -x,1-y,1-z; iii = 1+x,y,z; iv = -1+x,y,z.

Additional information for [SO₄⊂Cu₂L₂](HPO₄)₂

The Cu(II) coordination sphere, Cu…N, Cu…O bond lengths and angles and other key parameters such as the Cu…Cu (6.5599(13) Å) and Cu…O distances to the encapsulated oxo-anion (Cu1…O1 2.260(4) Å and Cu2…O2 10 2.263(4) Å) are in agreement to the observed values in [SO₄ \subset Cu₂L₂]Cl₂·2EtOH and [SO₄ \subset Cu₂L₂]Cl₂·2EtOH and

 $[SO_4 \subset Cu_2L_2](NO_3)_2 \cdot H_2O \cdot 3EtOH \cdot MeCN.$

5

ELECTRONIC SUPPLEMENTRY INFORMATION

Fig. S4. Structure of $[SO_4 \subset Cu_2L_2](H_2PO_4)_2$ showing selected intramolecular interactions (dotted lines) with atom labels. Non H-bonded hydrogen atoms have been omitted for clarity.

Additional information for [NO₃⊂Cu₂L₂](NO₃)₃·2H₂O

Fig. S5. Structure of $[NO_3 \subset Cu_2L_2](NO_3)_3 \cdot 2H_2O$ showing intramolecular interactions (dotted lines), selected ¹⁰ atom lable, major species only, non H-bonded H atoms and solvent molecules opmitted for clarity of structure.

In $[NO_3 \subset Cu_2 L_2](NO_3)_3 \cdot 2H_2O$ one nitrate anion (N1) is encapsulated into the metallo-macrocycle formed by two Cu(II) centres, coordinated by two head-to-tail hydrogen-bonded salicylaldoxime units of two ligand molecules. Interligand hydrogen bonding between the oximic hydrogen atoms and phenolate oxygen atoms (O···O distances of 2.598(5) to 2.976(5) Å) support the well know trans coordination of Cu(II) by two salicylaldoxime units.²⁻⁶ The bis-salicylaldoximato units bind the Cu(II) centres in distorted square pyramidal Cu(II)-coordination spheres ($\tau^7 = 0.06$ for Cu1 and 0 for Cu2) arising from Cu-O-NO₂ interactions toward two nitrate anions, namely N2 and N3, which are placed outside the metallo-macrocycle (Cu-O-NO₂ distances of 2.556(4) and Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010

2.664(6) Å) (Table S5). The Cu-Cu distance is 6.6069(16) Å. The fourth nitrate anion and the aliphatic strap of one ligand is disorder over 2 positions with occupancy of 0.6 : 0.4. Only the major species is considered. Various intramolculare H-bonds support the formation of the 2:2 metallo-macrocycle and bound to the

encapsulated nitrate anion. A summary of the H-bonding in $[NO_3 \subset Cu_2L_2](NO_3)_3$ is given in Table S6 and Fig. $_5$ S5.

Table S5 Selected	bond lengths ar	nd angles in [NO_{2} $Cu_{2}L_{2}$	$(NO_2)_2 \cdot 2H_2O$
Table 55. Scielle	oonu iengins ai	iu angles in j	$1003 C u_2 L_2$	$(1003)_3 211_20$

atoms	bond lengths	atoms	angles [°]	atoms	angles [°]	
	[Å]					
Cu1-O5 ⁱ	2.556(4)	O5-Cu1-O11	110.08(15)	O11-Cu1-N212	90.42(17)	
Cu1-O11	1.901(4)	O5-Cu1-O14	84.81(15)	O11-Cu1-N242	87.20(16)	
Cul-Ol4	1.901(4)	O5-Cu1-N212	86.52(15)	O14-Cu1-N212	94.54(17)	
Cu1-N212	1.972(4)	O5-Cu1-N242	83.33(15)	O14-Cu1-N242	90.78(16)	
Cu1-N242	1.962(4)	O11-Cu1-O14	164.60(16)	N212-Cu1-N242	168.07(16)	
Cu2-O8	2.664(6)	O8-Cu2-O12	80.63(18)	O12-Cu2-N222	90.78(19)	
Cu2-O12	1.909(4)	O8-Cu2-O13	111.90(18)	O12-Cu2-N232	93.09(17)	
Cu2-O13	1.902(4)	O8-Cu2-N222	80.95(17)	O13-Cu2-N222	88.07(19)	
Cu2-N222	1.956(5)	O8-Cu2-N232	87.09(17)	O13-Cu2-N232	90.96(18)	
Cu2-N232	1.955(4)	O12-Cu2-O13	167.04(17)	N222-Cu2-N232	166.66(17)	
Symmetry codes: $i = 1-x, 1/2+y, 1/2-z$.						

10

Table S6. H-bond interactions in [NO ₃ ⊂	Cu_2L_2](NO ₃) ₃ ·2H ₂ O
--	---

D-H	А	D-H [Å]	H-A [Å]	D-A [Å]	D-H-A[°]
O213-H213	O14	0.82	2.39	2.976(5)	129
O223-H223	013	0.82	2.00	2.635(5)	134
O233-H233	012	0.82	2.28	2.885(5)	130
O243-H243	O11	0.82	1.96	2.598(5)	134
O213-H213	O6 ⁱ	0.82	2.29	2.684(6)	110
O233-H233	07	0.82	2.27	2.641(6)	108
N612-H612	011	0.91	2.42	3.005(5)	123
N622-H622	012	0.91	1.81	2.605(7)	144
N632-H632	013	0.91	2.55	3.091(7)	119
N642-H642	O14	0.91	1.92	2.669(7)	138
N612-H612	02	0.91	2.21	2.990(11)	143
N632-H632	01	0.91	2.35	3.195(8)	154
N632-H632	02	0.91	2.50	3.226(11)	137
С615-Н61Н	03	0.97	2.44	3.39(1)	165
С635-Н63Н	01	0.97	2.42	3.27(3)	147
C645-H64I	O22	0.97	2.33	3.27(3)	164

Symmetry codes: i = 1-x, 1/2+y, 1/2-z.

Additional information for the UV-Vis titrations

The Jobs-plot for the acids H_3PO_4 , H_2SO_4 , HNO_3 , HI and HBr (Fig. S6) indicate the formation of a 1:1 anion to the $[Cu_2L_2]^{4+}$ host assembly, most likely an anion encapsulated species. In the case of HCl (Fig. S7) more complex species are formed, and supports evindence to the presence of another binding mode, where one ligand is displaced by chloride in related salicylaldoximato Cu(II)-complex. (R. S. Forgan, P. A. Tasker and P. G. Plieger, Unpublished Work, Massey University, Palmerston North, New Zealand, 2009.) In the ESMS obtained from the solutions used in the spectrophotometric titrations with HCl, no high m/z peak was detected with masses indicating that the metallomacrocyclic unit remained intact. In contrast, solutions containing the other anions all contained peaks corresponding to the metallomacrocycle containing an encapsulated anion, $[X^n - Cu_2L_2]^{(4-n)+}$.

Fig. S6: Jobs plot of $[Cu_2L_2]^{4+}$ and H_3PO_4 , H_2SO_4 , HNO₃, HI and HBr in isopropanol / 1,2-dichloroethane, observed wave lengths 355 nm.

Fig. S7: Jobs plot of $[Cu_2L_2]^{4+}$ and HCl in isopropanol / 1,2-dichloroethane, observed wave lengths 355 nm.

High Resolution Mass Spectrum for $[SO_4 \subset Cu_2L_2](HPO_4)_2$

References:

- Marco Wenzel, Geoffrey B. Jameson, Lauren A. Ferguson, Quintin W. Knapp, Ross S. Forgan, Fraser J. White, Simon Parsons, P. A. Tasker and P.
 G. Plieger, *Chem. Commun.*, 2009.
- 2. R. S. Forgan, J. E. Davidson, S. G. Galbraith, D. K. Henderson, S. Parsons, P. A. Tasker and F. J. White, Chem. Commun., 2008, 4049-4051.
- 3. P. A. Tasker, C. C. Tong and A. N. Westra, Coord. Chem. Rev., 2007, 251, 1868-1877.
- 4. P. A. Tasker, P. G. Plieger and L. C. West, Compr. Coord. Chem. II, 2004, 9, 759-808.
- 5. P. U. Naik, G. J. McManus, M. J. Zaworotko and R. D. Singer, Dalton Trans., 2008, 4834-4836.
- 10 6. R. S. Forgan, J. E. Davidson, F. P. A. Fabbiani, S. G. Galbraith, D. K. Henderson, S. A. Moggach, S. Parsons, P. A. Tasker and F. J. White, *Dalton Trans.*, **39**, 1763-1770.
- 7. A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349-1356.