¹³C NMR as a General Tool for the Assignment of Absolute Configuration

Iria Louzao, José Manuel Seco, Emilio Quiñoá and Ricardo Riguera*

^aDepartment of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain

Electronic Supplementary Information

Table of contents

Experimental Section	3
General Derivatization Procedure	3
Synthesis of (<i>R</i>)-phenylethanol- <i>d</i> ₈	3
Computational Methods	3
Gaussian03, Revision E.01	4
Figure 1S. Optimized structures of the main conformers of corynanthine a) (R)- and MPA [DFT/B3LYP/6-31+G(d)].	d b) (<i>S</i>) 4
Table 1S. Absolute shieldings (σ), anisotropies (A), shielding tensor compo- (σ_{xz}, σ_{zz}), ^a calculated and experimental $\Delta \delta^{RS}$ for the lowest energy conformed MPA esters of corynanthine (22b).	nents rs <i>sp</i> of 5
Figure 2S. ¹³ C $\Delta \delta^{RS}$ data for monofunctional chiral substrates and sign distributions according to the configuration.	6
Figure 3S. ¹³ C $\Delta \delta^{RS}$ data for bifunctional chiral substrates and sign distributions according to the configuration	7
NMR spectroscopy	8
Spectroscopic data of compounds	
(<i>R</i>)-1-(pentadeuterophenyl)ethanol-2,2,2- $d_3(1)$	8

(<i>R</i>)- 1-(pentadeuterophenyl)ethanol-2,2,2-d ₃ (<i>R</i>)-MPA ester [(<i>R</i>)-MPA-1]	8
(<i>R</i>)-1-(pentadeuterophenyl)ethanol-2,2,2-d ₃ (<i>S</i>)-MPA ester [(<i>S</i>)-MPA-1]	8
(<i>R</i>)-1-(pentadeuterophenyl)ethanol-2,2,2-d ₃ (<i>R</i>)-9-AMA ester [(<i>R</i>)-9-AMA-1]	8
(<i>R</i>)-1-(pentadeuterophenyl)ethanol-2,2,2-d ₃ (<i>S</i>)-9-AMA ester [(<i>S</i>)-9-AMA-1]	8
Corynanthine (R)-MPA ester [(R)-22b]	8
Corynanthine (S)-MPA ester [(S)-22b]	9
Corynanthine (R)-2-NMA ester [(R)-2-NMA-22]	9
Corynanthine (S)-2-NMA ester [(S)-2-NMA-22]	9
Corynanthine (R)-1-NMA ester [(R)-1-NMA-22]	9
Corynanthine (S)-1-NMA ester [(S)-1-NMA-22]	10
Corynanthine (R)-9-AMA ester [(R)-9-AMA-22]	10
Corynanthine (S)-9-AMA ester [(S)-9-AMA-22]	10
(<i>R</i>)-2-(furan-3-yl)-2-hydroxyacetonitrile (<i>R</i>)-9-AMA ester [(<i>R</i>)-9-AMA-10]	11
(<i>R</i>)-2-(furan-3-yl)-2-hydroxyacetonitrile (<i>S</i>)-9-AMA ester [(<i>S</i>)-9-AMA-10]	11
(R)-mandelonitrile (R)-9-AMA ester [(R)-9-AMA-29]	11
(R)-mandelonitrile (S)-9-AMA ester [(S)-9-AMA-29]	11
(S)-2-hydroxy-2-((2S,3R)-3-methoxy-1-(4-methoxyphenyl)-4-oxoazetidin-2-yl)acetoni	itrile
(<i>R</i>)-9-AMA ester [<i>(R)</i> -9-AMA-30]	11
(S)-2-hydroxy-2-((2S,3R)-3-methoxy-1-(4-methoxyphenyl)-4-oxoazetidin-2-yl)aceton	nitrile
(S)-9-AMA ester [(S)-9-AMA-30]	12
¹ H and ¹³ C NMR spectra	13

References

Experimental Section

General Derivatization Procedure

The CDA derivatives were prepared by treatment of the compound (1.00 equiv) with the corresponding (R)- and (S)-CDA (1.25 equiv) in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC, 1.25 equiv) and cat DMAP (if necessary, 20 mol%) in dry CH₂Cl₂ and under a nitrogen atm. The reaction mixture was stirred overnight. Next, the organic layer was sequentially washed with water, HCl (1M), water, NaHCO₃ (sat) and water. Then, the layer was dried (anhyd NaSO₄) and concentrated under reduced pressure to provide the corresponding derivative. If needed, further purification was achieved by means of flash column chromatography.

Synthesis of (*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-d₃

(*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-d₃ was prepared by asymmetric reduction of acetophenone-d₈ following literature procedures.¹

Trimethylsilyl chloride (130 mg, 1.2 mmol) was added to a suspension of NaBH₄ (45 mg, 1.2 mmol) in dry THF (5 mL). After the mixture was heated at 70°C for 1 h and allowed to cool to room temperature, a solution of (*S*)- α , α -diphenylpyrrolidinemethanol (25 mg, 0.1 mmol) in THF (2 mL) was added. When there was no gas emitted, a solution of acetophenone-*d*₈ (120 mg, 1.0 mmol) in THF (2 mL) was added slowly with a syringe controlled by a syringe pump to the system at a rate of 0.6 mL/h. After the addition was complete, the mixture was hydrolyzed overnight with 2N HCl (5 mL) and extracted with ether (3×10 mL). The combined organic layers were washed with brine, and dried with sodium sulfate. Once the solvent was removed under reduced pressure, the crude product was esterified without further purification.

Computational Methods

Main conformations of corynanthine MPA esters (sp/ap) were generated by rotation around C α -C(O) bond (MPA moiety). The geometries and energies of the most relevant conformations of the MPA esters (sp1/ap1, Figure 1S) were optimized at the B3LYP/6-31+G(d), following by DFT-GIAO/B3LYP (PCM) NMR calculations using the same basis set and CHCl₃ parameters. A second conformation around C(2)-CO was obtained for MPA esters of (4a*S*,5*S*,6*S*,8*aR*)-methyl 6-hydroxydecahydroisoquinoline-5carboxylate (*sp2* conformation), taken as simplified model compound, following the steps previously described (Figure 1S). Alternatively, the methyl ester was replaced by a methyl group in the minimized structures and DFT-GIAO/B3LYP (PCM)/ 6-31+G(d) NMR calculations were carried out in order to study the influence on C(2) chemical shifts from ester group.

Relative populations were estimated on the basis of calculated and experimental ${}^{13}C$ chemical shifts [except for C(2)] for those nuclei closer to the chiral center.

Gaussian03, Revision E.01

Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Figure 1S. Optimized structures of the main conformers of corynanthine (a) (R)- and (b) (S)-MPA [DFT/B3LYP/6-31+G(d)].

Table 1S. Absolute shieldings (σ), anisotropies (A), shielding tensor components² (σ_{xz} , σ_{zz}),^a calculated and experimental $\Delta \delta^{RS}$ for the lowest energy conformers *sp* of MPA esters of corynanthine (**22b**).

		C(6)	C(5)	C(2)	C(3)	C(7)	C(8)	CO	OMe
<i>(R)</i> -MPA	σ	165.11	164.37	140.24	150.21	153.50	130.57	18.57	138.78
	A	18.35	24.17	24.36	11.76	22.32	24.55	99.38	68.14
	σ _{zz}	153.17	147.84	125.61	143.65	145.46	139.87	33.84	118.84
	σ_{xz}	6.03	3.68	2.43	-5.11	-6.79	5.17	10.09	6.68
(S)-MPA	σ	163.78	164.07	138.67	150.87	153.73	131.05	19.39	139.12
	A	20.22	24.14	22.17	11.03	23.17	25.20	99.38	67.42
	σ _{zz}	154.88	147.19	124.98	144.54	145.44	138.84	38.71	127.03
	σ_{xz}	9.43	8.52	4.19	-6.46	-6.79	4.66	10.09	2.47
∆ð ^{RS} calcd		-1.33	-0.30	-1.57	+0.66	+0.23	+0.49	+0.82	+0.34
Δδ ^{RS} exp		-0.17	-0.34	+0.74	+0.44	+0.19	+0.99	+0.10	+0.12

^a DFT-GIAO/B3LYP/6-31+G(d) using CHCl₃ parameters.

Figure 2S. ¹³C $\Delta\delta^{RS}$ data for monofunctional chiral substrates and sign distributions according to the configuration.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure 2S. ¹³C $\Delta\delta^{RS}$ data for monofunctional chiral substrates and sign distributions according to the configuration (cont.).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure 3S. ¹³C $\Delta \delta^{RS}$ data for bifunctional chiral substrates and sign distributions according to the configuration.

NMR Spectroscopy

(*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-*d*₃(1)

 $[\alpha]$ = +10.1 (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.26 (bs, 1H), 4.87 (s, 1H).; ¹³C NMR (CDCl₃, 101 MHz) δ (ppm): 24.2 (quint, *J* = 19.1 Hz, 1C), 70.0, 124.9 (t, *J* = 24.0 Hz, 2C), 126.8 (t, *J* = 24.4 Hz, 1C), 127.8 (t, *J* = 24.4 Hz, 2C), 145.6 ; HRMS (ESI) calculated for C₈H₃D₈O [M+1]: 131.1307, found: 131.1301.

(*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-*d*₃ (*R*)-MPA ester [(*R*)-MPA-1]

[α]= -9.4 (c = 1.6, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 3.40 (s, 3H), 4.80 (s, 1H), 5.91 (s, 1H), 7.30-7.34 (m, 3H), 7.36-7.40 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 57.3, 72.8, 82.7, 127.3, 128.5, 128.6, 136.1, 140.8, 169.8; HRMS (ESI) calculated for C₁₇H₁₀D₈NaO₃ [M+Na]: 301.1650, found: 301.1653.

(*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-*d*₃ (*S*)-MPA ester [(*S*)-MPA-1]

[α]= +57.0 (c = 1.2, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 3.39 (s, 3H), 4.78 (s, 1H), 5.92 (s, 1H), 7.31-7.39 (m, 3H), 7.44-7.47 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 57.3, 72.9, 82.6, 127.1, 128.5, 128.6, 136.2, 140.7, 169.9; HRMS (ESI) calculated for C₁₇H₁₀D₈NaO₃ [M+Na]: 301.1650, found: 301.1652.

(*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-*d*₃ (*R*)-9-AMA ester [(*R*)-9-AMA-1]

[α]= -22.1 (c = 1.1, CH₂Cl₂; ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 3.44 (s, 3H), 5.87 (s, 1H), 6.33 (s, 1H), 7.41-7.46 (m, 4H), 7.98-8.02 (m, 2H), 8.46-8.53 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 57.5, 72.9, 77.3, 124.4, 124.9, 126.4, 127.2, 129.0, 129.1, 130.6, 131.4, 140.5, 170.5; HRMS (ESI) calculated for C₂₅H₁₄D₈NaO₃ [M+Na]: 401.1963, found: 401.1954.

(*R*)-1-(pentadeuterophenyl)ethanol-2,2,2-*d*₃ (*S*)-9-AMA ester [(*S*)-9-AMA-1]

[α]= +68.3 (c = 1.4, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 3.39 (s, 3H), 5.92 (s, 1H), 6.26 (s, 1H), 7.45-7.54 (m, 4H), 8.00-8.04 (m, 2H), 8.48 (s, 1H), 8.54-8.58 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 57.5, 73.1, 77.4, 124.5, 125.0, 126.4, 127.5, 129.1, 129.2, 130.5, 131.5, 140.8, 170.6; HRMS (ESI) calculated for C₂₅H₁₄D₈NaO₃ [M+Na]: 401.1963, found: 401.1960.

Corynanthine (*R*)-MPA ester [(*R*)-22b]

[α]= -56.7 (c = 1.9, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 0.78-0.89 (m, 1H), 1.28-1.36 (m, 1H), 1.52 (dd, J = 23.8, 12.2 Hz, 1H), 1.61-1.71 (m, 2H), 1.88-2.01 (m, 3H), 2.07 (ddt, J = 14.4, 4.5, 2.8 Hz, 1H), 2.60 (dt, J = 10.9, 4.4 Hz, 1H), 2.72 (dd, J = 15.1, 4.3 Hz, 1H), 2.78-2.82 (m, 1H), 2.90-3.09 (m, 3H), 3.27 (da, J = 10.6 Hz, 1H), 3.45 (s, 3H), 3.58 (s, 3H), 4.81 (s, 1H), 5.22 (q, J = 2.4 Hz, 1H), 7.06-7.16 (m, 2H), 7.30-7.33 (m, 1H), 7.35-7.48 (m, 6H), 7.77 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 21.6, 24.0, 25.5, 33.8, 34.5, 37.8, 47.8, 51.6, 52.8, 57.4, 60.3, 62.0, 70.7, 82.6, 108.2, 110.7,

118.2, 119.5, 121.5, 127.1, 127.3, 128.2, 128.7, 128.8, 129.0, 134.3, 136.0, 136.4, 169.5, 171.1; HRMS (ESI) calculated for C₃₀H₃₅N₂O₅ [M+1]: 503.2540, found: 503.2522.

Corynanthine (S)-MPA ester [(S)-22b]

[α]= -32.5 (c = 1.3, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 1.02-1.21 (m, 2H), 1.38 (dd, J = 23.8, 12.3 Hz, 1H), 1.43-1.50 (m, 1H), 1.58 (td, J = 12.5, 2.9 Hz, 1H), 1.75-1.82 (m, 1H), 1.85-1.94 (m, 2H), 2.20 (tdd, J = 14.4, 4.6, 2.8 Hz, 1H), 2.52-2.58 (m, 2H), 2.68-2.73 (m, 1H), 2.89-3.06 (m, 4H), 3.44 (s, 3H), 3.54 (s, 3H), 4.81 (s, 1H), 5.20 (q, J = 2.6 Hz, 1H), 7.06-7.15 (m, 2H), 7.28-7.31 (m, 1H), 7.32-7.36 (m, 1H), 7.40-7.50 (m, 5H), 7.73 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 21.5, 24.3, 25.6, 33.6, 34.5, 37.3, 47.1, 51.5, 52.8, 57.3, 60.0, 62.0, 70.5, 82.3, 108.0, 110.7, 118.1, 119.4, 121.4, 127.3, 128.7, 128.8, 134.3, 135.9, 136.7, 169.4, 171.0; HRMS (ESI) calculated for C₃₀H₃₅N₂O₅ [M+1]: 503.2540, found: 503.2522.

Corynanthine (R)-2-NMA ester [(R)-2-NMA-22]

[α]= -41.9 (c = 0.6, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 0.79 (dq, J = 13.3, 3.9 Hz, 1H), 1.22-1.29 (m, 1H), 1.40-1.54 (m, 2H), 1.62-1.78 (m, 3H), 1.81-1.93 (m, 1H), 1.99-2.10 (m, 1H), 2.47-2.55 (m, 1H), 2.66-2.74 (m, 2H), 2.80 (dd, J = 11.1, 3.8 Hz, 1H), 2.90-3.06 (m, 3H), 3.51 (s, 3H), 3.56 (s, 3H), 5.00 (s, 1H), 5.21 (q, J = 2.4 Hz, 1H), 7.08 (dt, J = 7.5, 7.2, 1.1 Hz, 1H), 7.11-7.16 (m, 1H), 7.44-7.52 (m, 3H), 7.59 (dd, J = 8.5, 1.7 Hz, 1H), 7.82-7.89 (m, 3H), 7.96 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 21.5, 24.0, 25.4, 33.6, 34.3, 37.6, 47.7, 51.6, 52.6, 57.5, 60.0, 61.7, 70.9, 82.9, 108.0, 110.7, 118.1, 119.4, 121.4, 124.2, 126.5, 126.5, 127.3, 127.8, 128.1, 128.6, 133.2, 133.4, 133.9, 134.2, 135.9, 169.5, 171.0; HRMS (ESI) calculated for C₃₄H₃₇N₂O₅ [M+1]: 553.2697, found: 553.2693.

Corynanthine (S)-2-NMA ester [(S)-2-NMA-22]

[α]= +13.4 (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): 0.57 (tt, J = 12.1, 4.1 Hz, 1H), 0.98 (td, J = 12.4, 2.9 Hz, 1H), 1.06-1.18 (m, 2H), 1.42 (td, J = 10.3, 5.4 Hz, 1H), 1.61 (t, J = 10.8 Hz, 1H), 1.68-1.81 (m, 2H), 2.14-2.23 (m, 2H), 2.29-2.36 (m, 2H), 2.60-2.66 (m, 1H), 2.77 (dd, J = 11.0, 3.8 Hz, 1H), 2.82-2.93 (m, 2H), 3.50 (s, 6H), 4.99 (s, 1H), 5.20 (q, J = 2.5 Hz, 1H), 7.05-7.09 (m, 1H), 7.12-7.16 (m, 1H), 7.22 (sa, 1H), 7.28-7.31 (m, 1H), 7.38 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.49 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.62 (dd, J = 8.4, 1.7 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.98 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 21.5, 24.4, 25.5, 33.4, 34.2, 37.1, 46.9, 51.5, 52.5, 57.4, 59.4, 61.7, 70.5, 82.3, 107.8, 110.5, 118.1, 119.3, 121.3, 124.9, 126.6, 126.7, 126.9, 127.3, 127.8, 128.2, 128.7, 133.3, 133.5, 134.1, 134.4, 135.8, 169.4, 170.9; HRMS (ESI) calculated for C₃₄H₃₇N₂O₅ [M+1]: 553.2697, found: 553.2693.

Corynanthine (R)-1-NMA ester [(R)-1-NMA-22]

 $[\alpha]$ = -96.0 (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 0.06 (ddd, *J* = 17.2, 13.6, 4.0 Hz, 1H), 0.73-0.97 (m, 2H), 1.13-1.22 (m, 1H), 1.35-1.50 (m, 3H), 1.64-1.79

(m, 2H), 1.85-1.94 (m, 1H), 2.46-2.53 (m, 1H), 2.63-2.70 (m, 3H), 2.89-3.03 (m, 3H), 3.52 (s, 3H), 3.54 (s, 3H), 5.16-5.19 (m, 1H), 5.49 (s, 1H), 7.06-7.17 (m, 2H), 7.31 (d, J = 8.0 Hz, 1H), 7.45-7.59 (m, 4H), 7.70 (d, J = 7.1 Hz, 1H), 7.74 (sa, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 8.30 (d, J = 8.5 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 21.6, 23.3, 25.1, 33.6, 34.2, 37.3, 47.7, 51.6, 52.8, 57.6, 60.0, 61.6, 71.0, 80.5, 108.1, 110.7, 118.1, 119.4, 121.4, 123.9, 125.4, 125.9, 125.9, 126.5, 127.3, 128.9, 129.3, 131.0, 132.5, 134.0, 134.4, 135.9, 169.4, 171.0; HRMS (ESI) calculated for C₃₄H₃₇N₂O₅ [M+1]: 553.2697, found: 553.2695.

Corynanthine (S)-1-NMA ester [(S)-1-NMA-22]

[α]= -31.2 (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): -0.12- -0.02 (m, 1H), 0.71-0.86 (m, 2H), 1.06 (q, J = 12.1 Hz, 1H), 1.22-1.35 (m, 2H), 1.54-1.76 (m, 2H), 2.04-2.15 (m, 1H), 2.28 (s, 1H), 2.36-2.43 (m, 2H), 2.63-2.70 (m, 2H), 2.85-2.96 (m, 2H), 3.47 (s, 3H), 3.48 (s, 3H), 5.15-5.19 (m, 1H), 5.38 (s, 1H), 7.05-7.18 (m, 2H), 7.33 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.48-7.70 (m, 6H), 7.81-7.84 (m, 2H), 8.40 (d, J = 8.5 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 21.4, 24.0, 25.4, 32.9, 33.9, 36.6, 46.5, 51.4, 52.7, 57.4, 59.5, 61.4, 70.4, 81.2, 107.7, 110.7, 118.0, 119.3, 121.3, 124.4, 125.4, 125.9, 126.8, 127.2, 127.5, 128.9, 129.4, 131.0, 132.8, 134.0, 134.3, 135.8, 169.7, 170.8; HRMS (ESI) calculated for C₃₄H₃₇N₂O₅ [M+1]: 553.2697, found: 553.2694.

Corynanthine (R)-9-AMA ester [(R)-9-AMA-22]

[α]= -63.1 (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): -0.78 (dq, J = 13.4, 4.1 Hz, 1H), 0.51-0.59 (m, 1H), 0.83-1.01 (m, 2H), 1.17-1.39 (m, 2H), 1.48-1.59 (m, 1H), 1.64-1.63 (m, 2H), 2.38-2.45 (m, 2H), 2.60-2.70 (m, 2H), 2.75 (da, J = 10.8 Hz, 1H), 2.86-2.94 (m, 2H), 3.49 (s, 3H), 3.50 (s, 3H), 5.15 (q, J = 2.2 Hz, 1H), 6.37 (s, 1H), 7.06-7.15 (m, 2H), 7.28-7.30 (m, 1H), 7.43-7.49 (m, 3H), 7.55 (ddd, J = 9.0, 6.5, 1.4 Hz, 3H), 7.73 (s, 1H), 8.01-8.04 (m, 1H), 8.50 (s, 1H), 8.65 (d, J = 8.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm):21.5, 22.6, 24.8, 33.5, 33.8, 37.2, 47.8, 51.5, 52.7, 57.5, 60.0, 61.4, 70.8, 77.5, 108.0, 110.7, 118.1, 119.4, 121.4, 124.5, 125.1, 126.5, 127.3, 127.5, 129.2, 130.5, 131.5, 134.4, 135.9, 169.5, 170.9; HRMS (ESI) calculated for C₃₈H₃₉N₂O₅ [M+1]: 603.2853, found: 603.2849.

Corynanthine (S)-9-AMA ester [(S)-9-AMA-22]

[α]= +21.6 (c = 1.4, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ(ppm): -0.73 (tt, J = 12.1, 3.9 Hz, 1H), 0.23 (ddd, J = 26.0, 13.0, 3.9 Hz, 1H), 0.36-0.44 (m, 1H), 0.76 (t, J = 10.6 Hz, 1H), 0.82-1.06 (m, 2H), 1.39-1.62 (m, 2H), 1.90-2.02 (m, 1H), 2.08-2.50 (m, 4H), 2.63-2.72 (m, 1H), 2.81-2.96 (m, 2H), 3.43 (s, 3H), 3.41(s, 3H), 5.14-5.17 (m, 1H), 6.38 (s, 1H), 7.07-7.12 (m, 1H), 7.15-7.20 (m, 1H), 7.36-7.39 (m, 1H), 7.43-7.46 (m, 1H), 7.55-7.60 (m, 2H), 7.62-7.70 (m, 2H), 8.01 (d, J = 8.3 Hz, 1H), 8.44 (s, 1H), 8.66 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 21.2, 23.7, 25.2, 32.5, 33.3, 36.2, 46.3, 51.4, 52.6, 57.6, 59.4, 61.1, 70.3, 76.9, 107.7, 110.7, 118.1, 119.5, 121.4, 124.5, 125.3, 126.8, 127.2, 128.2, 129.1, 129.3, 130.5, 131.5, 133.8, 135.9, 169.9, 170.6; HRMS (ESI) calculated for C₃₈H₃₉N₂O₅ [M+1]: 603.2853, found: 603.2849.

(*R*)-2-(furan-3-yl)-2-hydroxyacetonitrile (*R*)-9-AMA ester [(*R*)-9-AMA-10]

 $[\alpha]_{D} = -63.6 \text{ (c} = 1.5, \text{CH}_2\text{Cl}_2); {}^{1}\text{H} \text{NMR} (\text{CDCl}_3, 500.13 \text{ MHz}) \delta(\text{ppm}): 3.41 (s, 3H), 6.33 (s, 1H), 6.36 (m, 1H), 6.36 (s, 1H), 7.38 (m, 1H), 7.46-7.54 (m, 5H), 8.02-8.04 (m, 2H), 8.43 (d,$ *J* $= 8.3 Hz, 2H), 8.52 (s, 1H); {}^{13}\text{C} \text{NMR} (\text{CDCl}_3, 125 \text{ MHz}) \delta(\text{ppm}): 56.3, 57.6, 76.9, 109.2, 114.8, 117.5, 123.7, 125.1, 125.6, 126.9, 129.3, 130.0, 130.6, 131.4, 142.7, 144.3, 169.9; HRMS (ESI) calculated for C₂₃H₁₇NNaO₄ [M+Na]: 394.1050, found: 410.1046.$

(R)-2-(furan-3-yl)-2-hydroxyacetonitrile (S)-9-AMA ester [(S)-9-AMA-10]

 $[\alpha]_D = +78.5$ (c = 1.2, CH₂Cl₂); ¹H NMR (CDCl₃, 500.13 MHz) δ (ppm): 3.49 (s, 3H), 6.35 (s, 1H), 6.37 (s, 1H), 7.05(m, 2H), 7.46-7.54 (m, 4H), 8.00-8.02 (m, 2H), 8.44 (d, *J* = 8.9 Hz, 2H), 8.50 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm):56.2, 57.7, 76.7, 115.1, 123.7, 125.1, 125.7, 126.9, 129.3, 129.8, 130.5, 131.3, 141.7, 143.9, 169.8; HRMS (ESI) calculated for C₂₃H₁₇NNaO₄ [M+Na]: 394.1050, found: 394.1046.

(R)-mandelonitrile (R)-9-AMA ester [(R)-9-AMA-35]

 $[α]_D = -43.2$ (c = 1.2, CHCl₃); ¹H NMR (CDCl₃, 500.13MHz) δ(ppm): 3.42 (s, 3H), 6.34 (s, 1H 9-AMA), 6.43 (s, 1H), 7.32-7.37 (m, 4H), 7.39-7.42 (m, 1H), 7.50 (m, 4H), 8.03-8.05 (m, 2H), 8.42 (d, J = 8.2 Hz, 2H), 8.53 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ(ppm): 57.6, 63.5, 77.0, 115.2, 123.8, 125.1, 125.7, 126.9, 127.8, 129.1, 129.3, 130.0, 130.4, 130.6, 131.4, 169.8; HRMS (CI) calculated for C₂₅H₁₉NO₃ [M+]: 381.1365, found: 381.1373.

(R)-mandelonitrile (S)-9-AMA ester [(S)-9-AMA-35]

[α]_D = +71.2 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 500.13 MHz) δ(ppm): 3.50 (s, 3H), 6.40 (s, 1H 9-AMA), 6.42 (s, 1H), 6.63 (dd, J = 7.3, 0.5 Hz, 2H), 6.97 (t, J = 7.9 Hz, 2H), 7.13 (m, 1H), 7.47 (m, 4H), 8.00-8.01 (m, 2H), 8.42 (d, J = 8.8 Hz, 2H), 8.48 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ(ppm): 57.8, 63.0, 76.7, 115.6, 123.8, 125.1, 125.7, 126.6, 125.7, 126.9, 128.6, 129.2, 129.7, 130.5, 130.8, 131.4, 169.7; HRMS (CI) calculated for C₂₅H₁₉NO₃ [M+]: 381.1365, found: 381.1373.

(S)-2-hydroxy-2-((2S,3R)-3-methoxy-1-(4-methoxyphenyl)-4-oxoazetidin-2-yl)acetonitrile (R)-9-AMA ester [(R)-9-AMA-44]

[α]_D = -20.5 (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 500.13 MHz) δ(ppm): 2.76 (s, 3H), 3.40 (s, 3H), 3.79 (s, 3H), 4.16 (d, J = 5.1 Hz, 1H), 4.31 (dd, J = 5.0, 4.5 Hz, 1H), 5.73 (d, J = 4.5 Hz, 1H), 6.22 (s, 1H), 6.59 (d, J = 9.1 Hz, 2H), 6.91 (d, J = 9.2 Hz, 2H), 7.47-7.54 (m, 4H), 8.03-8.06 (m, 2H), 8.34 (d, J = 8.3 Hz, 2H), 8.51 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ(ppm): 55.5, 56.4, 57.6, 58.8, 59.2, 76.5, 82.3, 114.1, 114.9, 119.0, 123.8, 125.0, 125.2, 127.0, 129.0, 129.4, 130.0, 130.6, 131.5, 156.7, 162.5, 169.3; HRMS (ESI) calculated for C₃₀H₂₆N₂NaO₆ [M+Na]: 533.1683, found: 533.1675.

(S)-2-hydroxy-2-((2S,3R)-3-methoxy-1-(4-methoxyphenyl)-4-oxoazetidin-2yl)acetonitrile (S)-9-AMA ester [(S)-9-AMA-44]

[α]_D = +80.0 (c = 0.8, CH₂Cl₂); ¹H NMR (CDCl₃, 500.13 MHz) δ(ppm): 3.35 (s, 3H), 3.56 (s, 3H), 3.79 (s, 3H), 4.38 (dd, J = 7.0, 5.1 Hz, 1H), 4.62 (d, J = 5.1 Hz, 1H), 5.74 (d, J = 7.1 Hz, 1H), 6.02 (s, 1H), 6.66 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 9.0 Hz, 2H), 7.48-7.57 (m, 4H), 8.03-8.05 (m, 2H), 8.26 (d, J = 8.8 Hz, 2H), 8.51 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ(ppm): 55.5, 57.1, 57.7, 60.4, 60.8, 76.2, 82.9, 113.8, 114.2, 119.7, 123.5, 125.2, 125.3, 127.2, 129.1, 129.3, 130.0, 130.5, 131.4, 157.1, 163.6, 169.8; HRMS (ESI) calculated for C₃₀H₂₆N₂NaO₆ [M+Na]: 533.1683, found: 533.1675.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure 4S. ¹H and ¹³C NMR spectra of (*R*)-1-(pentadeuterophenyl)ethanol-2,2,2- d_3 **1** (500 and 62.90 MHz respectively, CDCl₃, 300 K).

Figure 5S. ¹H and ¹³C NMR spectra of (R)-1-(pentadeuterophenyl)ethanol-2,2,2- d_3 (R)-MPA ester [(R)-MPA-1] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 6S. ¹H and ¹³C NMR spectra of (R)-1-(pentadeuterophenyl)ethanol-2,2,2-d₃ (S)-MPA ester [(S)-MPA-1] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 7S. ¹H and ¹³C NMR spectra of (R)-1-(pentadeuterophenyl)ethanol-2,2,2-d₃ (R)-9-AMA ester [(R)-9-AMA-1] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 8S. ¹H and ¹³C NMR spectra of (R)-1-(pentadeuterophenyl)ethanol-2,2,2-d₃ (S)-9-AMA ester **[(S)-9-AMA-1]** (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 9S. ¹H and ¹³C NMR spectra of corynanthine (*R*)-MPA ester **[**(*R*)-22b**]** (100 and 400 MHz respectively, CDCl₃, 300 K).

Figure 10S. ¹H and ¹³C NMR spectra of corynanthine (*S*)-MPA ester **[(***S***)-22b]** (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 11S. ¹H and ¹³C NMR spectra of corynanthine (R)-2-NMA ester [(R)-2-NMA-22] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 12S. ¹H and ¹³C NMR spectra of corynanthine (*S*)-2-NMA ester [(*S*)-2-NMA-22] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 13S. ¹H and ¹³C NMR spectrum of corynanthine (R)-1-NMA ester [(R)-1-NMA-22] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 14S. ¹H and ¹³C NMR spectrum of corynanthine (*S*)-1-NMA ester **[(***S***)-1-NMA-22]** (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 158. ¹H and ¹³C NMR spectra of corynanthine (R)-9-AMA ester [(R)-9-AMA-22] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 16S. ¹H and ¹³C NMR spectra of corynanthine (*S*)-9-AMA ester [(*S*)-9-AMA-22] (400 and 100 MHz respectively, CDCl₃, 300 K).

Figure 178. ¹H and ¹³C NMR spectra of (R)-2-(furan-3-yl)-2-hydroxyacetonitrile (R)-9-AMA ester [(R)-9-AMA-10] (500 and 125 MHz respectively, CDCl₃, 300 K).

Figure 18S. ¹H and ¹³C NMR spectra of (R)-2-(furan-3-yl)-2-hydroxyacetonitrile (S)-9-AMA ester [(S)-9-AMA-10] (500 and 125 MHz respectively, CDCl₃, 300 K).

Figure 198. ¹H and ¹³C NMR spectra of (R)-mandelonitrile (R)-9-AMA ester [(R)-9-AMA-30] (500 and 125 MHz respectively, CDCl₃, 300 K).

Figure 20S. ¹H and ¹³C NMR spectra of (R)-mandelonitrile (S)-9-AMA ester [(S)-9-AMA-30] (500 and 125 MHz respectively, CDCl₃, 300 K).

Figure 21S. (*S*)-2-hydroxy-2-((2S,3R)-3-methoxy-1-(4-methoxyphenyl)-4-oxoazetidin-2-yl)acetonitrile (*R*)-9-AMA ester [*(R)*-9-AMA-39] (500 and 125 MHz respectively, CDCl₃, 300 K). PMP = *p*-methoxyphenyl.

Figure 22S. (*S*)-2-hydroxy-2-((2*S*,3*R*)-3-methoxy-1-(4-methoxyphenyl)-4-oxoazetidin-2-yl)acetonitrile (*S*)-9-AMA ester [(*S*)-9-AMA-39] (500 and 125 MHz respectively, CDCl₃, 300 K). PMP = p-methoxyphenyl.

References

 ¹ B. Jiang, Y. Feng and J. Zheng, *Tetrahedron Lett.* 2000, **41**, 10281.
² J. Boyd and N. R. Skrynnikov, *J. Am. Chem. Soc.* 2002, **124**, 1832.