An Efficient and General Synthesis of Oxazino[4,3-a]indoles by A Cascade

Addition–Cyclization Reaction of (1*H*-Indol-2-yl)methanols and Vinyl

Sulfonium Salts

Jing An, Ning-Jie Chang, Li-Dong Song, Yu-Qin Jin, Ying Ma, Jia-Rong Chen,* Wen-Jing Xiao *

The Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China Fax: (+86)-27-67862041; E-mail: wxiao@mail.ccnu.edu.cn

Contents

1. General Methods	S-1
2. Materials	S-1
3. Experimental Procedures and Characterizations	S-2
4. Synthesis of 7,8-bis(methyloxy)-10-[4-(methyloxy)phenyl]-3,4-dihydro-1 <i>H</i> -[1,4] oxazino[4,3- <i>a</i>]indole 10	S-9
5. X-Ray structure of 2-methyl-3,4-dihydropyrazino[1,2- <i>a</i>]indol-1(2 <i>H</i>)-one 5 l	S-9
6. Copies of ¹ H NMR and ¹³ C NMR Spectra	S-10

1. General methods

All reactions were monitored by TLC analysis with silica gel-coated plates. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on Varian Mercury 400 / 600 (400 / 600 MHz) spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = single, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400/600 (100/150MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). Mass spectra were measured on a Finnigan Trace MS spectrometer or API 2000 LC/MS/MS (ESI-MS). Melting point was measured with BűCHI Melting Point B-545.

2. Materials

Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego. All the solvents were treated according to general methods. Flash chromatography was conducted using 60 silica (mesh 230-400).

3. Experimental Procedures and Characterizations

3.1 General procedure for the synthesis of the (1H-indol-2-yl)methanol Compounds

In a two-necked flask were charged with freshly distilled THF (20 mL) and LiAlH₄ (15.6 mmol, 0.59 g). It was cooled to 0 $^{\circ}$ C and the crude carboxylate (10.0 mmol) were carefully added in portionwise, and then warmed to room temperature. About 2 h later (monitored by TLC), the mixture was cooled to 0 °C and 20 mL of THF as well as 1.1 mL 20% of aq. KOH were added, repectively. After stirring for 10 min the mixture was filtered through a Buchner funnel and the salts was extracted again with 20 mL of reflux THF. The combined organic filtrates were washed with brine, dried over MgSO₄, filtered and concentrated. And the crude indolyl alcohol was purified by flash chromatography (petroleum ether/EtOAc = 5/1) to afford (1*H*-indol-2-yl)methanol compounds 3a-3e, 3g-3i, 9 as a solid.

(1*H*-indol-2-yl)methanol (3a). White solid, 92% yield. mp 71-72 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ 8.26 (s, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.34 - 6.85 (m, 3H), 6.27 (s, 1H), 4.51 (s, 2H), 2.99 (d, J = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 137.37, 136.29, 127.82, 122.11, 120.54, 119.86, 111.07, 100.54, 58.17.

(5-methyl-1*H*-indol-2-yl)methanol (3b). White solid, 90% yield. mp 83-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.35 (s, 1H), 7.19 (d, J = 8.3 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.30 (s, 1H), 4.74 (s, 2H), 2.43 (s, 3H), 2.10 (s, 1H). ¹³C

NMR (150 MHz, CDCl₃) δ (ppm) 137.46, 134.58, 128.98, 128.02, 123.68, 120.13, 110.73, 100.07, 58.07, 21.37.

(5-methoxy-1H-indol-2-yl)methanol (3c). White solid, 93% yield. mp 81-82 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.30 (s, 1H), 7.08 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.80 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.5$ Hz, 1H), 6.25 (s,

1H), 4.63 (d, J = 4.9 Hz, 2H), 3.80 (s, 3H), 2.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.04, 138.25, 131.47, 128.35, 112.25, 111.72, 102.29, 100.35, 58.42, 55.80.

(5-fluoro-1H-indol-2-yl)methanol (3d). White solid, 90% yield. mp 91-92 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.46 (s, 1H), 7.18 (dd, $J_1 = 9.5$ Hz, $J_2 = 2.3$ Hz, 1H), 7.09 (dd, $J_1 = 8.7$ Hz, $J_2 = 4.4$ Hz, 1H), 6.86-6.90 (m, 1H), 6.28 (s, 1H), 4.66 (s, 2H), 2.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.03, 156.70, 139.11, 132.79,

128.27, 128.17, 111.60, 111.50, 110.61, 110.35, 105.41, 105.18, 100.65, 100.60, 58.37.

(5-chloro-1H-indol-2-yl)methanol (3e). White solid, 89% yield. mp 112-113 °C. ¹H NMR (400 MHz, DMSO) δ (ppm) 11.27 (s, 1H), 7.84-7.22 (m, 2H), 7.06 $(dd, J_1 = 8.5 Hz, J_2 = 1.9 Hz, 1H), 6.31 (s, 1H), 5.36 (t, J = 5.6 Hz, 1H), 4.65 (d, J_2 = 1.9 Hz, 1H), 4.65 ($ J = 5.5 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 142.12, 134.63, 129.09, 123.19, 120.41, 118.77, 112.50, 98.18, 56.80.

(5-bromo-1H-indol-2-yl)methanol (3f). In a three-necked flask were charged with freshly distilled toluene (130)mL) ethyl and 5-bromo-1H-indole-2-carboxylate (10.0 mmol, 2.68 g). It was cooled to -78 °C and DIBAL-H (20.0 mmol, 1M, 20 mL) were carefully added into by dropwise under the protection of N₂. About 2 h later (monitored by TLC), the reaction was quenched with saturated NH₄Cl solution at -78 °C. The mixture was filtered through a Buchner funnel and the salts was washed with EtOAc. The combined organic filtrates were washed with brine, dried over MgSO₄, filtered and concentrated. And the crude indolyl alcohol was purified by flash chromatography (petroleum ether/EtOAc = 5/1) to afford **3f** as a white solid in 84% yield. mp 113-114 $^{\circ}C$. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.48 (s, 1H), 7.69 (s, 1H), 7.23 (d, J = 35.8 Hz, 2H), 6.33 (s, 1H), 4.81 (s, 2H), 2.05 (s. 1H): ¹³C NMR (150 MHz, DMSO) δ (ppm) 141.96, 134.87, 129.84, 122.95, 121.81, 113.01, 111.20, 98.09, 56.79.

(5-nitro-1H-indol-2-yl)methanol (3g). Yellow solid, 84% yield. mp 114-115 °C. ¹H NMR (400 MHz, DMSO) δ (ppm) 11.84 (s, 1H), 8.50 (s, 1H), 7.97 (d, J = 8.9 Hz, 1H), 7.50 (d, J = 8.9 Hz, 1H), 6.58 (s, 1H), 5.50 (s, 1H), 4.68 (d, J =5.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 144.36, 140.52, 139.54, 127.29, 116.77, 116.18, 111.34, 100.81, 56.71.

(5,7-dimethyl-1H-indol-2-yl)methanol (3h). White solid, 82% yield. mp 91-92 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.39 (s, 1H), 7.17 (s, 1H), 6.79 (s, 1H), 6.26 (s, 1H), 4.66 (s, 2H), 2.37 (s, 8H); 13 C NMR (150 MHz, CDCl₃) δ (ppm) 137.14, 134.32, 129.23, 127.75, 124.42, 119.82, 117.79, 100.66, 58.63, 21.32, 16.52.

 O_2N

(5,7-difluoro-1H-indol-2-yl)methanol (3i). White solid, 84% yield. mp 78-79 °C. ¹H NMR (400 MHz, DMSO) δ (ppm) 11.59 (s, 1H), 7.12 (dd, $J_1 = 9.5$ Hz, J_2 = 1.8 Hz, 1H), 6.99-6.77 (m, 1H), 6.41 (s, 1H), 5.33 (s, 1H), 4.62 (s, 2H); ^{13}C NMR (100 MHz, DMSO) δ (ppm) 156.93, 156.83, 154.62, 154.53, 149.28,

146.84, 146.69, 143.66, 130.77, 130.65, 130.58, 120.66, 120.53, 100.75, 100.52, 100.17, 95.91, 95.70, 95.61, 95.40, 56.67.

(3-methyl-1*H*-indol-2-yl)methanol (3j).¹ White solid, 73% yield. mp 111-112 $^{\circ}$ C. H NMR (400 MHz, DMSO) δ (ppm) 10.74 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.03 (t, J = 6.9 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 5.18-5.00 (m, J = 7.3 Hz, 1Hz), 5.18-5.00 (m, J = 7.3 Hz, 1Hz), 5.18-5.00 (m, J = 7.3 Hz), 5.18-5.1H), 4.60 (d, J = 5.4 Hz, 2H), 2.22 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 135.40, 135.24, 128.50, 120.73, 118.04, 110.91, 105.70, 54.70, 8.32.

H₃CO H₂CC

(5,6-dimethoxy-3-(4-methoxyphenyl)-1H-indol-2-yl)methanol (9). White solid, 75% yield. mp 84-85 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.27 (s, 1H), 7.39 (d, J = 8.6 Hz, 2H), 7.09 (s, 1H), 7.03 (d, J = 8.5 Hz, 2H), 6.89 (s, 1H), 4.85 (d, J = 5.6 Hz, 2H), 3.93 (s, 3H), 3.88 (d, J = 4.2 Hz, 6H), 1.75 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ (ppm) 158.30, 147.66, 145.57, 131.86, 130.36, 130.03, 127.09, 120.34, 115.28, 114.26, 101.64, 94.63, 57.14, 56.52,

56.30, 55.34.

N-methyl-1H-indole-2-carboxamide (3l). To a solution of ethanolic MeNH₂ (6.75 M, 4.0 mL) was added methyl 1H-indole-2-carboxylate (5.7 mmol, 0.99 g) and the resulting solution was stirred at room temperature until the carboxylate was consumed as determined by TLC. The mixture was filtered through a Buchner funnel and the filter was washed with Et₂O to give the pure product as a white solid in 72% yield. mp 222-223 $^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.51 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.81 (s, 1H), 6.22 (s, 1H), 3.07 (d, J = 4.9 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 161.62, 136.36, 131.88, 127.16, 123.16, 121.45, 119.68, 112.31, 102.04, 25.82.

3.2 General procedure for the synthesis of the oxazino[4,3-a]indoles compounds

Α stirred solution of (1*H*-indol-2-yl)methanol compounds 3a-3k (0.5 mmol) or N-methyl-1H-indole-2-carboxamide 3l (0.5 mmol, 0.0871 g) or 1H-indole-2-carboxamide 3m (0.5 mmol, 0.0801 g) in CH₂Cl₂ (40 mL) was treated with KOH (1.25 mmol, 0.0702 g) at 0 °C under N₂. After 10 min a solution of diphenylvinylsulfonium salt 4^2 (0.6 mmol, 0.2174 g) in CH₂Cl₂ (10 mL) was added dropwise and the reaction was stirred at 0 °C, then the reaction mixture was warmed to r.t. and the reaction was stirred at this temperature until determined to be complete by TLC analysis. The solvent was concentrated under vacuum. The product was then purified using flash column chromatography on silica gel (PE/EA = 30/1 as eluant) to afford the desired product 5.

3,4-dihydro-1*H***-[1,4]oxazino[4,3-***a***]indole** (5a). Prepared according to the general procedure from **3a** (0.5 mmol), **4** (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (93% yield). mp 129-130 $^{\circ}C$. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.56 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.17 (t, J = 7

1H), 7.11 (t, J = 7.3 Hz, 1H), 6.19 (s, 1H), 4.94 (s, 2H), 4.09 (d, J = 5.7 Hz, 2H), 4.00 (d, J = 5.7 Hz, 2H); ¹³C NMR(150 MHz, CDCl₃) δ (ppm) 136.08, 132.91, 127.87, 120.84, 119.98, 108.42, 95.73,

95.71, 64.90, 64.52, 41.61; HRMS: m/z (ESI) calculated [M+H]⁺ 174.0913, measured 174.0917.

8-methyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5b). Prepared according to the general procedure from 3b (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH_2Cl_2 (50 mL) to provide the title compound as a white solid (73% yield). mp

125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.25 (s, 1H), 7.05 (d, J = 8.2 Hz, 1H), 6.91 (d, J =8.2 Hz, 1H), 6.02 (s, 1H), 4.84 (s, 2H), 4.12-3.94 (m, 2H), 3.94-3.81 (m, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 134.55, 132.96, 129.20, 128.16, 122.41, 119.94, 108.11, 95.26, 64.91, 64.54, 41.66, 21.42; HRMS: m/z (ESI) calculated [M+H]⁺ 188.1070, measured 188.1071.

8-(methyloxy)-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indole (5c). Prepared according to the general procedure from 3c (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid

(75% yield). mp 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.14 (d, J = 8.8 Hz, 1H), 7.03 (d, J = 2.4 Hz, 1H), 6.83 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 6.12 (s, 1H), 4.93 (s, 2H), 4.11 (dd, $J_1 = 6.2$ Hz, $J_2 = 4.4$ Hz, 2H), 3.99 (dd, $J_1 = 6.1$ Hz, $J_2 = 4.4$ Hz, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.44, 133.57, 131.44, 128.32, 110.85, 109.10, 102.26, 95.51, 64.86, 64.52, 55.80, 41.68; HRMS: m/z (ESI) calculated [M+Na]⁺ 226.0839, measured 226.0848.

8-fluoro-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5d). Prepared according to the general procedure from 3d (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (81% yield). mp 108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.19 (dd, $J_1 = 9.7$ Hz, $J_2 = 2.4$ Hz, 1H), 7.13 (dd, $J_1 = 8.8$ Hz, $J_2 = 4.3$ Hz, 1H), 6.99-6.80 (m, 1H), 6.14 (s, 1H), 4.92 (s, 2H), 4.10 (dd, $J_1 = 6.2$ Hz, J_2 = 4.4 Hz, 2H), 3.98 (dd, J_1 = 6.0 Hz, J_2 = 4.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.93, 138.80, 136.23, 127.08, 117.22, 116.59, 108.24, 98.12, 64.61, 64.18, 41.93; HRMS: m/z (ESI) calculated M⁺ 191.0746, measured 191.0744.

8-chloro-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5e). Prepared according to the general procedure from 3e (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (74% yield). mp 132-133 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.50 (d, J = 1.7 Hz, 1H), 7.18-7.02 (m, 2H), 6.12

(s, 1H), 4.93 (s, 2H), 4.11 (dd, $J_1 = 6.2$ Hz, $J_2 = 4.5$ Hz, 2H), 3.98 (dd, $J_1 = 6.0$ Hz, $J_2 = 4.5$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 134.49, 134.30, 128.88, 125.58, 121.08, 119.59, 109.38, 95.47, 64.72, 64.35, 41.64; HRMS: m/z (ESI) calculated M⁺ 207.0451, measured 207.0450.

8-bromo-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5f). Prepared according to the general procedure from 3f (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (76% yield). mp

158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.65 (d, J = 1.8 Hz, 1H), 7.22 (dd, $J_1 = 8.5$ Hz, J_2

= 2.0 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 6.12 (s, 1H), 4.93 (s, 2H), 4.11 (dd, J₁ = 6.2 Hz, J₂ = 4.5 Hz, 2H), 3.98 (dd, $J_1 = 6.1$ Hz, $J_2 = 4.5$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 134.76, 134.14, 129.54, 123.64, 122.65, 113.18, 109.84, 95.39, 64.70, 64.35, 41.62; HRMS: m/z (ESI) calculated M⁺ 250.9946, measured 250.9947.

8-nitro-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5g). Prepared according to the general procedure from 3g (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a yellow solid (74% yield). mp 163-164 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.46 (d, J = 2.1 Hz, 1H), 8.04 (dd, $J_1 = 9.0$ Hz, J_2 = 2.2 Hz, 1H), 7.37-7.16 (m, 1H), 6.37 (s, 1H), 5.00 (s, 2H), 4.24-4.17 (m, 2H), 4.13 (dd, $J_1 = 5.9$ Hz, $J_2 = 4.3$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.93, 138.80, 136.23, 127.08, 117.22, 116.59, 108.24, 98.12, 64.61, 64.18, 41.93; HRMS: m/z (ESI) calculated [M+Na]⁺ 241.0584, measured 241.0582.

6,8-dimethyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-a]indole (5h). Prepared according to the general procedure from 3h (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (60% yield). mp 106-107 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.15 (s, 1H), 6.69 (s, 1H), 6.09 (d, J =0.9 Hz, 1H), 4.91 (s, 2H), 4.44-4.32 (m, 2H), 4.11-4.01 (m, 2H), 2.64 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 133.84, 133.24, 129.21, 128.86, 125.58, 120.50, 117.88, 96.40, 65.17, 64.91, 45.24, 21.06, 19.55; HRMS: m/z (ESI) calculated [M+H]⁺ 202.1226, measured 202.1236.

6,8-difluoro-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5i). Prepared according to the general procedure from 3i (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (61% yield). mp 89-90 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 6.95 (dd, $J_1 = 9.0$ Hz, $J_2 = 2.0$ Hz,

1H), 6.60-6.64 (m, 1H), 6.14 (s, 1H), 4.91 (s, 2H), 4.29 (d, J = 5.3 Hz, 2H), 4.09 (t, J = 5.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 157.67, 156.10, 150.03, 148.50, 148.40, 135.55, 130.59, 120.94, 100.87, 100.72, 97.09, 96.72, 96.67, 96.52, 64.63, 64.53, 44.35, 44.33; HRMS: m/z (ESI) calculated M⁺ 209.0652, measured 209.0650.

10-methyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5j). Prepared according to the general procedure from 3j (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (74% yield). mp 57-58 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.52 (d, J = 7.8 Hz, 1H), 7.23 (t, J

= 5.2 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 4.92 (s, 2H), 4.19-4.06 (m, 2H), 4.06 – 3.95 (m, 2H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 136.11, 128.67, 128.44, 120.93, 119.37, 118.24, 108.32, 104.15, 64.65, 63.92, 41.74, 7.90; HRMS: m/z (ESI) calculated M⁺ 187.0997, measured 187.1000.

1,10-dimethyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (5k). Prepared according to the general procedure from 3k (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (62% yield). mp 63-64 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.54 (d, J = 7.8 Hz, 1H), 7.24 (t, J = 6.3 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 5.13 (d, J = 6.5 Hz, 1H), 4.37-4.22 (m, 1H), 4.11-4.03 (m, 1H), 4.03-3.91 (m, 2H), 2.27 (s, 3H), 1.65 (d, J = 6.5 Hz, 3H); ¹³C NMR (150

MHz, CDCl₃) δ (ppm) 135.22, 132.67, 128.47, 120.94, 119.27, 118.16, 108.29, 103.85, 69.96, 61.91, 41.67, 20.44, 9.06; HRMS: m/z (ESI) calculated [M+H]⁺ 202.1226, measured 202.1221.

2-methyl-3,4-dihydropyrazino[1,2-a]indol-1(2H)-one (5l). Prepared according to the general procedure from 31 (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (80% yield). mp 245-246 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.71 (d, J = 8.0 Hz, 1H), 7.37-7.29 (m, 2H), 7.26 (d, J = 2.6 Hz, 1H), 7.16 (dd, $J_1 = 10.5$ Hz, $J_2 = 3.9$ Hz, 1H), 4.33-4.25 (m, 2H), 3.84-3.75 (m, 2H), 3.19 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.25, 136.31, 129.24, 127.36, 124.31, 122.60, 120.57, 109.47, 105.84, 47.98, 39.91, 34.21; HRMS: m/z (ESI) calculated [M+H]⁺ 201.1022, measured 201.1025.

3,4-dihydropyrazino[1,2-a]indol-1(2H)-one (5m). Prepared according to the general procedure from indole-2-carboxamide **3m**³ (0.5 mmol), **4** (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a white solid (90% yield). mp 197-198 °C. ¹H NMR (400 MHz, DMSO) δ (ppm) 8.18 (s, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.31 (s, 1H), 7.11 (d, J = 13.1 Hz, 2H), 4.27 (s, 2H), 3.67 (s, 2H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 160.38, 136.28, 129.70, 126.50, 123.96, 121.99, 120.32, 110.64, 104.19, 40.05, 39.75; HRMS: m/z (ESI) calculated [M+Na]⁺ 209.0685, measured 209.0688.

3.3 Proposed reaction pathway for the cyclization process 3.3.1 Initial experiment about mechanism investigation

A stirred solution of (1H-indol-2-yl)methanol compounds 3c and 3g (0.5 mmol) in CH₂Cl₂ (40 mL) was treated with KOH (1.25 mmol, 0.0702 g) at 0 °C under N₂. After 10 min a solution of dimethyl[(E)-2-phenyl-1-ethenyl]sulfonium trifluoromethanesulfonate 6^4 (0.6 mmol, 0.1572 g) in CH₂Cl₂ (10 mL) was added dropwise and the reaction was stirred at 0 °C, then the reaction mixture was warmed to r.t. and the reaction was stirred at this temperature until determined to be complete by TLC analysis. The solvent was concentrated under vacuum. The product was then purified using flash column chromatography on silica gel (PE/EA = 10/1 as eluant) to afford the desired product **7** and **8**.

3.3.2 Proposed reaction pathway for the cyclization process

H₃CO

(5-methoxy-1-(1-phenylvinyl)-1*H*-indol-2-yl)methanol (7). Prepared according to the general procedure from 3c (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) to provide the title compound as a brown oil (58% yield). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.32 – 7.23 (m, 3H),

7.11 (d, J = 7.5 Hz, 2H), 7.06 (s, 1H), 7.01 (d, J = 8.9 Hz, 1H), 6.79 – 6.72 (m, 1H), 6.54 (s, 1H), 5.96 (s, 1H), 5.45 (s, 1H), 4.53 (s, 2H), 3.82 (s, 3H), 1.81 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 154.42, 142.64, 140.14, 136.80, 133.46, 129.10, 128.72, 127.87, 125.69, 113.44, 112.42, 111.74, 102.34, 57.40, 55.72; HRMS: m/z (ESI) calculated [M+Na]⁺ 302.1152, measured 302.1158.

(5-nitro-1-(1-phenylvinyl)-1*H*-indol-2-yl)methanol (8). Prepared according to the general procedure from 3g (0.5 mmol), 4 (0.6 mmol), KOH (1.25 mmol) and CH₂Cl₂ (50 mL) at 0 °C for 1.5 h to provide the title compound as a brown oil (90% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.49 (s, 1H), 7.96 (d, *J* =

9.0 Hz, 1H), 7.30 (dt, $J_1 = 14.2$ Hz, $J_2 = 7.2$ Hz, 3H), 7.11 (dd, $J_1 = 14.9$ Hz, $J_2 = 8.4$ Hz, 3H), 6.77 (s, 1H), 6.12 (s, 1H), 5.54 (s, 1H), 4.61 (s, 2H), 2.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 143.16, 141.83, 140.89, 135.53, 129.57, 128.94, 126.72, 125.39, 117.73, 114.72, 110.74, 104.14, 57.11; HRMS: m/z (ESI) calculated [M+Na]⁺ 317.0897, measured 317.0902.

4. Synthesis of 7,8-bis(methyloxy)-10-[4-(methyloxy)phenyl]-3,4-dihydro-1*H*-[1,4]oxazino[4, 3-*a*]indole 10

7,8-bis(methyloxy)-10-[4-(methyloxy)phenyl]-3,4-dihydro-1H-[1,4]oxazino[4,3-*a***]indole (10). A stirred solution of (5,6-dimethoxy-3-(4-methoxyphenyl)-1***H***-indol-2-yl)methanol 9** (0.5 mmol, 0.1567 g) in CH₂Cl₂ (40 mL) was treated with KOH (1.25 mmol, 0.0702 g) at 0 °C under N₂. After 10 min a solution of diphenylvinylsulfonium salt **4** (0.6 mmol, 0.2174 g) in CH₂Cl₂ (10 mL) was added dropwise and the reaction was stirred at 0 °C, then the reaction mixture was warmed to r.t. and the reaction was stirred at this temperature until determined to be complete by TLC analysis. The solvent was concentrated under vacuum. The product was then purified using flash column chromatography on silica gel (PE/EA = 30/1 as eluant) to afford the desired product **10** as a white solid in 77% yield. mp 147-148 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.33 (d, *J* = 8.5 Hz, 2H), 7.18 (s, 1H), 7.01 (d, *J* = 8.5 Hz, 2H), 6.81 (s, 1H), 5.02 (s, 2H), 4.20 (t, *J* = 5.0 Hz, 2H), 4.08 (t, *J* = 5.0 Hz, 2H), 3.97 (s, 3H), 3.91 (s, 3H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 157.76, 146.72, 145.57, 130.62, 129.46, 127.55, 127.11, 119.34, 114.22, 111.06, 101.13, 92.34, 64.62, 64.50, 56.44, 56.28, 55.29, 41.99; HRMS: m/z (ESI) calculated [M+Na]⁺ 362.1363, measured 362.1364.

References

1 D. St C. Black, N. Kumar and L. C. H. Wong, Synthesis, 1986, 474.

2 M. Yar, E. M. McGarrigle and V. K. Aggarwal, Angew. Chem. Int. Ed., 2008, 47, 3784.

3 P. Csomós, L. Fodor, I. Mándity and G. Bernáth, Tetrahedron 2007, 63, 4983.

4 V. G. Nenajdenko, P. V. Vertelezkij, I. D. Gridnev, N. E. Shevchenko, E. S. Balenkova, Tetrahedron, 1997, 53, 8173.

5. X-Ray structure of 2-methyl-3,4-dihydropyrazino[1,2-a]indol-1(2H)-one 5l

Crystal data for **51**: C₁₂H₁₂N₂O, M = 200.24, monoclinic, P2(1)/c, a = 10.5035(12) Å, b = 8.0361(9) Å, c = 12.2743(14) Å, $\alpha = 90^{\circ}$, $\beta = 98.375(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 1025.0(2) Å³, Z = 4, T = 298(2), F000 = 424, final R indices $[I>2\sigma(I)]$: $R_1 = 0.0489$, w $R_2 = 0.1371$, R indices (all data): $R_1 = 0.0679$, w $R_2 = 0.1458$.

6. Copies of ¹H NMR and ¹³C NMR Spectra

AJ499 CDCB 100428

AJ490 DMSO 100428

AJ494 DMSO 100428 ° °

AJ 555 DMSO 100428

— 10. 74	6.95 6.95	$\bigwedge_{5.09}^{5.09} 4.61 \\ < 4.59 \\ $	— 2.48 — 2.22	- 0.00
I		\checkmark \checkmark		1

S-20

fl (ppm) . 140 0

AJ 507 CDCB 090708

AJ 503 CDCB 090708

AJ 505 CDCB 090708

AJ 574 CDCB 091010

AJ 848 DMSO 101104

