Enantioselective Heterocyclic Synthesis of Spiro Chromanone-Thiochroman Complexes Catalyzed by a Bifunctional Indene Catalyst

Yaojun Gao, Qiao Ren, Hao Wu, Maoguo Li, and Jian Wang*

Department of Chemistry, National University of Singapore

3 Science Drive 3, Singapore 117543

Email: chmwangj@nus.edu.sg

Supporting Information

Contents:

1. General Information	S2
2. Preparation of Catalysts	S3
3. Representative Procedure	S17
4. Analytical Data	S17
5. Oxidation of Compound 8a	S34
6. Preparation of Compound 12 for X-ray Crystallographic Analysis	S35
7. Preparation of Compound 11	S36
8. HPLC Profile and NMR Spectra	S38

1. General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF300 (300 MHz) or AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode, and a Finnigan/MAT 95XL-T mass spectrometer in EI mode. All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, or ninhydrin followed by heating using a heat gun. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. The enantiomeric excesses of products were determined by chiral phase HPLC analysis. Optical rotations were recorded on Jasco DIP-1000 polarimeter.

2. Preparation of the Catalysts

Scheme 1, Synthetic route for catalyst 3a, 3b, and 3c

Scheme 2, Synthetic route for catalyst 5

Scheme 3, Synthetic route for catalyst 4

tert-butyl (1*S*,2*R*)-2-hydroxy-2,3-dihydro-1*H*-inden-1-ylcarbamate (b)¹. A solution of $(Boc)_2O$ (2.4 g, 11 mmol) in THF (5 ml) was added to the mixture of the amino alcohol **a** (1.5 g, 10 mmol) and sodium carbonate (2.12 g, 20 mmol) in THF/H₂O (1:1, 60 ml) at 0°C. The mixture was stirred at 0°C for 1h and then at room temperature for another two 2h (TLC was used to monitor the reaction). Water

(30 ml) was added to the mixture upon completion. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 50 ml). The combined organic layers was washed with brine (60 ml) and dried with anhydrous MgSO₄ for 1h. It was then filtered and the solvent was removed under vacuum to give the product (2.5 g) with quantitative yield. It was sufficiently pure for the next step. The pure product was obtained by purification with silica gel chromatography. ¹H NMR (500 MHz, CDCl₃): δ = 7.3-7.29 (m, 1H), 7.24-7.22 (m, 3H), 5.11 (d, *J* = 28.7 Hz, 2H), 4.60 (s, 1H), 3.13 (dd, *J* = 16.6, 5.2 Hz, 1H), 2.93 (dd, *J* = 16.6, 1.7 Hz, 1H), 1.96 (s, 1H), 1.51 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ = 156.30, 140.82, 139.82, 128.18, 127.12, 125.33, 124.47, 79.88, 73.65, 58.89, 39.41, 28.39; HRMS (ESI) calcd for C₁₄H₁₉NO₃ (M + H⁺) 249.1365, found 249.1367.

tert-butyl (1*S*,2*S*)-2-amino-2,3-dihydro-1*H*-inden-1-ylcarbamate (c)². Diisopropyl azodicarboxylate (3.0 g, 15 mmol) was added to a stirred solution of compound **b** (2.5 g, 10 mmol) and triphenylphosphane (3.15 g, 12 mmol) in THF (50 mL) at 0 °C *via* syringe under nitrogen atmosphere. After 10 min, diphenylphosphoryl azide (DPPA) (4.1 g, 15 mmol) was added dropwise by syringe. The solution was stirred overnight at room temperature. After that, triphenylphosphane (5.3 g, 20 mmol) was added in one portion, and the solution was stirred at room temperature for 2 hours. Water (5 mL) was then added and the solution was heated at 50°C for 6 h. The reaction mixture was concentrated and the residue was purified by silica gel chromatography (eluting with 1:1 EtOAc-DCM then 1:10 methanol-DCM) to obtain the white solid product (1.57g, 63% yield, two steps). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.20-7.19$ (d, J = 5.9 Hz, 4H), 4.85-4.63 (m, 2H), 3.42 (dd, J = 14.8, 7.5 Hz, 1H), 3.19 (dd,

J = 15.6, 7.4 Hz, 1H), 2.63 (dd, J = 15.6, 8.2 Hz, 1H), 1.75 (s, 2H), 1.49 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.29, 141.55, 140.60, 128.07, 126.94, 124.78, 123.80, 79.65, 64.52, 62.39, 39.25, 28.37;$ HRMS (ESI) calcd for C₁₄H₂₁N₂O₂ (M + H⁺) 249.1603, found 249.1601.

NHBoc

tert-butyl (15,25)-2-(dimethylamino)-2,3-dihydro-1*H*-inden-1-ylcarbamate (d)³. To a solution of compound c (0.75 g, 3 mmol) in 15 mL CH₃CN was added aqueous formaldehyde (37% w/w, 1.2 mL, 15 mmol), the solution was stirred at room temperature for 15 minutes. After that, NaBH₃CN (0.38 g, 6 mmol) was added, followed 15 minutes stirring later by AcOH (1 mL). After 1 hour, the reaction mixture was dilute with 2% methanol-DCM (40 mL), washed with 1.0 M NaOH (3 x 30), dried by MgSO₄, and concentrated. The resulting residue was purified by silica gel chromatography (eluting with 1: 20 methanol-DCM) to afford the pure product (0.79 g, 95% yield). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.26-7.15$ (m, 4H), 5.20 (t, J = 8.4 Hz, 1H), 4.77 (d, J = 8.8 Hz, 1H), 3.03 (m, 2H), 2.87 (dd, J = 14.0, 7.4 Hz, 1H), 2.40 (s, 6H), 1.49 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 155.49$, 142.61, 139.71, 127.90, 126.96, 124.59, 124.13, 79.49, 74.59, 57.25, 42.94, 33.68, 28.43; HRMS (ESI) calcd for C₁₆H₂₅N₂O₂ (M + H⁺) 277.1916, found 277.1918.

tert-butyl (1*S*,2*S*)-2-(pyrrolidin-1-yl)-2,3-dihydro-1*H*-inden-1-ylcarbamate (e)⁴. Compound 3c (0.75 g, 3 mmol), 1,4-dibromobutane (0.78 g, 3.6 mmol), potassium carbonate (1.08 g, 7.8 mmol),

potassium iodide (0.1 g, 0.6 mmol) and 10 mL iso-propanol were added into a sealed tube. The mixture was heated at 80 °C for 48hrs and then allowed to cool to room temperature. The mixture was filtered and washing with DCM, the filtrate was concentrated and the resulting residue was purified by silica gel chromatography (eluting with 1:5 EtOAc- hexane then 1:10 methanol-DCM) to obtain the product **5** (0.64 g, 70% yield). ¹H NMR (500 MHz, CDCl₃): δ = 7.26-7.16 (m, 4H), 5.25-5.22 (m, 1H), 4.81 (d, *J* = 9.1 Hz, 1H), 3.17 (dd, *J* = 18.9, 11.0 Hz, 1H), 3.01-2.98 (m, 2H), 2.80-2.75 (m, 4H), 1.85 (s, 4H), 1.49 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ = 155.44, 142.25, 139.68, 128.06, 127.05, 124.56, 124.08, 79.61, 72.61, 59.61, 52.34, 36.24, 28.41, 23.36; HRMS (ESI) calcd for C₁₈H₂₇N₂O₂ (M + H⁺) 303.2073, found 303.2062.

tert-butyl (15,25)-2-(piperidin-1-yl)-2,3-dihydro-1*H*-inden-1-ylcarbamate (f)⁴. Compound c (0.75 g, 3 mmol), 1,5-dibromopentane(0.83 g, 3.6 mmol), potassium carbonate (1.08 g, 7.8 mmol), potassium iodide (0.1 g, 0.6 mmol) and 10 mL iso-propanol were added into a sealed tube. The mixture was heated at 80 °C for 48hrs and then allowed to cool to room temperature. The mixture was filtered and washing with DCM, the filtrate was concentrated and the resulting residue was purified by silica gel chromatography (eluting with 1:10 EtOAc- hexane then 1:10 methanol-DCM) to obtain the product **5** (0.71g, 75% yield). ¹H NMR (500 MHz, CDCl₃): δ = 7.28-7.12(m, 4H), 5.24 (dd, *J* = 13.7, 5.2 Hz, 1H), 4.89-4.87 (m, 1H), 3.05 (s, 2H), 2.87 (dd, *J* = 18.6, 11.7 Hz, 1H), 2.60 (dd, *J* = 23.2, 4.9 Hz, 4H), 1.61-1.59 (m, 4H), 1.48 (s, 11H); ¹³C NMR (125 MHz, CDCl₃): δ = 155.41, 142.52, 139.97, 127.85, 126.88, 124.50, 124.14, 79.44, 74.64, 56.53, 51.60, 33.81, 28.41, 26.13, 24.45; HRMS (ESI) calcd for C₁₉H₂₉N₂O₂ (M + H⁺) 317.2229, found 317.2227.

(15,25)- N^2 , N^2 -dimethyl-2,3-dihydro-1*H*-indene-1,2-diamine (g). To a solution of compound d (0.7 g, 2.5 mmol) in 3 mL methanol was added 3 mL concentrated HCl solution. The mixture was stirred at room temperature for 5hrs, then 40% NaOH solution was added until pH of mixture was 14. After extraction by DCM (5 x 10 mL), the organic layer was combined and dried by MgSO₄, then concentrated. The pure product (0.41 g, 93% yield) was obtained by silica gel chromatography (very short column, eluting with 1:10 to 1:5 methanol-DCM). ¹H NMR (500 MHz, CDCl₃): δ = 7.30 (d, *J* = 7.3 Hz, 1H), 7.23-7.16 (m, 3H), 4.23 (d, *J* = 7.3 Hz, 1H), 2.95 (dd, *J* = 13.4, 6.1 Hz, 1H), 2.89-2.80 (m, 2H), 2.40 (s, 6H), 1.81 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 145.30, 139.71, 127.30, 126.68, 124.59, 123.42, 77.76, 59.07, 43.02, 31.17; HRMS (ESI) calcd for C₁₁H₁₇N₂ (M + H⁺) 177.1392, found 177.1391.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1*S***,2***S***)-2-(dimethylamino)-2,3-dihydro-1***H***-inden-1-yl)thiou rea (3a).** To a solution of compound **g** (0.4 g, 2.27 mmol) in 10 mL DCM was added 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.59 g, 2.16 mmol) dropwise. The mixture was stirred at room temperature for 30min, reaction completed. The solvent was removed by rotary evaporation and pure product 3a (1.0g, 98% yield) was obtained by silica gel chromatography (eluting with 1:5 EtOAc- hexane then 1: 10 methanol-DCM). ¹H NMR (500 MHz, CDCl₃): δ = 12.84 (s, 1H), 8.10 (s, 2H), 7.61 (s, 1H), 7.42-7.28 (m, 4H), 6.86 (d, *J* = 3.2 Hz, 1H), 5.22 (m, 1H), 3.75 (q, *J* = 8.5

Hz, 1H), 3.08 (ddd, J = 44.1, 15.9, 9.0 Hz, 2H), 2.52 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 182.25$, 141.95, 139.83, 137.38, 133.15, 132.06, 131.80, 131.53, 131.26, 129.35, 127.86, 125.57, 124.18, 123.46, 122.73, 122.01, 117.60, 74.45, 62.57, 40.75, 25.39; HRMS (ESI) calcd for C₂₀H₂₀F₆N₃S (M + H⁺) 448.1282, found 448.1277.

(15,25)-2-(pyrrolidin-1-yl)-2,3-dihydro-1*H*-inden-1-amine (h). To a solution of compound e (0.6 g, 2.0 mmol) in 3 mL methanol was added 3 mL concentrated HCl solution. The mixture was stirred at room temperature for 5hrs, then 40% NaOH solution was added until pH of mixture was 14. After extraction by DCM (5 x 10 mL), the organic layer was combined and dried by MgSO₄, then concentrated. The pure product (0.36 g, 90% yield) was obtained by silica gel chromatography (very short column, eluting with 1:10 to 1: 5 methanol-DCM). ¹H NMR (500 MHz, CDCl₃): δ = 7.31-7.16 (m, 4H), 4.35 (d, *J* = 7.3 Hz, 1H), 3.10 (dd, *J* = 15.3, 7.7 Hz, 1H), 2.94 (dd, *J* = 15.3, 9.0 Hz, 1H), 2.86-2.81 (m, 5H), 2.41 (s, 2H), 1.86 (dd, *J* = 9.0, 3.9 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃): δ = 145.37, 139.57, 127.40, 126.78, 124.37, 123.45, 75.99, 61.21, 52.62, 35.34, 23.23; HRMS (ESI) calcd for C₁₃H₁₉N₂ (M + H⁺) 203.1548, found 203.1543.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((15,25)-2-(pyrrolidin-1-yl)-2,3-dihydro-1H-inden-1-yl)thiou

rea (3b). To a solution of compound e (0.36 g, 1.78 mmol) in 10 mL DCM was added 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.51 g, 1.87 mmol) dropwise. The mixture was stirred at room temperature for 30min, reaction completed. The solvent was removed by rotary evaporation and pure product **3b** (0.84 g, 95% yield) was obtained by silica gel chromatography (eluting with 1:5 EtOAc- hexane then 1: 10 methanol-DCM). ¹H NMR (500 MHz, CDCl₃): δ = 12.82 (s, 1H), 8.05 (s, 2H), 7.63 (s, 1H), 7.34 (ddd, *J* = 37.5, 21.3, 6.6 Hz, 4H), 6.68 (s, 1H), 5.25-5.23 (m, 1H), 4.03 (q, *J* = 8.2 Hz, 1H), 3.11 (dd, *J* = 8.7, 3.6 Hz, 2H), 2.94-2.84 (m, 4H), 1.90 (s, 4H); ¹³C NMR (125 MHz, CDCl₃): δ = 182.77, 141.97, 140.04, 137.91, 132.10, 131.83, 131.31, 129.36, 127.95, 125.62, 124.29, 123.49, 123.42, 122.12, 117.94, 77.25, 77.00, 76.75, 70.55, 63.20, 48.55, 26.86, 23.93; HRMS (ESI) calcd for C₂₂H₂₂F₆N₃S (M + H⁺) 474.1439, found 474.1443.

(1*S*,2*S*)-2-(piperidin-1-yl)-2,3-dihydro-1*H*-inden-1-amine (i). To a solution of compound **f** (0.7 g, 2.2 mmol) in 3 mL methanol was added 3 mL concentrated HCl solution. The mixture was stirred at room temperature for 5hrs, then 40% NaOH solution was added until pH of mixture was 14. After extraction by DCM (5 x 10 mL), the organic layer was combined and dried by MgSO₄, then concentrated. The pure product (0.43 g, 90% yield) was obtained by silica gel chromatography (very short column, eluting with 1:10 to 1: 5 methanol-DCM). ¹H NMR (500 MHz, CDCl₃): δ = 7.22 (d, *J* = 7.3 Hz, 1H), 7.14-7.07 (m, 3H), 4.25 (d, *J* = 6.9 Hz, 1H), 2.92 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.81 (ddd, *J* = 21.8, 14.7, 8.2 Hz, 2H), 2.53 (s, 4H), 2.15 (s, 2H), 1.58-1.53 (m, 4H), 1.40 (dt, *J* = 11.3, 5.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 145.16, 139.87, 127.20, 126.56, 124.42, 123.38, 77.71, 58.33, 51.96, 31.95,

25.96, 24.40; HRMS (ESI) calcd for $C_{14}H_{21}N_2(M + H^+)$ 217.1705, found 217.1708.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((15,2S)-2-(piperidin-1-yl)-2,3-dihydro-1*H***-inden-1-yl)thiour ea (3c**). To a solution of compound **i** (0.4 g, 1.85 mmol) in 10 mL DCM was added 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.53 g, 1.95 mmol) dropwise. The mixture was stirred at room temperature for 30min, reaction completed. The solvent was removed by rotary evaporation and pure product **3c** (0.87 g, 97% yield) was obtained by silica gel chromatography (eluting with 1:10 EtOAc- hexane then 1: 10 methanol-DCM). ¹H NMR (500 MHz, CDCl₃): δ = 12.20 (s, 1H), 8.06 (s, 2H), 7.70 (s, 1H), 7.43-7.26 (m, 4H), 6.72 (s, 1H), 5.31 (m, 1H), 3.72 (q, *J* = 8.2 Hz, 1H), 3.21 (dd, *J* = 16.1, 8.5 Hz, 1H), 3.01 (dd, *J* = 16.1, 8.8 Hz, 1H), 2.77-2.67 (m, 4H), 1.56 (dd, *J* = 44.8, 22.4 Hz, 7H); ¹³C NMR (125 MHz, CDCl₃): δ = 183.44, 141.53, 140.37, 137.76, 132.13, 131.85, 131.58, 131.31, 129.41, 127.85, 125.78, 125.58, 124.25, 123.61, 122.07, 118.82, 75.27, 62.04, 50.65, 26.33, 25.94, 23.84; HRMS (ESI) calcd for C₂₃H₂₄F₆N₃S (M + H⁺) 488.1595, found 488.1598.

tert-butyl (1*S*,2*S*)-2-hydroxy-2,3-dihydro-1*H*-inden-1-ylcarbamate (k)¹. It was prepared by using the same procedure for synthesis of compound **b**. Quantitative yield. ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.18-7.11 (m, 4H), 5.00 (s, 1H), 4.82 (t, *J* = 5.9 Hz, 1H), 4.35-4.28 (m, 1H), 3.19 (dd, *J* = 15.8, 7.7 Hz, 1H), 2.81 (dd, *J* = 15.8, 8.1 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 157.35, 140.12, 139.34, 128.40, 127.09, 125.09, 123.05, 81.82, 80.40, 63.98, 38.31, 28.31; HRMS (ESI) calcd for

 $C_{14}H_{19}NO_3 (M + H^+) 249.1365$, found 249.1366.

tert-butyl (1*S*,2*R*)-2-amino-2,3-dihydro-1*H*-inden-1-ylcarbamate (1)². It was prepared by using the same procedure for synthesis of compound **c** (67% yield, two steps). ¹H NMR (500 MHz, CDCl₃): δ = 7.29 (m, 1H), 7.21 (d, *J* = 2.2 Hz, 3H), 5.23 (s, 1H), 5.03 (s, 1H), 3.82 (s, 1H), 3.12 (dd, *J* = 15.9, 6.1 Hz, 1H), 2.69 (dd, *J* = 15.9, 3.3 Hz, 1H), 1.73 (s, 2H), 1.49 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ = 156.05, 141.43, 140.60, 128.00, 126.94, 125.20, 124.71, 79.53, 58.56, 54.70, 39.70, 28.38; HRMS (ESI) calcd for C₁₄H₂₁N₂O₂ (M + H⁺) 249.1603, found 249.1606.

tert-butyl (1*S*,2*R*)-2-(piperidin-1-yl)-2,3-dihydro-1*H*-inden-1-ylcarbamate (m)⁴. It was prepared by using the same procedure for synthesis of compound **f** (75% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.58$ (s, 1H), 7.21-7.14 (m, 3H), 5.81 (d, J = 5.3 Hz, 1H), 4.90 (s, 1H), 3.02 (p, J = 7.4 Hz, 1H), 2.92-2.89 (m, 2H), 2.42 (dd, J = 11.7, 6.2 Hz, 4H), 1.58 (dt, J = 12.0, 6.1 Hz, 6H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.03$, 143.35, 140.42, 127.83, 126.62, 125.95, 124.17, 78.75, 67.58, 54.81, 52.40, 34.51, 28.34, 25.76, 24.26; HRMS (ESI) calcd for C₁₉H₂₉N₂O₂ (M + H⁺) 317.2229, found 317.2225.

(1*S*,2*R*)-2-(**piperidin-1-yl**)-2,3-dihydro-1*H*-inden-1-amine (n). It was prepared by using the same procedure for synthesis of compound **i** (90% yield). ¹H NMR (500 MHz, CDCl₃): δ = 7.30 (d, *J* = 6.3 Hz, 1H), 7.14-7.08 (m, 3H), 4.15 (d, *J* = 5.4 Hz, 1H), 2.80 (qd, *J* = 14.8, 8.5 Hz, 2H), 2.72-2.68 (m, 1H), 2.48 (s, 2H), 2.38 (d, *J* = 3.8 Hz, 2H), 2.30 (s, 2H), 1.56 (dt, *J* = 11.0, 5.7 Hz, 4H), 1.42-1.40 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 144.85, 140.48, 127.51, 126.39, 124.44, 124.35, 69.87, 55.40, 52.58, 33.51, 25.53, 24.04; HRMS (ESI) calcd for C₁₄H₂₁N₂ (M + H⁺) 217.1705, found 217.17010.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1*S*,2*R*)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yl)t hiourea (5). It was prepared by using the same procedure for synthesis of catalyst 3c (97% yield). ¹H NMR (500 MHz, CDCl₃): $\delta = 8.38$ (s, 1H), 7.78 (d, J = 51.1 Hz, 3H), 7.60 (s, 1H), 7.15-7.05 (m, 3H), 5.53 (s, 1H), 3.06 (d, J = 6.6 Hz, 1H), 2.89 (dd, J = 15.4 Hz, 6.9, 1H), 2.79-2.74 (m, 1H), 2.31 (s, 4H), 1.25 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 180.13$, 141.42, 140.74, 139.08, 133.36, 133.08, 132.81, 132.55, 128.71, 126.97, 126.83, 126.05, 124.47, 123.88, 123.71, 121.71, 119.54, 118.85, 68.02, 58.90, 52.26, 34.34, 25.63, 23.88; HRMS (ESI) calcd for C₂₃H₂₄F₆N₃S (M + H⁺) 488.1595, found 488.1590.

(15,23)-1-(piperidin-1-yl)-2,3-dihydro-1*H*-inden-2-ol (o)⁴. Compound **j** (0.75 g, 5 mmol), 1,5-dibromopentane (1.38 g, 6.0 mmol), potassium carbonate (1.80 g, 13 mmol), potassium iodide (0.17 g, 1.0 mmol) and 10 mL iso-propanol were added into a sealed tube. The mixture was heated at 80 °C for 48hrs and then allowed to cool to room temperature. The mixture was filtered and washing with DCM, the filtrate was concentrated and the resulting residue was purified by silica gel chromatography (eluting with 1:5 EtOAc- hexane then 1:10 methanol-DCM) to obtain the product **o** (0.82 g, 75% yield). ¹H NMR (300 MHz, CDCl₃): δ = 7.36-7.33 (m, 1H), 7.12-7.16 (m, 3H), 4.66 (dd, *J* = 12.3, 5.3 Hz, 1H), 4.08 (d, *J* = 4.8 Hz, 1H), 3.25 (dd, *J* = 16.2, 7.1 Hz, 1H), 2.80 (dd, *J* = 16.2, 5.5 Hz, 1H), 2.62-2.61 (m, 4H), 1.58-1.54 (m, 4H), 1.46 (d, *J* = 5.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 140.62, 140.33, 127.66, 126.41, 125.82, 124.90, 78.49, 73.54, 50.79, 40.06, 26.51, 24.66; HRMS (ESI) calcd for C₁₄H₂₀NO (M + H⁺) 218.1545, found 218.1545.

1-((1S,2R)-2-azido-2,3-dihydro-1*H*-inden-1-yl)piperidine (p)⁵. To a stirred solution of compound o (0.78 g, 3.6 mmol) and triethylamine (1.1 g, 10.8 mmol) in dry DCM (10 mL) at 0°C under nitrogen was added dropwise methanesulfonyl chloride (0.62 g, 5.4 mmol). The mixture was stirred for another 20 min at room temperature, and the solvent was evaporated under reduced pressure. The residue was extracted with DCM, washed successively with water, and brine, and dried over MgSO₄. The organic

layer was concentrated to afford crude mesylate intermediate. Then the crude mesylate intermediate was redissolve d in DMF (10 mL), followed by adding NaN₃ (1.87 g, 28.8 mmol). The mixture was heated under nitrogen at 70°C for 6 hrs. After the mixture was cooled, the solvent was evaporated under reduced pressure and the residue was extracted with EtOAc (25 mL x 3) and dried over MgSO₄. The organic layer was removed under reduced pressure, and the crude product was purified by silica gel chromatography (eluting with 1:10 EtOAc- hexane) to afford product **p** (0.48 g, 55% yield, two step). ¹H NMR (500 MHz, CDCl₃): δ = 7.26-7.10 (m, 4H), 4.63 (d, *J* = 6.9 Hz, 1H), 3.17 (td, *J* = 8.0 Hz, 6.8, 1H), 3.03 (dd, *J* = 15.8, 7.9 Hz, 1H), 2.81 (dd, *J* = 15.8, 7.9 Hz, 1H), 2.48 (ddt, *J* = 38.5, 10.7, 5.2 Hz, 4H), 1.53 (dt, *J* = 11.3, 5.7 Hz, 4H), 1.39 (dd, *J* = 11.7, 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 140.43, 139.14, 128.56, 126.94, 124.71, 124.15, 72.82, 66.85, 51.91, 33.83, 25.94, 24.30; HRMS (ESI) calcd for C₁₄H₁₉N₄ (M + H⁺) 243.1610, found 243.1612.

(1*S*,2*R*)-1-(piperidin-1-yl)-2,3-dihydro-1*H*-inden-2-amine (q)⁵. To a solution of compound **p** (0.46 g, 1.9 mmol) in 10 mL THF was added triphenylphosphane (1.5 g, 5.7 mmol). The mixture was stirred at room temperature for 3h, then added 3 mL water, heated at 60°C for 4 hrs. The solvent was removed by reduced pressure, and the resulting residue was purified by a very short silica gel column (eluting with 1:10 to 1: 5 methanol-DCM) to afford compound **q** (0.39g, 95% yield). ¹H NMR (500 MHz, CDCl₃): δ = 7.27 (t, *J* = 5.8 Hz, 1H), 7.19-7.11 (m, 3H), 4.31 (d, *J* = 6.9 Hz, 1H), 2.99-2.83 (m, 3H), 2.60-2.58(m, 4H), 2.45 (s, 2H), 1.64-1.59 (m, 4H), 1.45 (dt, *J* = 11.7, 5.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 144.92, 139.73, 127.18, 126.54, 124.36, 123.34, 77.45, 58.16, 51.84, 31.67, 25.82, 24.29; HRMS (ESI) S15

calcd for $C_{14}H_{21}N_2(M + H^+)$ 217.1705, found 217.1708.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((15,2*R***)-1-(piperidin-1-yl)-2,3-dihydro-1***H***-inden-2-yl)thiour ea (4). To a solution of compound q** (0.39 g, 1.81 mmol) in 10 mL DCM was added 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.52 g, 1.90 mmol) dropwise. The mixture was stirred at room temperature for 30min, reaction completed. The solvent was removed by rotary evaporation and pure product **4** (0.90 g, 97% yield) was obtained by silica gel chromatography (eluting with 1:10 EtOAc- hexane then 1: 10 methanol-DCM). ¹H NMR (300 MHz, CDCl₃): δ = 12.14 (s, 1H), 7.98 (s, 2H), 7.61 (s, 1H), 7.27 (ddd, *J* = 20.9, 12.6, 4.3 Hz, 4H), 6.68 (s, 1H), 5.22 (m, 1H), 3.63 (dd, *J* = 6.2, 8.3 Hz, 1H), 3.13 (dd, *J* = 16.1, 8.6 Hz, 1H), 2.92 (dd, *J* = 16.2, 8.9 Hz, 1H), 2.68-2.60 (m, 4H), 1.56-1.44 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ = 183.34, 141.50, 140.33, 137.67, 132.31, 131.87, 131.42, 130.98, 129.36, 127.78, 125.76, 125.53, 124.93, 123.58, 121.31, 118.75, 75.21, 62.01, 50.56, 26.29, 25.90, 23.78; HRMS (ESI) calcd for C₂₃H₂₄F₀N₃S (M + H⁺) 488.1595, found 488.1587.

3. Representative Procedure

To a solution of 2-mercaptobenzaldehyde **6a** (13.8 mg, 0.1 mmol, 1 equiv.) in 0.95 mL xylene was added (E)-3-benzylidenechroman-4-one **7a** (20.4 mg, 0.1 mmol, 1 equiv.) at -30 , followed by adding of 50 μ L of pre-cooled catalyst **5** solution (2.6 mg in 50 μ L xylene, 0.005 mmol, 0.05 equiv.). The mixture was stirred at -30 for 8 h. The crude product was purified by column chromatography on silica gel, eluted by hexane/EtOAc= 10:1 then 6: 1 to afford 36 mg (96% yield) of the desired product **8a** as white solid.

4. Analytical Data

(2'*S*,*3S*,*4'R*)-*4*'-hydroxy-2'-phenylspiro[chroman-3,3'-thiochroman]-4-one (8a) (Table 2, entry 1). ¹H NMR (300 MHz, CDCl₃): δ = 7.64-7.59 (m, 2H), 7.34-7.31 (m, 2H), 7.18-7.07 (m, 4H), 6.98-6.96 (m, 3H), 6.73 (t, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 8.3 Hz, 1H), 5.50 (d, *J* = 6.7 Hz, 1H), 5.00 (s, 1H), 4.77 (d, *J* = 12.6 Hz, 1H), 4.55 (d, *J* = 12.4 Hz, 1H), 2.78 (d, *J* = 6.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 195.32, 160.94, 136.09, 134.82, 133.23, 132.61, 129.50, 128.40, 127.82, 127.69, 127.17, 126.71, 125.19, 124.92, 121.58, 120.94, 117.55, 72.58, 66.86, 51.48, 51.37; HRMS (ESI) calcd for $C_{23}H_{18}O_3SNa (M + Na^+)$ 397.0874, found 397.0872; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 6.7$ min, $t_{minor} = 9.6$ min, ee = 97%, dr = 8.0:1; $[\alpha]^{25}{}_{D}$ (major) = +162.8 (c = 1.07 in CHCl₃).

(2'S,3S,4'R)-2'-(4-chlorophenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8b) (Table 2, entry 2). The title compound was prepared according the typical procedure, as described above in 98% yield. ¹H NMR (300 MHz, CDCl₃): δ = 7.70-7.67 (m, 2H), 7.35-7.15 (m, 6H), 7.02- 6.99 (m, 2H), 6.86-6.80 (m, 1H), 6.58 (d, *J* = 8.1 Hz, 1H), 5.56 (d, *J* = 6.4 Hz, 1H), 5.03 (s, 1H), 4.80 (d, *J* = 12.5 Hz, 1H), 4.61 (d, *J* = 12.5 Hz, 1H), 2.93 (d, *J* = 6.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.18, 160.85, 136.35, 134.19, 133.46, 133.06, 132.17, 130.85, 127.90, 127.78, 127.14, 126.68, 125.13, 125.07, 121.55, 121.22, 117.78, 72.85, 66.70, 51.40, 50.78; HRMS (EI) calcd for C₂₃H₁₇ClO₃S 408.0587, found 408.0573; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 6.1 min, t_{minor} = 8.2 min, *ee* = 95%, dr = 8.1:1; [α]²⁵_D(major) = +138.6 (*c* = 1.25 in CHCl₃).

(2'S,3S,4'R)-2'-(3-chlorophenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8c) (Table 2, entry 3). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.72-7.67$ (m, 2H), 7.48 (s, 1H), 7.29-7.19 (m, 5H), 7.02-6.92 (m, 2H), 6.84 (t, J = 7.5 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 5.58 (d, J = 6.4 Hz, 1H), 5.01 (s, 1H), 4.81 (d, J = 12.6 Hz, 1H), 4.62 (d, J = 12.6 Hz, 1H), 2.78 (dd, J = 6.4, 2.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 195.04$, 160.85, 136.96, 136.38, 133.64, 133.04, 132.02, 129.54, 128.79, 128.53, 127.90, 127.82, 127.17, 126.68, 125.17, 125.10, 121.54, 121.10, 117.66, 72.66, 66.59, 51.28, 50.95; HRMS (EI) calcd for C₂₃H₁₇O₄S 408.0587, found 408.0568; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 7.1 min, t_{minor} = 8.6 min, *ee* = 97%, dr = 7.6:1; [a]²⁵_D (major) = +140.4 (*c* = 1.15 in CHCl₃).

 $(2'R,3S,4'R)-2'-(2-bromophenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8d) (Table 2, entry 4). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (300 MHz, CDCl₃): <math>\delta = 8.00$ (d, J = 7.9 Hz, 1H), 7.75 (dd, J = 7.9, 1.5 Hz, 1H), 7.64 (d, J = 7.3 Hz, 1H), 7.23-7.09 (m, 7H), 6.90-6.79 (m, 2H), 6.57 (d, J = 8.3 Hz, 1H), 5.68 (d, J = 7.3 Hz, 1H), 7.23-7.09 (m, 7H), 6.90-6.79 (m, 2H), 6.57 (d, J = 8.3 Hz, 1H), 5.68 (d, J = 8.

7.2 Hz, 2H), 4.81 (d, J = 12.6 Hz, 1H), 4.63 (d, J = 12.6 Hz, 1H), 3.09 (d, J = 5.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 193.88$, 160.46, 136.17, 134.89, 133.36, 132.38, 132.23, 131.58, 129.74, 127.92, 127.38, 126.82, 125.43, 125.31, 124.94, 121.31, 120.93, 120.85, 117.42, 72.06, 66.95, 50.71, 48.35; HRMS (ESI) calcd for C₂₃H₁₇BrO₄SNa (M + Na⁺) 474.9979, found 474.9978; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 6.5 min, t_{minor} = 10.2 min, *ee* = 95%, dr = 19.0:1; $[\alpha]^{25}_{D}$ (major) = +405.3 (*c* = 1.50 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-2'-(4-nitrophenyl)spiro[chroman-3,3'-thiochroman]-4-one (8e) (Table 2, entry 5). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (300 MHz, CDCl₃): δ = 7.85-7.67 (m, 3H), 7.31-7.17 (m, 4H), 6.94-6.84 (m, 2H), 6.65 (dd, *J* = 9.9, 1.9 Hz, 1H), 6.53 (d, *J* = 8.5 Hz, 1H), 5.65 (d, *J* = 5.8 Hz, 1H), 5.35 (s, 1H), 4.77 (d, *J* = 12.6 Hz, 1H), 4.60 (d, *J* = 12.7 Hz, 1H), 2.98 (d, *J* = 5.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 194.37, 160.58, 136.40, 134.88, 132.90, 131.89, 131.76, 127.86, 127.15, 126.68, 125.25, 125.20, 123.86, 121.16, 117.54, 115.25, 114.90, 71.91, 66.60, 50.61, 42.29; HRMS (EI) calcd for C₂₃H₁₇NO₃S 419.0827, found 419.0825; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 11.4 min, t_{minor} = 14.0 min, *ee* = 97%, dr = 7.7:1; [α]²⁵_D (major) = +92.2 (*c* = 0.67 in CHCl₃).

(2'S,3S,4'R)-2'-(3,4-dichlorophenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one(8f) (Table 2, entry 6). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.73-7.67 (m, 2H), 7.57 (d, *J* = 2.2 Hz, 1H), 7.32-7.29 (m, 1H), 7.26-7.16 (m, 4H), 7.08 (d, *J* = 8.5 Hz, 1H), 6.88-6.85 (m, 1H), 6.61 (d, *J* = 8.5 Hz, 1H), 5.56 (s, 1H), 4.97 (s, 1H), 4.78 (d, *J* = 12.6 Hz, 1H), 4.61 (d, *J* = 12.3 Hz, 1H), 2.81 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 194.94, 160.75, 136.54, 135.26, 132.92, 132.36, 131.83, 131.68, 131.37, 129.36, 128.91, 127.98, 127.17, 126.68, 125.23, 125.14, 121.51, 121.35, 117.68, 72.56, 66.51, 51.22, 50.40; HRMS (EI) calcd for C₂₃H₁₇Cl₂O₃S 442.0197, found 442.0117; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 5.8 min, t_{minor} = 6.9 min, *ee* = 95%, dr = 8.2:1; [a]²⁵_D (major) = +125.5 (*c* = 1.40 in CHCl₃).

(2'*R*,3*S*,4'*R*)-2'-(4-chloro-2-fluorophenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8g) (Table 2, entry 7). The title compound was prepared according the typical procedure, as described above in 95% yield. ¹H NMR (300 MHz, CDCl₃): δ = 7.88 (t, *J* = 7.1 Hz, 2H), 7.78 (d, *J* = 8.0 Hz,

1H), 7.73-7.69 (m, 1H), 7.59 (d, J = 8.8 Hz, 0H), 7.49 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.24 (t, J = 5.3 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.54 (d, J = 8.3 Hz, 0H), 5.61 (d, J = 6.0 Hz, 1H), 5.12 (s, 1H), 4.80 (d, J = 12.7 Hz, 1H), 4.62 (d, J = 12.7 Hz, 1H), 2.78 (d, J = 6.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.78$, 160.70, 142.76, 140.05, 136.73, 134.61, 134.25, 133.84, 132.91, 130.57, 128.05, 127.18, 126.73, 126.31, 125.38, 125.19, 122.63, 121.48, 117.71, 72.50, 66.57, 51.62, 50.97; HRMS (EI) calcd for C₂₃H₁₆CIFO₃S 426.0493, found 426.0475; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 7.1 min, t_{minor} = 8.6 min, *ee* = 97%, dr = 20.0:1; $[\alpha]^{25}_{D}$ (major) = +150.6 (*c* = 1.23 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-2'-(4-methoxyphenyl)spiro[chroman-3,3'-thiochroman]-4-one (8h) (Table 2, entry 8). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.69-7.65 (m, 2H), 7.33-7.30 (m, 2H), 7.24-7.14 (m, 4H), 6.81-6.79 (m, 1H), 6.61-6.56 (m, 3H), 5.54 (d, *J* = 6.6 Hz, 1H), 5.05 (s, 1H), 4.83 (d, *J* = 12.6 Hz, 1H), 4.62 (d, *J* = 12.3 Hz, 1H), 3.64 (s, 3H), 2.88 (d, *J* = 6.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.48, 160.93, 159.47, 136.02, 133.23, 132.80, 130.67, 127.77, 127.14, 126.68, 126.61, 125.07, 124.82, 121.65, 120.95, 117.74, 113.07, 73.05, 66.85, 55.18, 51.47, 50.74; HRMS (ESI) calcd for C₂₄H₂₀O₄SNa (M + Na⁺) 427.0980, found 427.0991; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 9.6 min, t_{minor} = 14.1 min, *ee* = 96%, dr = 8.0.1; [α]²⁵_D

(major) = +116.4 (c = 1.17 in CHCl₃).

(2'S,3S,4'R)-2'-(4-(allyloxy)phenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8i) (Table 2, entry 9). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (300 MHz, CDCl₃): δ = 7.71-7.65 (m, 2H), 7.32-7.17 (m, 6H), 6.83 (t, *J* = 7.5 Hz, 1H), 6.62-6.57 (m, 3H), 5.93 (ddd, *J* = 22.8, 10.6, 5.5 Hz, 1H), 5.55 (d, *J* = 6.6 Hz, 1H), 5.25 (m, 2H), 5.04 (s, 1H), 4.84 (d, *J* = 12.4 Hz, 1H), 4.62 (d, *J* = 12.4 Hz, 1H), 4.38 (d, *J* = 5.3 Hz, 2H), 2.70 (d, *J* = 6.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.45, 160.92, 158.45, 136.04, 133.16, 132.99, 132.78, 130.64, 127.79, 127.13, 126.75, 126.68, 125.08, 124.83, 121.63, 120.96, 117.77, 117.54, 113.91, 73.01, 68.64, 66.83, 51.44, 50.75; HRMS (ESI) calcd for C₂₆H₂₂O₄SNa (M + Na⁺) 453.1136, found 453.1119; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{maior} = 8.6 min, t_{minor} = 12.7 min, *ee* = 96%, dr = 8.0:1; [α]²⁵_D(major) = +227.3 (*c* = 1.17 in CHCl₃).

(2'S,3S,4'R)-2'-(2-(allyloxy)phenyl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8j) (Table

2, entry 10). The title compound was prepared according the typical procedure, as described above in 98% yield. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.86$ (dd, J = 7.9 Hz, 1.6, 1H), 7.68-7.64 (m, 2H), 7.24-7.15 (m, 4H), 6.96-6.93 (m, 1H), 6.79-6.75 (m, 2H), 6.46 (d, J = 8.2 Hz, 1H), 6.38 (d, J = 8.2 Hz, 1H), 6.02 (dddd, J = 17.3, 10.4, 5.7, 5.0 Hz, 1H), 5.65 (s, 2H), 5.36 (ddd, J = 17.0, 3.0, 1.6 Hz, 1H), 5.27 (m, 1H), 4.69 (d, J = 12.6 Hz, 1H), 4.55 (m, 1H), 4.26 (m, 1H), 4.17 (m, 1H), 3.22 (d, J = 5.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 194.48$, 160.64, 155.65, 135.71, 133.47, 133.05, 132.96, 130.55, 129.21, 127.62, 127.02, 126.26, 125.51, 124.95, 124.15, 121.10, 120.36, 119.95, 117.52, 117.33, 110.28, 71.95, 68.87, 66.99, 50.82, 42.65; HRMS (ESI) calcd for C₂₆H₂₂O₄SNa (M + Na⁺) 453.1136, found 453.1141; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 6.4 min, t_{minor} = 7.3 min, *ee* = 99%, dr = 11.0:1; [α]²⁵_D(major) = +465.9 (*c* = 1.33 in CHCl₃).

(2'*S*,3*S*,4'*R*)-4'-hydroxy-2'-(3-phenoxyphenyl)spiro[chroman-3,3'-thiochroman]-4-one (8k) (Table 2, entry 11). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.73-7.65 (m, 2H), 7.31-7.98 (m, 10H), 6.87-6.84 (m, 1H), 6.77-6.75 (m, 2H), 6.69-7.63 (m, 2H), 5.55 (s, 1H), 5.02 (s, 1H), 4.81 (d, *J* = 12.6 Hz, 1H), 4.61 (d, *J* = 12.3 Hz, 1H), 3.09 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.28, 161.03, 157.06, 156.24, 136.88, 136.19, 133.09, 132.30, 129.59, 128.93, 127.78, 127.14, 126.79, 125.11, 124.91, 124.63, 123.08, 121.56, 120.98, 120.35, 119.11, 118.42, 117.79, 72.75, 66.65, 51.54, 51.29; HRMS (ESI) calcd for C₂₉H₂₂O₄SNa (M + Na⁺) 489.1136, found 489.1143; HPLC (Chiralpak IC, *i*-propanol/hexane =

10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 6.5 min, t_{minor} = 7.2 min, *ee* = 98%, dr = 11.0:1;

$$[\alpha]_{D}^{25}(major) = +164.9 \ (c = 1.50 \ in \ CHCl_3).$$

(2'S,3S,4'R)-4'-hydroxy-2'-(4-isopropylphenyl)spiro[chroman-3,3'-thiochroman]-4-one (8I) (Table 2, entry 12). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.68-7.65 (m, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.21-7.14 (m, 4H), 6.86 (d, *J* = 8.2 Hz, 2H), 6.78-6.75 (m, 1H), 6.52 (d, *J* = 8.2 Hz, 1H), 5.58 (d, *J* = 6.3 Hz, 1H), 5.03 (s, 1H), 4.85 (d, *J* = 12.3 Hz, 1H), 4.61 (d, *J* = 12.3 Hz, 1H), 2.93 (d, *J* = 6.6 Hz, 1H), 2.67 (dt, *J* = 13.9, 6.9 Hz, 1H), 1.04 (dd, *J* = 6.9, 0.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.44, 160.84, 149.17, 135.88, 133.17, 132.71, 131.87, 129.35, 127.74, 127.19, 126.67, 125.56, 125.15, 124.81, 121.53, 120.66, 117.64, 72.67, 66.70, 51.32, 51.14, 33.67, 23.68, 23.66; HRMS (ESI) calcd for C₂₆H₂₄O₃SNa (M + Na⁺) 439.1344, found 439.1321; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} =7.0 min, t_{minor} = 10.9 min, *ee* = 97%, dr = 8.0:1; [α]²⁵_D (major) = +150.5 (*c* = 1.00 in CHCl₃).

(2'*R*,3*S*,4'*R*)-2'-(5-bromobenzo[d][1,3]dioxol-4-yl)-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4one (8m) (Table 2, entry 13). The title compound was prepared according the typical procedure, as described above in 98% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.76-7.74 (m, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.47 (s, 1H), 7.31-7.17 (m, 4H), 6.86-6.83 (m, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.63 (s, 1H), 5.84 (dd, *J* = 38.0, 1.4 Hz, 2H), 5.63 (d, *J* = 24.0 Hz, 2H), 4.79 (d, *J* = 12.6 Hz, 1H), 4.64 (d, *J* = 12.6 Hz, 1H), 3.12 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 193.85, 160.42, 148.04, 146.88, 136.10, 133.29, 132.31, 127.92, 127.59, 127.43, 126.82, 125.39, 125.27, 121.03, 120.93, 117.34, 115.76, 111.72, 110.92, 101.80, 71.95, 66.75, 50.66, 48.47; HRMS (ESI) calcd for C₂₄H₁₇BrO₅SNa (M + Na⁺) 518.9878, found 518.9897; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 8.6 min, t_{minor} = 13.0 min, *ee* = 98%, dr = 17.0:1; [a]²⁵_D (major) = +147.3 (*c* = 1.23 in CHCl₃).

(2'*R*,3*S*,4'*R*)-4'-hydroxy-2'-(5-methylfuran-2-yl)spiro[chroman-3,3'-thiochroman]-4-one (8n) (Table 2, entry 14). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.82 (dd, *J* = 7.9 Hz, 1.6, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.37 (ddd, *J* = 8.8, 7.3, 1.9 Hz, 1H), 7.20-7.15 (m, 3H), 6.94-6.90 (m, 1H), 6.78 (m, S26

1H), 6.20 (d, J = 3.2 Hz, 1H), 5.67 (m, 1H), 5.41 (d, J = 6.3 Hz, 1H), 5.09 (s, 1H), 4.70 (d, J = 12.6 Hz, 1H), 4.59 (d, J = 12.3 Hz, 1H), 3.01 (d, J = 7.3 Hz, 1H), 1.98 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): $\delta =$ 194.92, 161.35, 152.20, 146.68, 136.00, 133.47, 131.97, 127.82, 127.40, 127.03, 125.24, 125.06, 121.36, 121.14, 117.74, 111.00, 106.21, 72.50, 67.37, 51.10, 43.26, 13.19; HRMS (ESI) calcd for $C_{22}H_{18}O_4SNa (M + Na^+) 401.0823$, found 401.0825; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{major} = 7.8$ min, $t_{minor} = 9.1$ min, ee = 96%, dr = 8.4:1; $[\alpha]^{25}_{D}$ (major) = +80.1 (c = 1.33 in CHCl₃).

(2'*R*,3*S*,4'*R*)-4'-hydroxy-2'-(thiophen-2-yl)spiro[chroman-3,3'-thiochroman]-4-one (8o) (Table 2, entry 15). The title compound was prepared according the typical procedure, as described above in 98% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.78-7.76 (m, 2H), 7.34-7.31 (m, 1H), 7.25-7.16 (m, 3H), 7.04 (dd, *J* = 8.0 Hz, 4.3, 2H), 6.88 (t, *J* = 7.1 Hz, 1H), 6.72 (dd, *J* = 5.0, 3.5 Hz, 2H), 5.46-5.43 (m, 2H), 4.80 (d, *J* = 12.3 Hz, 1H), 4.63 (d, *J* = 12.3 Hz, 1H), 2.99 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.23, 161.28, 137.75, 136.18, 133.41, 132.33, 128.52, 127.91, 127.17, 126.96, 126.31, 125.57, 125.15, 124.87, 122.00, 121.34, 117.88, 73.68, 67.16, 51.67, 45.56; HRMS (ESI) calcd for C₂₁H₁₆O₄S₂Na (M + Na⁺) 403.0439, found 403.0420; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 7.6 min, t_{minor} = 9.3 min, *ee* = 97%, dr = 8.3:1; [α]²⁵_D (major) = +129.2 (*c* = 1.40 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-2'-(naphthalen-1-yl)spiro[chroman-3,3'-thiochroman]-4-one (8p) (Table 2, entry 16). The title compound was prepared according the typical procedure, as described above in 95% yield. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.18$ (d, J = 6.7 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.62 (dd, J = 22.6 Hz, 7.9, 2H), 7.52 (d, J = 8.2 Hz, 1H), 7.45-7.41 (m, 1H), 7.34-7.16 (m, 7H), 7.07-7.04 (m, 1H), 6.48-6.45 (m, 2H), 6.07 (s, 1H), 5.77 (d, J = 6.4 Hz, 1H), 4.87 (d, J = 12.5 Hz, 1H), 4.68 (s, 1H), 3.40 (d, J = 6.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 194.93$, 160.49, 135.95, 133.53, 133.10, 133.07, 131.29, 131.01, 129.08, 128.49, 127.93, 127.90, 127.51, 126.29, 126.11, 125.63, 125.31, 125.23, 124.53, 122.70, 120.85, 120.37, 117.25, 72.62, 67.10, 51.15, 44.50; HRMS (ESI) calcd for C₂₇H₂₀O₃SNa (M + Na⁺) 447.1031, found 447.1021; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 7.7 min, t_{minor} = 10.6 min, *ee* = 95%, dr = 4.5:1; [α]²⁵_D (major) = +545.0 (*c* = 1.00 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-2'-isopropylspiro[chroman-3,3'-thiochroman]-4-one (8q) (Table 2, entry 17). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (300 MHz, CDCl₃): δ = 7.93-7.90 (m, 1H), 7.61-7.45 (m, 2H), 7.19-6.92 (m, 5H), 5.24

(d, J = 7.3 Hz, 1H), 4.50 (q, J = 12.4 Hz, 2H), 4.03 (d, J = 4.7 Hz, 1H), 2.84 (d, J = 7.3 Hz, 1H), 2.02-1.91 (m, 1H), 1.07 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 196.70, 161.62, 136.41, 133.86, 132.66, 127.64, 127.09, 126.34, 125.49, 124.56, 122.70, 121.81, 118.25, 75.26, 66.93, 54.81, 51.77, 30.03, 24.24, 19.27; HRMS (ESI) calcd for C₂₀H₂₀O₃SNa (M + Na⁺) 363.1031, found 363.1038; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda =$ 254 nm): t_{major} = 7.3 min, t_{minor} = 8.6 min, *ee* = 95%, dr = 57.0:1; $[\alpha]^{25}_{D}$ (major) = +48.4 (*c* = 1.03 in CHCl₃).

(2'S,3S,4'R)-2'-cyclohexyl-4'-hydroxyspiro[chroman-3,3'-thiochroman]-4-one (8r) (Table 2, entry 18). The title compound was prepared according the typical procedure, as described above in 98% yield. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.92$ (dd, J = 7.9 Hz, 1.6, 1H), 7.60-7.46 (m, 2H), 7.17-6.93 (m, 5H), 5.20 (d, J = 7.2 Hz, 1H), 4.50 (q, J = 12.3 Hz, 2H), 4.00 (d, J = 4.9 Hz, 1H), 2.77 (d, J = 7.6 Hz, 1H), 2.04 (d, J = 12.7 Hz, 1H), 1.70-1.43 (m, 4H), 1.26-0.83 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 196.45$, 161.53, 136.29, 134.04, 132.84, 127.64, 127.10, 126.27, 125.42, 124.58, 122.81, 121.83, 118.13, 110.18, 75.48, 67.20, 53.86, 51.31, 40.16, 34.34, 30.27, 26.63, 26.32, 25.85; HRMS (ESI) calcd for C₂₃H₂₄O₃SNa (M + Na⁺) 403.1344, found 403.1345; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 5.7 min, t_{minor} = 6.3 min, *ee* = 96%, dr = 24.0:1; [α]²⁵_D (major) = +103.7 (*c* = 1.05 in CHCl₃).

(2*S*,2'*S*,4'*R*)-4'-hydroxy-2'-phenyl-3,4-dihydro-1*H*-spiro[naphthalene-2,3'-thiochroman]-1-one (8s) (Table 2, entry 19). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.79-7.77 (m, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.44-7.42 (m, 2H), 7.29-7.10 (m, 8H), 6.94 (d, *J* = 7.6 Hz, 1H), 5.47 (s, 1H), 5.38 (d, *J* = 6.3 Hz, 1H), 2.98 (d, *J* = 6.6 Hz, 1H), 2.93-2.87 (m, 1H), 2.39-2.33 (m, 1H), 2.18-2.03 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 202.37, 144.23, 136.57, 135.20, 133.71, 133.68, 133.50, 129.88, 128.17, 128.07, 128.05, 127.33, 127.12, 126.28, 126.14, 125.12, 124.52, 77.38, 52.58, 52.57, 25.94, 22.02; HRMS (ESI) calcd for C₂₄H₂₀O₂SNa (M + Na⁺) 395.1082, found 395.1088; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 7.1 min, t_{minor} = 8.2 min, *ee* = 95%, dr = 10.0:1; [α]²⁵_D (major) = + 49.0 (*c* = 1.20 in CHCl₃).

(2'*S*,3*S*,4'*R*)-4'-hydroxy-2'-phenyl-3,3'-spirobi[thiochroman]-4-one (8t) (Table 2, entry 20). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.97-7.96 (m, 1H), 7.69-7.68 (m, 1H), 7.50-7.48 (m, 2H), 7.29-7.09 (m, 9H), 5.52 (s, 1H), 5.30 (d, *J* = 11.0 Hz, 1H), 3.54 (dd, *J* = 14.2, 1.3 Hz, 1H), 3.48 (d, *J* = 11.0 Hz, 1H),

3.27 (d, J = 14.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 196.36$, 139.71, 135.69, 135.22, 133.21, 133.03, 132.88, 130.24, 130.12, 128.41, 128.18, 127.91, 127.66, 126.39, 125.79, 125.30, 125.03, 78.40, 51.67, 51.36, 28.02; HRMS (EI) calcd for C₂₃H₁₈O₂S₂ 390.0748, found 390.0730; HPLC (Chiralpak IC, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 14.3 min, t_{minor} = 15.6 min, *ee* = 96%, dr = 1.2:1; [α]²⁵_D (major) = -55.4 (*c* = 0.93 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-6-methyl-2'-phenylspiro[chroman-3,3'-thiochroman]-4-one (8u) (Table 2, entry 21). The title compound was prepared according the typical procedure, as described above in 98% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.69-7.67 (m, 1H), 7.44-7.39 (m, 3H), 7.21 (t, *J* = 3.8 Hz, 2H), 7.18-7.14 (m, 1H), 7.06-7.01 (m, 4H), 6.47 (d, *J* = 8.5 Hz, 1H), 5.54 (d, *J* = 6.9 Hz, 1H), 5.09 (s, 1H), 4.79 (d, *J* = 12.6 Hz, 1H), 4.60 (d, *J* = 12.3 Hz, 1H), 3.15 (d, *J* = 6.6 Hz, 1H), 2.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.51, 159.12, 137.28, 134.96, 133.44, 132.67, 130.33, 129.54, 128.32, 127.74, 127.68, 127.14, 126.19, 125.14, 124.86, 121.23, 117.43, 73.19, 66.86, 51.55, 51.29, 20.24; HRMS (ESI) calcd for C₂₄H₂₀O₃SNa (M + Na⁺) 411.1031, found 411.1018; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 7.3 min, t_{minor} = 13.2 min, *ee* = 97%, dr = 16.0:1; [α]²⁵_D (major) = +109.5 (*c* = 1.57 in CHCl₃).

S31

(2'S,3S,4'R)-6-chloro-4'-hydroxy-2'-phenylspiro[chroman-3,3'-thiochroman]-4-one (8v) (Table 2, entry 22). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (500 MHz, CDCl₃) δ = 7.65 (dd, *J*=9.6, 5.2, 2H), 7.38 (dd, *J*=6.6, 2.8, 2H), 7.23-7.15 (m, 4H), 7.08-7.06 (m, 3H), 6.53 (d, *J*=9.1, 1H), 5.57 (d, *J*=6.0, 1H), 5.05 (s, 1H), 4.86 (d, *J*=12.6, 1H), 4.61 (d, *J*=12.6, 1H), 2.81 (d, *J*=6.3, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 194.71, 159.42, 135.89, 134.42, 132.93, 132.41, 129.42, 128.58, 127.86, 127.75, 127.17, 126.37, 125.75, 125.13, 124.94, 122.02, 119.41, 72.74, 66.88, 51.51, 51.46; HRMS (EI) calcd for C₂₃H₁₇ClO₃S 431.0485, found 431.0466; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 5.6 min, t_{minor} = 7.1 min, *ee* = 98%, dr = 11.0:1; [α]²⁵_D (major) = +205.2 (*c* = 1.33 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-6'-methyl-2'-phenylspiro[chroman-3,3'-thiochroman]-4-one (8w) (Table 2, entry 23). The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (500 MHz, CDCl₃): δ = 7.71-7.69 (m, 1H), 7.48 (s, 1H), 7.40-7.38 (m, 2H), 7.26-7.22 (m, 2H), 7.11 (d, *J* = 8.2 Hz, 1H), 7.05 (d, *J* = 6.6 Hz, 4H), 6.81 (t, *J* = 7.6 Hz, 1H), 6.58 (d, *J* S32

= 8.5 Hz, 1H), 5.54 (d, *J* = 6.6 Hz, 1H), 5.05 (s, 1H), 4.83 (d, *J* = 12.3 Hz, 1H), 4.62 (d, *J* = 12.6 Hz, 1H), 2.72 (d, *J* = 6.9 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.32, 160.96, 136.04, 135.04, 134.73, 133.07, 129.48, 128.96, 128.75, 128.34, 127.75, 127.69, 126.75, 125.21, 121.59, 120.93, 117.71, 73.02, 67.04, 51.72, 51.23, 21.12; HRMS (ESI) calcd for C₂₄H₂₀O₃SNa (M + Na⁺) 411.1031, found 411.1011; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 6.7 min, t_{minor} = 11.4 min, *ee* = 96%, dr = 9.0:1; [α]²⁵_D (major) = +85.5 (*c* = 1.33 in CHCl₃).

(2'S,3S,4'R)-4'-hydroxy-6'-methoxy-2'-phenylspiro[chroman-3,3'-thiochroman]-4-one (8x) (Table 2, entry 24). The title compound was prepared according the typical procedure, as described above in 97% yield. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.70$ -7.68 (m, 1H), 7.39-7.37 (m, 2H), 7.26-7.22 (m, 2H), 7.13 (d, J = 8.5 Hz, 1H), 7.06-7.03 (m, 3H), 6.82 (m, 2H), 6.58 (d, J = 8.2 Hz, 1H), 5.53 (d, J = 6.6 Hz, 1H), 5.05 (s, 1H), 4.80 (d, J = 12.6 Hz, 1H), 4.61 (d, J = 12.3 Hz, 1H), 3.81 (s, 3H), 2.82 (d, J = 6.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 195.33$, 160.97, 157.65, 136.08, 135.15, 134.78, 129.42, 128.32, 127.69, 126.75, 126.45, 123.17, 121.53, 120.94, 117.70, 114.59, 112.53, 73.11, 67.02, 55.44, 51.89, 51.28; HRMS (ESI) calcd for C₂₄H₂₀O₄SNa (M + Na⁺) 427.0980, found 427.0989; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 9.9 min, t_{minor} = 18.2 min, ee = 95%, dr = 15.0:1; [α]²⁵_D(major) = +59.5 (c = 1.10 in CHCl₃).

(2'S,3S,4'R)-6'-chloro-4'-hydroxy-2'-phenylspiro[chroman-3,3'-thiochroman]-4-one (8y) (Table 2, entry 25). The title compound was prepared according the typical procedure, as described above in 93% yield. ¹H NMR (500 MHz, CDCl₃) δ = 7.70-7.68 (m, 2H), 7.39-7.37 (m, 2H), 7.21 (dddd, *J*=29.0, 27.4, 17.0, 5.0, 3H), 7.06-7.04 (m, 3H), 6.83-6.80 (m, 1H), 6.56 (d, *J*=8.5, 1H), 5.54 (d, *J*=6.6, 1H), 5.05 (s, 1H), 4.81 (d, *J*=12.3, 1H), 4.60 (d, *J*=12.6, 1H), 2.78 (d, *J*=6.6, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 195.03, 160.90, 136.25, 134.88, 134.41, 131.12, 130.83, 129.46, 128.56, 128.01, 127.72, 127.35, 126.68, 126.34, 121.48, 121.02, 117.74, 72.61, 66.56, 51.54, 51.14; HRMS (EI) calcd for C₂₃H₁₇ClO₃S 408.0587, found 408.0569; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): t_{major} = 5.9 min, t_{minor} = 22.2 min, *ee* = 92%, dr = 8.0:1; [a]²⁵_D (major) = +37.9 (*c* = 0.93 in CHCl₃).

5. Oxidation of Compound 8a

To a solution of **8a** (37.5 mg, 0.1 mmol) in 2 mL DMSO was added 2-Iodoxybenzoic acid (IBX, 84 mg, 0.3 mmol). The mixture was stirred at room temperature for 4h, reaction completed. The mixture was diluted with 10 mL water, extracted with EtOAc (3x 20 mL), the organic layers were combined, dried

and concentrated. The crude product was purified by silica gel chromatography (eluting with 1:6 EtOAc-hexane) to give product **9a** (34.6 mg, 93% yield).⁶¹H NMR (500 MHz, CDCl₃): $\delta = 8.11$ (dd, J = 7.9 Hz, 1.3, 1H), 7.90 (dd, J = 7.9 Hz, 1.9, 1H), 7.52-7.44 (m, 2H), 7.37 (dd, J = 7.1, 2.4 Hz, 2H), 7.27-7.24 (m, 5H), 7.04 (m, 2H), 5.00-4.97 (m, 2H), 4.44 (d, J = 12.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 192.54$, 189.85, 160.74, 140.52, 136.33, 136.18, 133.89, 130.87, 129.24, 128.79, 128.74, 128.59, 128.01, 126.88, 125.30, 122.06, 120.43, 117.62, 69.20, 57.88, 47.57; HRMS (ESI) calcd for C₂₃H₁₆O₃SNa (M + Na⁺) 395.0718, found 395.0689; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 10.8 min, t_{minor} = 17.7 min, *ee* = 97%, dr = 8.0:1; $[\alpha]^{25}$ D (major) = -300.2 (*c* = 1.07 in CHCl₃).

6. Preparation of Compound 12 for X-ray Crystallographic analysis

To a stirred mixture of compound **8e** (210 mg, 0.5 mmol) and water (6 mL), NH₄Cl (214 mg, 4 mmol) and zinc metal powder (490 mg, 7.5 mmol) were added at room temperature. After the reaction mixture was stirred for 1 hour at 80 °C, the mixture was extracted with EtOAc (3 x 20 mL). The combined organic layer was dried by MgSO₄ and concentrated, the resulting residue was purified by silica gel chromatography (eluting with EtOAc/hexane = 1/2) to give intermediate product **8z** (107 mg, 55% yield).⁷

The intermediate product 8z (98 mg, 0.25 mmol) was dissolved in 2 mL dried pyridine. Then

naphthalene-1-sulfonyl chloride (170 mg, 0.75 mmol) was added into the mixture. The reaction mixture was stirred at room temperature overnight. After that, 10 mL 1.0 M HCl solution was added and the resulting mixture was extracted with EtOAc (3 x 20 mL). The combined organic layer was dried by MgSO₄ and concentrated, the resulting residue was purified by silica gel chromatography (eluting with EtOAc/Hexane = 1/3) to give product **12** (123 mg, 85% yield). ¹H NMR (500 MHz, CDCl₃): $\delta = 8.57$ (d, J = 8.5 Hz, 1H), 8.08 (dd, J = 7.6, 0.9 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.65-7.58 (m, 4H), 7.42 (t, J = 7.7 Hz, 1H), 7.18-7.13 (m, 5H), 7.05-7.01 (m, 1H), 6.72-6.68 (m, 2H), 6.62 (d, J = 8.5 Hz, 2H), 6.40 (d, J = 8.5 Hz, 1H), 5.47 (d, J = 6.6 Hz, 1H), 4.93 (s, 1H), 4.67 (d, J = 12.6 Hz, 1H), 4.52 (d, J = 12.6 Hz, 1H), 2.67 (d, J = 6.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 195.12$, 160.74, 136.29, 136.10, 134.68, 134.16, 133.88, 133.07, 132.25, 131.68, 130.43, 130.34, 129.23, 128.56, 128.04, 127.85, 127.08, 126.97, 126.55, 125.10, 125.01, 124.07, 124.01, 121.45, 120.98, 119.93, 117.58, 72.86, 66.69, 51.34, 50.59; HRMS (ESI) caled for C₃₃H₂₄NO₅S₂ (M $-H^+$) 578.1096, found 578.1110.

7. Preparation of the compound 11

To a solution of malononitrile **10** (10mg, 0.15mmol, 1.5equiv.) in 0.5mL toluene was added (E)-3-benzylidenechroman-4-one **7a** (24mg, 0.1mmol, 1equiv.) at room temperature, followed by adding catalyst IV (4.88mg, 0.01mmol, 0.1equiv.). The mixture was stirred at room temperature. Upon completion, the crude product was purified by column chromatography on silica gel, eluted by
hexane/EtOAc=8:1 then 4:1 to afford the desired product **11** (27.4 mg, 91% yield) as primrose yellow solid. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.39 - 7.32$ (m, 3H), 7.27 (q, J = 6.0 Hz, 3H), 7.23 - 7.15 (m, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 8.1 Hz, 1H), 4.64 (s, 2H), 4.63 (d, J = 13.2 Hz, 1H), 4.43 (d, J = 13.8 Hz, 1H), 4.03 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 158.77$, 154.12, 140.87, 138.01, 130.30, 129.02, 127.92, 127.88, 121.26, 121.04, 119.26, 116.66, 115.94, 105.05, 66.48, 61.16, 39.71; HRMS (EI) calcd for C₁₉H₁₄O₂N₂ 302.1055, found 302.1048; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 15.7 min, t_{minor} = 27.0 min, *ee* = 96%, [α]³⁰_D (major) = -64.1 (*c* = 0.98 in CHCl₃).

Reference:

- 1. Abdur-Rashid, K.; Guo, R.; Chen, X.; Jia, W. Application: WO 2008148202 A1.
- 2. Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7, 1967-1969.
- 3. Mitchell, J. M.; Finney, N. S. Tetrahedron Lett. 2000, 41, 8431-8434.
- 4. Soh, J. Y.-T.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 6904-6905.
- 5. Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. J. Org. Chem. 2004, 69, 5725-5734.
- 6. Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995, 60, 7272-6.
- 7. Tsukinoki, T.; Tsuzuki, H. Green Chem. 2001, 3, 37-38.

Compound b

Compound \mathbf{c}

Compound **d**

S40

Compound \mathbf{g}

Compound 3a

Compound e

Compound h

S44

Compound 3b

Compound ${\bf f}$

Compound i

Compound 3c

180 170 (ppm)

Compound k

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Compound \mathbf{m}

Compound n

Compound 5

Compound o

Compound **p**

Compound q

S56

Compound 4

Compound 8a

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Compound 8b

Compound 8c

Compound 8d

Compound 8e

Compound 8f

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Compound 8g

S64

Compound 8h

Compound 8i

Compound 8j

Compound 8k

Compound 81

Compound 8m

Compound 8n

Compound 80

Compound 8p

Compound 8q

Compound 8r

Compound 8s

Compound 8t

100 (ppm)

10

un de de la constantia de la consta 200 190 180 170 160 150 140 140 130 120 110

Compound 8u

$\text{Compound} \ 8v$

Compound $\mathbf{8w}$

Compound 8x

Compound 8y

Compound 9

Compound 11

Compound 12

Racemic 8a

==== Shimadzu LCsolution Analysis Report ====

Enantiomeric enriched 8a

==== Shimadzu LCsolution Analysis Report ====

Chromatogram

C:\Users\User\Desktop\LC data\Gao Yaojun\G096.lcd

Acquired by Sample Name Sample ID Data File Name Method File Name Batch File Name Report File Name Description : Admin : GB044P1- xylene : GYJ : G096.lcd : 10%IPA, 1ml-min, 60min.lcm

:IC column with guard column,10%IPA,

Default.lcr

Racemic 8b

Enantiomeric enriched 8b

Racemic 8c

Enantiomeric enriched 8c

Racemic 8d

Enantiomeric enriched 8d

==== Shimadzu LCsolution Analysis Report ====

Racemic 8e

		Peak lable					
PD-20A C	h1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	11.443	53167072	2428571	98.274	98.335		
2	13.952	933708	41120	1.726	1.665		
Total		54100780	2469690	100.000	100.000		

Racemic 8f

min

SPD-20A Ch2 254nm PeakTable							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	5.740	17217802	1445920	49.955	51.905		
2	6.852	17248592	1339810	50.045	48.095		
Total		34466394	2785730	100.000	100.000		

Enantiomeric enriched 8f

Racemic 8g

Enantiomeric enriched 8g

Racemic 8h

Enantiomeric enriched 8h

Racemic 8i

Enantiomeric enriched 8i

Racemic 8j

Racemic 8k

Racemic 81

Racemic 8m

Enantiomeric enriched 8m

Racemic 8n

Enantiomeric enriched 8n

Racemic 80

Enantiomeric enriched 80

Racemic 8p

Racemic 8q

Enantiomeric enriched 8q

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Gao Yaojun\G229.lcd

Racemic 8r

PD-20A Cł	1 254nm	Peak lable				
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	5.666	12015031	1065903	49.875	51.048	
2	6.341	12075262	1022142	50.125	48.952	
Total		24090293	2088045	100.000	100.000	

Enantiomeric enriched 8r

==== Shimadzu LCsolution Analysis Report ====

DeckTel-1-

Racemic 8s

==== Shimadzu LCsolution Analysis Report ====

	C. Users User Desktop LC data Gao raojun G 125.1cd	
Acquired by	: Admin	
Sample Name	: GB072P1 recemic	
Sample ID	: GYJ	I I F Y
Data File Name	: G125.lcd	
Method File Name	: 10%IPA, 1ml-min, 60min.lcm	
Batch File Name		
Report File Name	: Default.lcr	
Description	:IC column with guard column,10%IPA	
	Chromatogram	Recemic
	GB072P1 recemic C:\Users\User\Desktop\LC data\Gao Yaojun\G125.lcd	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.827	4861199	403598	49.522	54.102
2	8.222	4955041	342403	50.478	45.898
Total		9816240	746001	100.000	100.000

Enantiomeric enriched 8s

==== Shimadzu LCsolution Analysis Report ====

SPD-20A Ch1 254nm								
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	7.052	6903262	550548	97.600	97.537		
	2	8.241	169733	13904	2.400	2.463		
	Total		7072995	564452	100.000	100.000		

Racemic 8t

Enantiomeric enriched 8t

Total

==== Shimadzu LCsolution Analysis Report ====

100.000

100.000

363201

8981830

Racemic 8u

Enantiomeric enriched 8u

==== Shimadzu LCsolution Analysis Report ====

Racemic 8v

Enantiomeric enriched 8v

Racemic 8w

Racemic 8x

Enantiomeric enriched 8x

Racemic 8y

PD-20A Cl	n1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.822	1585649	113212	9.385	13.389
2	10.276	6713879	350116	39.738	41.407
3	11.156	7054892	345344	41.756	40.843
4	21.993	1541037	36866	9.121	4.360
Total		16895457	845538	100.000	100.000

Enantiomeric enriched 8y

Racemic 9

Racemic 11

==== Shimadzu LCsolution Analysis Report ====

C:\Users\User\Desktop\LC data\Gao Yaojun\G063.lcd

Acquired by Sample Name Sample ID Data File Name Batch File Name Batch File Name	: Admin : GB025 P2 : GYJ : G063.lcd : 10%IPA, 1ml-min, 40min.lcm : : Default lor	NH ₂ CN
Report File Name Description	: Default.lcr :IC column with guard column	Racemic

SPD-20A C	Ch2 254nm		PeakTable			
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	15.307	24124559	700094	49.993	61.630	
2	26.192	24131021	435860	50.007	38.370	
Total		48255580	1135954	100.000	100.000	

Enantiomeric enriched 11

==== Shimadzu LCsolution Analysis Report ====

		PeakTable			
SPD-20A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.672	370035	13809	2.222	3.800
2	27.014	16279568	349530	97.778	96.200
Total		16649603	363339	100.000	100.000