Electronic Supplementary Information for Chem. Commun.

Unique Zn^{II} coordination entanglement networks with a flexible fluorinated bis-pyridinecarboxamide tecton and benzenedicarboxylates

Zhi-Hui Zhang,^a Sheng-Chun Chen,^a Jin-Ling Mi,^a Ming-Yang He,^a Qun Chen,^{*,a} and Miao Du^{*,b}

^a Key Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, P. R. China. E-mail: chenqunjpu@yahoo.com

^b College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, P. R. China. E-mail: dumiao@public.tpt.tj.cn

Experimental section

General methods

With the exception of the ligand H₂tfpbbp, which was prepared according to the literature procedure,¹ all reagents and solvents for synthesis and analysis were commercially available and used as received. Infrared spectra were recorded on a Nicole ESP 460 FT-IR spectrometer (KBr pellets) in the range of 4000–600 cm⁻¹. C, H and N analyses were performed on a PE-2400 II (Perkin-Elmer) analyzer. Luminescent spectra in the solid state were recorded on a Varian Cary Eclipse spectrometer. Thermogravimetric analysis (TGA) experiments were performed by using a Dupont thermal analyzer from room temperature to 800 °C under a N₂ atmosphere at a heating rate of 10 °C /min. Powder X-ray diffraction (PXRD) patterns were taken on a Rigaku D/max-2500 diffractometer at 60 kV and 300 mA for Cu K α radiation (λ = 1.5406 Å), with a scan speed of 2°/min and a step size of 0.02° in a 2 θ range of 3.00–50.00°.

Synthesis

Complexes 1–4 were similarly synthesized by a typical procedure as described below.

Preparation of 1: A mixture of $Zn(OAc)_2 \cdot 2H_2O$ (22.0 mg, 0.1 mmol), $H_2tfpbbp$ (41.8 mg, 0.1 mmol), H_2ip (16.6 mg, 0.1 mmol), and water (7 mL) was placed into a Teflon-lined stainless steel vessel (20 mL), which was heated to 160 °C for 24 h and subsequently cooled to room temperature at a rate of 2 °C/h. Colorless block crystals of 1 were obtained.

 $[Zn_2(H_2tfpbbp)(ip)_2(H_2O)_2]_n$ (1). Yield: 20.6 mg (45%, based on Zn^{II}). Anal. Calcd for C₁₈H₁₃F₂N₂O₆Zn: C, 47.34; H, 2.87; N, 6.13%. Found: C, 47.30; H, 2.83; N, 6.15%. IR (cm⁻¹): 3313s, 1646vs, 1595w, 1542s, 1492s, 1448m, 1408m, 1374m, 1315s, 1290m, 1236w, 1066s, 1026s, 845w, 687s.

 $[Zn_2(H_2tfpbbp)(mip)_2(H_2O)_2]_n$ (2). Yield: 23.5 mg (50%, based on Zn^{II}). Anal. Calcd for C₁₉H₁₅F₂N₂O₆Zn: C, 48.48; H, 3.21; N, 5.95%. Found: C, 48.43; H, 3.21; N, 5.99%. IR (cm⁻¹): 3313s, 1646vs, 1543s, 1494s, 1446m, 1409w, 1370m, 1314s, 1233w, 1064s, 1028s, 756w, 727w, 685s.

{[**Zn(H₂tfpbbp)(fip)]·H₂O**}*_n* (**3**). Yield: 30.8 mg (45%). Anal. Calcd for C₂₈H₁₉F₅N₄O₇Zn: C, 49.18; H, 2.80; N, 8.19%. Found: C, 49.15; H, 2.85; N, 8.33%. IR (cm⁻¹): 3446s, 3282s, 3091m, 1670vs, 1630s, 1587w, 1554s, 1490s, 1421w, 1376m, 1310vs, 1238w, 1064s, 1031w, 959w, 853w, 770w, 733m, 689s.

{[**Zn₂(H₂tfpbbp)₂(nip)₂]·H₂O}***_n* (4). Yield: 25.3 mg (36%). Anal. Calcd for C₅₆H₃₆F₈N₁₀O₁₇. Zn₂: C, 47.91; H, 2.58; N, 9.98%. Found: C, 47.94; H, 2.56; N, 9.97%. IR (cm⁻¹): 3449w, 3306s, 3065m, 1647vs, 1539s, 1487s, 1411w, 1342w, 1308vs, 1170w, 1064s, 1014w, 849w, 764w, 730m, 687m.

Luminescence study

To explore the potential applications as luminescent materials, solid-state fluorescent properties for **1–4** and the free H₂tfpbbp ligand (Fig. S6) were studied at room temperature. The H₂tfpbbp ligand displays emissions in the range of 415–525 nm peaking at *ca*. 435 and 500 nm (upon excitation at 335 nm). The Zn^{II} complexes **1–3** show the broad emission bands (from 360 to 550 nm) with shoulder peaks, upon excitation at 335–337 nm (Fig. S7), indi-

cating the blue shifts comparing with that of H₂tfpbbp. Luminescence quench is observed for **4**. Complex **1** has a very broad blue emission band with λ_{max} of 470 nm, which is similar to that of the free ligand. While the maximum emissions of **2** and **3** are similarly observed at 440 and 418 nm, respectively, which are in the blue region and result in visible luminescence. **Reference:**

1 S.-C. Chen, M.-Y. He, K. Yan, Q. Chen, Y. Guo and Y.-F. Zhang, *Inorg. Chem. Commun.*, 2007, **10**, 451.

(a)

(b)

(c)

Fig. S1 Powder X-ray diffraction (PXRD) patterns for complexes 1–4 (a–d).

(b)

Fig. S2 A portion view of 1 (a) and 2 (b) with labeling of the asymmetric atoms. Symmetry codes: A = x - 1, -y - 1/2, z + 3/2; B = -x + 1, y + 1/2, -z + 3/2.

(b)

Fig. S3 A portion view of 3 (a) and 4 (b) with labeling of the asymmetric atoms. Symmetry codes: A = x, -y + 1/2, z - 1/2; B = -x + 1, -y + 2, -z + 1 for 3. A = x, y - 1, z; B = -x + 2, -y, -z + 2; C = -x - 1, -y + 1, -z + 2 for 4.

Fig. S4 View of 3 showing the threading of two fip spacers into the Zn₂(H₂tfpbbp)₂ loop.

Fig. S5 TGA curves of complexes 1–4.

Fig. S6 Solid state emission spectra of 1–3 and H₂tfpbbp.

Fig. S7 Solid state excitation spectra of 1–4 and the free H₂tfpbbp ligand.

Complex	1	2	3	4
formula	$C_{18}H_{13}F_2N_2O_6Zn$	$C_{19}H_{15}F_2N_2O_6Zn$	$C_{28}H_{19}F_5N_4O_7Zn$	$C_{56}H_{36}F_8N_{10}O_{17}Zn_2$
Mr	456.69	470.70	683.84	1403.69
cryst system	monoclinic	monoclinic	monoclinic	triclinic
space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P\overline{1}$
<i>a</i> [Å]	8.0683(8)	8.2753(9)	16.511(4)	11.738(2)
<i>b</i> [Å]	15.9656(16)	16.4858(18)	11.031(3)	16.567(3)
<i>c</i> [Å]	14.4286(15)	14.4799(16)	16.949(4)	16.799(3)
α [°]	90	90	90	73.420(2)
$oldsymbol{eta}$ [°]	101.8500(10)	106.4530(10)	112.683(3)	70.116(2)
γ[°]	90	90	90	85.726(2)
V[Å ³]	1819.0(3)	1894.5(4)	2848.4(12)	2943.3(10)
Ζ	4	4	4	2
$ ho_{ m calcd} [m g \cdot m cm^{-3}]$	1.668	1.650	1.595	1.584
μ [mm ⁻¹]	1.410	1.357	0.949	0.921
<i>F</i> (000)	924	956	1384	1420
total/independent reflns	15407/4162	14768/3719	20033/5005	22423/10886
parameters	262	272	406	866
$R_{ m int}$	0.0322	0.0529	0.0227	0.0353
$R^{\rm a}, R_{\rm w}^{\rm b}$	0.0268, 0.0720	0.0506, 0.1091	0.0266, 0.0698	0.0509, 0.1338
GOF	1.062	0.944	1.033	1.080
residuals [e Å ⁻³]	0.344, -0.511	0.327, -0.571	0.300, -0.252	1.087, -1.374

|--|

^a $R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$. ^b $R_{w} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}]^{1/2}$.

Table S2 Selected bond distances (Å) and angles (°) for complexes 1–4.

1		2	
Zn1–O2	2.2197(13)	Zn1–O2	2.143(3)
Zn1–O3	2.2147(13)	Zn1–O3	2.274(3)
Zn1–O6	2.1380(13)	Zn1–O6	2.179(3)
Zn1–N1	2.1202(14)	Zn1–N1	2.128(3)
Zn1–O5 ⁱ	2.0395(12)	Zn1–O5 ⁱ	2.018(3)
Zn1–O4 ⁱⁱ	2.0558(12)	Zn1–O4 ⁱⁱ	2.041(2)
O2–Zn1–O3	59.01(5)	O2–Zn1–O3	59.52(9)
O2-Zn1-O6	84.50(5)	O2-Zn1-O6	81.55(10)
O2–Zn1–N1	95.26(5)	O2-Zn1-N1	95.35(11)
O2–Zn1–O5 ⁱ	152.01(5)	O2–Zn1–O5 ⁱ	151.70(10)
O2–Zn1–O4 ⁱⁱ	96.82(5)	O2–Zn1–O4 ⁱⁱ	98.23(10)
O3-Zn1-O6	90.89(5)	O3–Zn1–O6	92.41(10)
O3–Zn1–N1	94.19(5)	O3-Zn1-N1	86.91(10)
O3–Zn1–O5 ⁱ	93.25(5)	O3–Zn1–O5 ⁱ	94.08(10)

Supplementary Material (ESI) for Chemical Communication	s
This journal is (c) The Royal Society of Chemistry 2010	

$\Omega_{3-7n1-\Omega_{ii}}$	155 79(5)	$O3-7n1-O4^{ii}$	156 78(10)	
06-7n1-N1	173 93(5)	05 Zm = 04 06 - 7n1 - N1	176 71(11)	
O_{5}^{i} Z_{n1} O_{6}	92 96(5)	$O5^{i}$ $7n1$ $O6$	90.30(10)	
$O_{3} = 2 \Pi = O_{0}$	92.90(5) 87.77(5)	$O_{3} = Z_{11} = O_{0}$	90.30(10)	
O4 - ZIII - O0	00.08(5)	O4 - ZIII - O0	90.43(10)	
O_{3} –ZIII–INI	90.08(5)	$O_3 = Z_{III} = N_I$	92.93(11)	
O4 - Zn1 - N1	80.24(3)	O4 - Zn1 - N1	88.92(11) 108.05(10)	
04^{-2} n1-05 ⁻	110.96(5)	04^{-2} - 2n1 - 05	108.95(10)	
3		4		
Zn1-03	1 9598(14)	7n1-05/7n2-07	1 973(4)/1 997(3)	
Zn1_N1	2 0372(17)	Zn1 = N1/7n2 = N5	2.045(3)/2.047(3)	
$Zn1 - N4^{i}$	2.0572(17) 2.0579(18)	$7n1-011^{i}/7n2-014$	1.978(3)/1.960(4)	
$2n1 - 06^{ii}$	1.9914(14)	2n1 O11/2n2 O14 $7n1 - N/4^{ii}/7n2 - N8^{iii}$	2.022(3)/2.015(4)	
Zn1 = 00	2.602(2)	$Z_{n1} = 104 / Z_{n2} = 100$ $Z_{n1} = 0.12^{i} / Z_{n2} = 0.13$	2.022(3)/2.013(4) 2.778(3)/2.695(4)	
ZIII-03	2.002(2)	2111-012/2112-013	2.778(3)/2.093(4)	
O3–Zn1–N1	109.70(6)	O_{3} -ZIII-NI/	105.33(14)/95.81(13)	
		$O_7 = Z_{IIZ} = N_3$		
O3–Zn1–N4 ⁱ	109.31(7)	$O_3 = Z_{III} = N4 /$	122.44(13)/119.93(14)	
		O/-Zn2-N8		
O3–Zn1–O5 ⁱⁱ	150.40(6)	$05-2n1-011^{7}$	91.21(14)/92.24(15)	
		0/-2n2-014		
O3–Zn1–O6 ⁱⁱ	97.51(5)	O5–Zn1–O12 ⁴ /	141.80(11)/145.37(14)	
		07–Zn2–O13		
N1–Zn1–N4 ⁱ	107.73(6)	N1–Zn1–N4 ⁿ /	111.22(14)/116.45(14)	
	()	$N5-Zn2-N8^{m}$		
$O5^{ii}$ -Zn1-N1	85.85(6)	$O11^{1}$ -Zn1-N1/	110.04(13)/106.36(17)	
		O14-Zn2-N5		
$O6^{ii}$ -7n1-N1	131 31(7)	$O12^{i}$ –Zn1–N1/	81 29(12)/89 28(14)	
	151.51(7)	O13-Zn2-N5	01.2)(12)/09.20(11)	
$O5^{ii}$ $7n1$ $N4^{i}$	88 36(7)	O11 ⁱ –Zn1–N4 ⁱⁱ /	114 71(14)/121 06(16)	
05 -2111-114	88.30(7)	O14–Zn2–N8 ⁱⁱⁱ	114./1(14)/121.00(10)	
$O(ii 7 1 M)^{i}$	00.72(6)	O12 ⁱ -Zn1-N4 ⁱⁱ /	07 51(10)/07 25(10)	
U0 - Zn1 - N4	99./2(0)	O13-Zn2-N8 ⁱⁱⁱ	01.31(12)/01.33(13)	
	55 12(5)	O11 ⁱ –Zn1–O12 ⁱ /	52 20(11)/52 (0(14)	
$05 - 2n1 - 06^{\circ}$	33.12(3)	O13-Zn2-O14	32.29(11)/33.09(14)	

Symmetry codes for 1: (i) -x + 1, y + 1/2, -z + 3/2; (ii) x, -y + 3/2, z + 1/2. For 2: (i) -x + 1, y + 1/2, -z + 3/2; (ii) x, -y + 1/2, z - 1/2. For 3: (i) -x + 1, -y + 2, -z + 1; (ii) x, -y + 1/2, z - 1/2. For 4: (i) x, y - 1, z; (ii) -x + 2, -y, -z + 2; (iii) -x - 1, -y + 1, -z + 2.

D–H···A	D—H	$H \cdots A(Å)$	D…A (Å)	$D-H\cdots A(^{\circ})$
1				
N2-H2A···O2 ⁱⁱⁱ	0.86	2.01	2.843(2)	164
O6–H6A···O1 ^{iv}	0.82	1.84	2.658(2)	171
O6–H6B····O4 ⁱ	0.82	2.24	2.927(2)	141
C1-H1···O4 ⁱⁱ	0.93	2.52	3.016(2)	114
C4-H4···O2 ⁱⁱⁱ	0.93	2.30	3.214(2)	166
С7-Н7А…О1	0.97	2.43	2.824(3)	104
C7–H7B…F1	0.97	2.48	2.875(3)	104
2				
N2-H2A···O2 ⁱⁱⁱ	0.86	2.05	2.871(4)	160
O6–H6A···O4 ⁱ	0.85	2.36	2.918(4)	123
O6–H6A…O5 ⁱⁱ	0.85	2.55	3.123(4)	125
O6–H6B···O1 ^{iv}	0.85	1.91	2.692(4)	153
С2-Н2…О1	0.93	2.41	2.731(4)	100
C4-H4···O2 ⁱⁱⁱ	0.93	2.55	3.450(5)	162
С7-Н7А…О1	0.97	2.37	2.781(5)	105
C7-H7B…F1	0.97	2.49	2.895(5)	105
C19–H19A…F2 ^v	0.96	2.49	2.880(5)	105
3				
O7–H7AA···O2 ⁱ	0.82	2.01	2.828(3)	174
O7-H7AB…O1 ⁱⁱ	0.82	2.58	3.398(3)	179
N2-H2A····O7 ⁱⁱⁱ	0.86	2.20	3.035(3)	164
N3–H3A···O6 ^{iv}	0.86	2.11	2.936(2)	162
C1–H1···O5 ^v	0.93	2.38	3.037(3)	127
C7–H7A…F2 ^{vi}	0.97	2.53	3.485(3)	166
С7–Н7В…F3	0.97	2.48	2.880(3)	105
С7-Н7В…О1	0.97	2.39	2.759(3)	102
C14–H14A…O2	0.97	2.48	2.839(3)	102
C14–H14B…F2	0.97	2.47	2.840(3)	102
C18–H18…F5 ⁱⁱⁱ	0.93	2.47	3.257(3)	142
C20-H20····O4 ^{vii}	0.93	2.42	3.137(3)	133
4				
N2–H2A····O7 ⁱ	0.86	2.27	3.008(5)	145
N3-H3…O17 ⁱⁱ	0.86	2.06	2.879(5)	158
N6–H6····O5 ⁱⁱⁱ	0.86	2.32	2.998(6)	136
N7–H7····O2 ^{iv}	0.86	2.12	2.932(5)	157
O17–H17A…O8 ^v	0.82	2.00	2.813(5)	172
O17–H17B····O1 ^{vi}	0.82	2.02	2.838(5)	171

Table S3 Possible hydrogen-bonding geometries (Å, °) for complexes 1–4.

	· ·	<u>, , , , , , , , , , , , , , , , , , , </u>		
C5–H5…O12 ^{vii}	0.93	2.54	2.993(6)	111
С7–Н7А…О1	0.97	2.37	2.781(6)	105
C7–H7B…F3	0.97	2.40	2.850(6)	108
C14–H14A…F4	0.97	2.45	2.860(6)	105
C14-H14B…O2	0.97	2.36	2.783(6)	105
C18-H18····O12 ^{viii}	0.93	2.37	3.104(6)	136
C19–H19…O6 ^{ix}	0.93	2.29	3.087(6)	144
C21-H21···O15A ^x	0.93	2.39	3.114(14)	134
C27-H27A…F5	0.97	2.38	2.839(7)	108
С27-Н27В…О3	0.97	2.40	2.806(7)	104
C34–H34A…O3 ^{xi}	0.97	2.52	3.326(6)	140
C34–H34B…F6	0.97	2.42	2.866(8)	107
C37–H37…O2 ^{iv}	0.93	2.48	3.360(6)	157
C38–H38…O8 ^{xii}	0.93	2.43	3.127(6)	132
C39–H39…O13 ^{xii}	0.93	2.21	2.982(7)	140
C40–H40····O3 ^x	0.93	2.57	3.358(7)	143
С40-Н40…О4	0.93	2.42	2.738(7)	100

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Symmetry codes for 1: (i) -x + 1, y + 1/2, -z + 3/2; (ii) x, -y + 3/2, z + 1/2; (iii) x + 1, y, z; (ix) x - 1, -y + 3/2, z - 1/2. For 2: (i) -x + 1, y + 1/2, -z + 3/2; (ii) x, -y + 1/2, z - 1/2; (iii) x - 1, y, z; (iv) x + 1, -y + 1/2, z + 1/2; (v) x + 2, y, z. For 3: (i) -x + 1, y - 3/2, -z + 3/2; (ii) x - 1, y - 1, z; (iii) -x + 1, y + 1/2, -z + 3/2; (iv) x, y + 1, z - 1; (v) x, -y + 1/2, z - 1/2; (vi) -x + 2, -y + 2, -z + 1; (vii) x, -y + 5/2, z - 1/2. For 4: (i) -x + 1, -y, -z + 2; (ii) -x + 2, -y, -z + 2; (iv) -x + 1, -y + 1, -z + 1; (v) x + 1, y, z - 1; (vi) -x + 1, -y, -z + 1; (vii) x, y - 1, z; (viii) -x + 2, -y + 1, -z + 2; (ix) -x + 2, -y, -z + 2; (ix) -z, -y, -z + 2;