Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Growth limits in platinum oxides formed on Pt-skin layers on Pt-Co bimetallic nanoparticles

Hideto Imai,*^{*a*} Masashi Mastumoto,^{*a*} Takashi ⁵ Miyazaki,^{*a*} Kazuo Kato,^{*b*} Hajime Tanida,^{*b*} and Tomoya Uruga^{*b*}

^a Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka ,Tsukuba, Japan. Fax: +81 29 856 6137; Tel: +81 29 850

10 1533; E-mail: h-imai@ce.jp.nec.com

^b Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo, 679-5198, Japan

electronic suppulementary information

15 Experimental details

Carbon-supported Pt₃Co nanoparticles were obtained from Tanaka Kikinzoku Kogyo (TKK). The chemical composition of the bimetallic Pt-Co alloy was determined to be Co 22 at% through energy-dispersive x-ray analyses. The loading of the 20 metallic components was 42 wt% relative to the carbon support.

The average particles size was estimated to be approximately 4.2 nm in diameter determined by transmission electron micrography. Platinum catalysts (50wt %, supported on Ketjen black) were prepared with the standard platinum-oxide colloidal method. The

- ²⁵ average particles size was 2.0 nm. Since larger Pt particles are generally more stable than smaller Pt particles especially below 5 nm¹, we carefully compared the oxidation behavior between Pt₃Co (4.2 nm) and Pt (2 nm). Although no systematic studies have been done to date, the surface oxidation rate could be faster for smaller paperparticles, due to modifications to the surface
- ³⁰ for smaller nanoparticles, due to modifications to the surface energy or electronic states, similar to enhanced specific activity in smaller Pt nanoparticles.²

The catalyst electrode was prepared by spreading a suspension of carbon-supported Pt_3Co nanoparticles dispersed in Nafion® ³⁵ solution onto a thin carbon electrode (thickness: 120 µm). The electrochemical cell was designed for x-ray absorption spectroscopy (XAS) in a transmission configuration. ³ The electrochemical cell consisted of the sample, counter, and reference electrodes, like a standard three-electrode

⁴⁰ electrochemical cell, except for a very thin electrolyte region along the x-ray pathway. The inert atmosphere in the cell was maintained by purging it with ultra-pure nitrogen gas.

Prior to the XAS measurements, the catalysts were electrochemically cleaned by repeating cyclic voltammetry scans

 $_{45}$ (10–20 times) between 0.05 and 1.2 V. After the experiments on potential-step oxidation, the form of CV was exactly identical, indicating that the present Pt₃Co nanoparticles were stable at least under these experimental conditions.

⁵⁰ <u>X-ray absorption spectroscopy measurements and data</u> <u>analyses</u>

XAS analyses were carried out with standard procedures using REX2000. The k^3 -weighted $\chi(k)$ data ranging from 2.5 to 14.0 Å was Fourier-transformed into *r*-space for non-linear curve fitting.

⁵⁵ The backscattering amplitudes and phase shifts for all atom pairs were theoretically calculated with FEFF8 code.⁴

Structural model for nominal Pt₃Co nanoparticles with Pt-skin lavers

⁶⁰ Figure S1 plots the EXAFS data (EXAFS oscillation and Fourier transform) for the electrochemically cleaned Pt_3Co (taken at 0.4 V vs. RHE). The fitting parameters are listed in Table S1.

Fig. S1. EXAFS spectra in k-space and r-space for Pt₃Co (0.4 V vs. RHE) Simulation was done assuming Pt-Pt and Pt-Co bonds.

	CN	R	E ₀	DW
Pt-Pt	9.0(9)	2.72(1)	-2.2(6)	0.08(0)
Pt-Co	1.6(3)	2.63(9)	0.57(4)	0.07(9)

Table S2 Fitting parameters for electrochemically cleaned Pt₃Co nanoparticles. CN and DW stand for Coordination Number and Debye-Waller factor.

To obtain an average structure of Pt₃Co nanoparticles with Ptskin layers (inset of Fig. 1(a)), we assumed a simple spherical model that consisted of a Pt₃Co inner-core and a Pt shell with a diameter of 4.2 nm. For the Pt₃Co core with a diameter of 75 approximately 3.5 nm, we obtained a number of Pt-Pt and Pt-Co bonds and the coordination numbers listed in Table S2, which almost agree with the experimental data.

If Co atoms partly segregate in the inner core, the Pt-skin layers should become thinner, because the coordination number ⁸⁰ for Pt-Pt in the core part increases; consequently, the Pt-Pt coordination number for the Pt-skin layers decreases.

Bonds	Number of	Coordination	Coordination
	bonds		
		number	number
	(model)	(modal)	(ovporimonts)
		(model)	(experiments)
Total	29172	10.75	10.72
Pt-Pt	24504	9.03	9.09
Pt-Co	4668	1.72	1.63

Table S2 Numbers of Pt bonds and coordination numbers for ⁸⁵ Pt₃Co model and those obtained from experiments.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

- ¹ E. F. Holby, W. Sheng, Y. Shao-Horn, and D. Morgan, Energy. Environ. Sci. 2009, 2, 865.
- ² K. J. Mayrhofer, B.B. Blizanac, M. Arenz, V. Stamenkovic, P. N. Ross,
- and N. M. Markovic, J. Phys. Binzanac, W. Archiz, V. Stathenković, P. N. Ross, and N. M. Marković, J. Phys. Chem. B, 2005, 109, 14433.
 ³ Imai, H.; Izumi, K.; Matsumoto, M.; Kubo, Y.; Kato, K.; Imai, Y. J. Am. Chem. Soc. 2009, 131, 6293-6300.
 ⁴ Zabinski, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. Phys. Rev. B 1995, 52, 2995.