Electronic Supplementary Information

Mn₁₂ Single-Molecule Magnet Aggregates as Magnetic Resonance Imaging Contrast Agents

Yinglin Wang,^a Wen Li,^a Shengyan Zhou,^b Daliang Kong,^b Haishan Yang,^b

and Lixin Wu*^a

^a State Key Laboratory of Supramolecular Structure and Materials, Jilin University,

Changchun 130012, P. R. China.

^b Radiology Department, China-Japan Union Hospital of Jilin University, Changchun,

Jilin, P. R. China

* To whom correspondence should be addressed. E-mail: wulx@jlu.edu.cn

Materials: $CH_3(CH_2)_{17}(OCH_2CH_2)_nOH$ (average $M_n = 711$) was a product from Aldrich. Bovine serum Albumin (BSA) was obtained from Dingguo Biotechnology (Beijing, China).

Instrument: The mass spectrum (MS) was recorded using an autoflex TOF/TOF (Bruker, Germany) mass spectrometer, equipped with a nitrogen laser (337 nm, 3 ns pulse). The mass spectrometer was operated in the negative ion reflector mode. Elemental analysis was performed on the Flash EA1112 from ThermoQuest Italia S.P.A. Thermogravimetric analysis (TGA) was performed on Perkin-Elmer7 series thermal analysis system in a N₂ flow with a heating rate of 10 °C min^{-1.} The inductive couple plasma-optical emission spectrometer (ICP-OES) was performed on Thermo

Scientific iCAP ICP-OES 6000 Series. FT–IR spectra were recorded on a Bruker Vertex 80v FT–IR spectrometer equipped with a DTGS detector (32 scans) with a resolution of 4 cm⁻¹ on a KBr pellet. Hydrodynamic diameters were determined on Nano-ZS instrument (Malvern Instruments). TEM images were carried out on Hitachi H8100 electron microscope. Magnetization hysteresis data were collected at 2 K, between +5 T and -5 T, cooling the samples at zero field with a magnetometer (Quantum Design MPMSXL-5) equipped with a SQUID senor. ¹H NMR spectra were recorded on a Bruker Ultrashield 500 MHz spectrometer, and all the relaxation times were recorded on the same instrument, at 25 °C with a least square fitting to 16 data points. r_1 and r_2 are defined as the changes in $1/T_1$ and $1/T_2$ normalized to the concentration of metal ion, with unit of mM⁻¹ s⁻¹. The r_1 and r_2 values can be calculated as the slopes of the lines $1/T_1$ and $1/T_2$ versus the CA concentration. All the MRI experiments were performed in a clinical 1.5 T MRI instrument (Signa HDx 1.5 T Series) at room temperature: 32 echoes; repetition time (TR): 1000 ms; echo times (TE): 6–67 ms.

Preparation of stearic acid modified Mn₁₂ (**Mn**₁₂–**C**₁₈): A mixture of Mn₁₂-Ac (0.1 mmol) and stearic acid (3 mmol) was dissolved in 50 ml of 1:1 (v:v) solution of toluene and dichloromethane. The mixture was stirred for 24 h at 50 °C, which was then filtrated and concentrated. Toluene was added and then evaporated to remove free CH₃CO₂H. To make the acetic acid ligands completely substituted, this procedure was repeated four times. The results brown solid was dissolved in hot methanol (65 °C), filtered and washed with hot methanol five times to remove the superfluous stearic acid. The obtained brown product was dried under vacuum.

The characterization of Mn₁₂–C₁₈: IR (KBr, cm⁻¹) ν = 2920, 2850, 1583, 1569, 1531, 1468, 1455, 1443, 1429, 1380, 1317, 1261, 1098, 1025, 868, 804, 721, 705, 673, 641, 610, 585. LDI–TOF mass spectra of Mn₁₂–C₁₈ show the presence of [Mn₁₂O₁₂(OOCCH₃)₄(OOCC₁₇H₃₅)₁₁]⁻ ion at m/z = 4206.4, and fragments resulting from the stepwise loss of several C₁₇H₃₅CO₂ units (Δ m/z = 283) and CH₃CO₂ units (Δ

m/z = 59). Anal. Calced for Mn_{12} – C_{18} ($C_{208}H_{402}O_{45}Mn_{12}$, 4282.65): C, 58.33; H, 9.45. Found: C, 57.99; H, 8.99. The TGA at range of 30–150 °C corresponds to the loss of crystallized water (0.52 %), and the calculated number of crystallized water is ca. 1. Combining the MS, TGA and elemental analysis, Mn_{12} – C_{18} should correspond to the formula of $Mn_{12}O_{12}$ (OOCCH₃)₅(OOCC₁₇H₃₅)₁₁H₂O.

Fig. S1 IR spectra of (A) Mn_{12} – C_{18} and (B) Mn_{12} –Ac in solid state.

Fig. S2 TGA graphs of (A) Mn₁₂–Ac and (B) Mn₁₂–C_{18.}

Fig. S3 High mass region of the negative mode LDI–TOF mass spectrum of Mn_{12} – C_{18} .

Fig. S4 The magnetization hysteresis loop measured at 2 K for Mn_{12} - C_{18} .

Fig. S5 Photograph of Mn_{12} – $C_{18}/C_{18}EO_{10}$ aqueous solution extracted by chloroform and *n*-hexane.

Fig. S6 Magnetization hysteresis loop at 2 K for Mn_{12} – $C_{18}/C_{18}EO_{10}$ complexes.

Fig. S7 Plots of hydrodynamic diameter of Mn₁₂–C₁₈/C₁₈EO₁₀ aggregates versus different (a) NaCl concentration, (b) pH conditions, and (c) temperature.

Fig. S8 The longitudinal relaxation rate $1/T_1$ changes against time.