Electronic Supplementary Information (ESI) Hydrogen bond breakage by Fluoride anion in a simple CdTe quantum dot/Gold nanoparticle FRET system and its analytical application Mei Xue, Xu Wang, Hui Wang, Dezhan Chen, Bo Tang * Prof. B. Tang, Dr. M. Xue, X. Wang, H. Wang, D.Chen College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China Fax: (+86) 531-8618-0017 E-mail: tangb@sdnu.edu.cn 1. Experimental Section pS2-pS3 2. Results and Discussion pS3-pS8 3. Theoretical Calculations. pS8-pS13

1 **1. Experimental Section**

Materials. Hydrogen tetrachloroaurate (III) (HAuCl₄•3H₂O), trisodium citrate, cadmium acetate dihydrate (98.5%), tellurium powder (300 mesh, 99%), sodium hydrogen boride (99%) and potassium fluoride were purchased from China Medicine Group Shanghai Chemical Reagent Corporation. Thioglycolic acid (TGA) were obtained from Sigma-Aldrich. All other reagents were analytical reagent grade. Water used in the experiment was purified with Mill-Q (18.2 M Ω ·cm⁻¹) water system. 100k Nanosep filter (Pall Corporation, USA) was used as ultra-purification instrumentation.

9 Instrumentation and methods. Fluorimetric spectra were collected with an Edinburgh FLS920 10 spectrofluorimeter (Edinburgh Instruments Ltd, England) equipped with a xenon lamp and a quartz cuvette (1.0 cm optical path) as the container. Absorption spectra were recorded on an 11 12 UV-1700 spectrophotometer (Shimadzu Corp. Kyoto, Japan). Transmission electron microscopy (TEM) images were collected on a Hitachi Model H-800 instrument. Acidity measurements were 13 14 made with a Model pHS-3C meter (Shanghai Leici Equipment Factory, China). Centrifugation 15 was done on the instrument of Sigma 3K 15 Centrifuge. Capillary electrophoresis (CE) was 16 performed by using a QL-1000 instrument with UV/Vis detector (Shandong Normal University). 17 Experimental conditions: capillary with 50 cm effective (55 cm total) length and 75 µm inner diameter. Na₂B₄O₇ solution (20 mM, pH 9.2) was used as running buffer. The applied voltage was 18 19 12 kV. The samples were introduced to the capillary by pressure for 10s.

20 Preparation of water-soluble CdTe quantum dots (QDs) and its purification.

21 Preparation of NaHTe.

In a two-necked flask (25 mL), 11.3 mg tellurium powder and 10 mL water were deaerated with argon for 10 min. Then 30 mg NaBH₄ was added and the resulting suspension was stirred under argon until NaBH₄ was completely dissolved. After that, the resulting suspension was heated to 35 °C under vigorous stirring and argon bubbling. During fifteen minutes, the colored suspension changed its characteristic color from violet to colorless. Fresh NaHTe was obtained and was cooled to room temperature.

28 Preparation and purification of TGA/ CdTe QDs.

29 In a three-necked flask (250 mL) equipped with a reflux condenser, cadmium acetate dihydrate (2 30 mmol) was dissolved in 100 mL water. After thioglycolic acid (TGA, 1.0 mmol) was added, the solution was adjusted to pH 10 with aqueous NaOH (1.0 M) and stirred under argon at room 31 32 temperature for 30 min. Then 2mL NaHTe solution was injected under argon and the mixture was 33 refluxed. The colour of the precursors mixture turned from colorless to orange, supporting the growth of the nanocrystals. After refluxing for particular time, stable water-compatible 34 TGA-capped CdTe QDs were obtained.¹ To remove excess TGA, the as-prepared QDs were 35 precipitated with an equivalent amount of 2-propanol. The pellet of purified QDs was dried 36 37 overnight at room temperature in vacuum, and the final product in the powder form could be 38 redissolved in ultrapure water (20 mL). The aggregated nanoparticles that formed in the process of 39 redissolving were removed by ultrafiltration using 100k Nanosep filter under centrifugation 40 (12000 rpm, 5 min). The upper phase was discarded, leaving the obtained homogeneous QDs in 41 lower phase as the stock solution. The obtained QDs were characterized by fluorescence spectroscopy and UV/Vis spectroscopy. According to the excitonic absorption peak value and the 42 extinction coefficient per mole (ϵ) of CdTe nanoparticles² The final concentration of CdTe-QDs is 43

- 1 6.4×10^{-7} mol/L. We denote the concentration of purified QDs solution to be 1×.
- 2 Preparation of citrate modified Au nanoparticles (AuNPs).
- 3 The monodispersed AuNPs was prepared using the classical citrate reduction route pioneered by
- 4 Frens.³ Briefly, trisodium citrate (1%, 5.25 mL) was added rapidly to an aliquot of 0.01% HAuCl₄
- 5 (150 mL) that was brought to a reflux while stirring. This mixture was refluxed for an additional
- 6 15 min, during which time the color changed to deep red. Then the solution was set aside to cool
- 7 to room temperature. This result in citrate ion stabilized AuNPs with net negative charges. Next,
- 8 unbound citrate was removed by repeated centrifugation (12000 rpm, 5 min), followed by
- 9 redispersing the red precipitate in ultrapure water (15 mL) to get the pure AuNPs. The AuNPs
 10 were characterized by UV/Vis absorption spectroscopy as well as transmission electron
- 11 microscopy (TEM). The final concentration of AuNPs was calculated to be approximately 2.0 nM
- 12 $(1.2 \times 10^{15} \text{ particles/L})^4$ with a high molar extinction coefficient (ε at 520 nm) of $6.1 \times 10^8 \text{ M}^{-1} \text{ cm}^{-1}$.
- 13 Please note that we denote the concentration of the as-prepared AuNPs solution to be $2\times$.

14 Fluorescence quenching.

- 15 100 μ L of the prepared CdTe QDs (0.1×), 100 μ L of 0.10 M (pH=7.0) buffer solution and different 16 concentrations of AuNPs solution were added to 1.50 mL colorimetric tube, sequentially. Each 17 sample solution was diluted with pure water to a final volume of 1.00 mL. For an equilibration
- 18 period of 20 min to make reaction completely, the fluorescence spectra were collected .

19 Fluorescence detection of fluoride ion.

- 20 100 μ L of 0.10 M (pH=7.0) buffer solution and 200 μ L of AuNPs solution (2×) were added into
- 21 100 μ L of the prepared CdTe QDs (0.1×)as the probe solution. Equilibration period of 20 min was
- 22 performed to make the reaction completely. Afterwards, different concentrations of F^- were added.
- 23 Each sample solution was diluted with pure water to a final volume of 1.00 mL. After 5 minutes'
- 24 reaction, the fluorescence spectra were obtained .

26 references

- 27 1 B. Tang, F. Yang, Y. Lin, L. H. Zhuo, J. C. Ge and L. H.Cao, Chem. Mater., 2007, 19, 1212.
- 28 2 W.W. Yu, L. Qu, W. Guo and X. Peng, Chem. Mater., 2003, 15, 2854.
- 29 3 G. Frens, Nat. Phys. Sci. 1973, 241, 20.
- 30 4 S. J. Chen and H. T.Chang, *Anal. Chem.*, 2004, **76**, 3727.
- 31

25

32 2. Results and Discussion

51 Fig. S3d shows the decrease of fluorescence intensity along time after adding AuNPs to the 52 QDs solution in the presence of 10 mM buffer solutions. The fluorescence intensity gradually

Fig.S3 In all the experiments, CdTe QDs are fixed at $0.1 \times , 100 \mu L$. (**•**) phosphate buffer, (**•**) Tris-HAc buffer, (**•**) HEPES buffer. (a) Effects of pH (5.5~10.0) on the fluorescence spectra of CdTe-AuNPs assemblies. AuNPs(2×, 200 μ L). Three buffer concentrations are fixed at 10 mM; (b) Effect of buffer concentrations on the fluorescence spectra of CdTe-AuNPs assemblies, AuNPs(2×, 200 μ L) , pH 7.0; (c) PL quenching of CdTe QDs upon adding AuNPs, three buffer concentrations are fixed at 10 mM, pH 7.0; (d) The changes of fluorescence intensity with increasing incubation time. AuNPs (2×, 200 μ L). Three buffer concentrations are fixed at 10 mM, pH 7.0; (d) The changes of fluorescence intensity with

Fig.S4 Stern-Volmer plot of F_0/F versus [AuNPs]. The buffer concentration is fixed at 10 mM, pH 7.0.

Fig.S5 shows the electropherograms of free QDs in different pH by capillary electrophoresis obtained with a UV-visible detector at 350 nm. In the alkaline buffer solution, CdTe QDs possess negative charges and migrate to the anode in the electric field. As pH decreased, the QDs was

Table S1. The detection limit and the relative standard deviation (RSD).

39					
40		Phosphate buffer	Tris-HAc buffer	HEPES buffer	
41	Detection limit	115 nM	84 nM	97 nM	
42 43	RSD (<i>n</i> =11)	2.1 %	1.8 %	1.1 %	

44 45

38

Effects of various anions and cations on the nanoprobe.

To assess the selectivity of the assemblies for F, the effects of various anions and cations on 46 47 the determination of F were examined in the tested three buffer solutions. Although the 48 nano-assemblies can detect F in phosphate buffer solution, AuNPs became unstable after adding 49 higher concentration of anions, which may be due to the high ionic strength of solution. For 50 Tris-HAc buffer solution, the influence was much better. In HEPES buffer solution, the influence was small. Finally, HEPES buffer was chosen. Table S2 shows that the relative error of most 51 52 species in HEPES buffer solution.

53

54

Table S2. Interferences of various coexisting anions and cations in the presence of 20 µM F⁻ (HEPES buffer).

55

Coexisting	Concentration	Relative
substances	$/ \text{mol} \cdot \text{L}^{-1}$	error / %
Cl	5.0×10 ⁻⁴	1.5
Br	5.0×10 ⁻⁴	1.3
I	5.0×10 ⁻⁴	1.2
SO_4^{2-}	5.0×10 ⁻⁴	0.5

NO ₃	5.0×10 ⁻⁴	0.6
CH ₃ COO ⁻	5.0×10 ⁻⁴	1.8
HCO ₃ -	5.0×10 ⁻⁴	2.7
HPO ₄ ²⁻	5.0×10 ⁻⁴	2.4
NO ₂	5.0×10 ⁻⁴	0.3
Na^+	1.0×10 ⁻³	-0.4
K^+	1.0×10 ⁻³	-0.9
Ag^+	1.0×10 ⁻³	-1.6
Mg^{2+}	1.0×10 ⁻³	-2.2
Ca ²⁺	1.0×10 ⁻³	-2.8
Fe ²⁺	1.0×10 ⁻³	-1.8
Zn^{2+}	1.0×10 ⁻³	-1.5
Cu ²⁺	1.0×10 ⁻³	-2.4
Hg^{2+}	1.0×10 ⁻³	-2.8
Al ³⁺	1.0×10 ⁻³	-1.5
Fe ³⁺	1.0×10 ⁻³	-2.2

1 2

3 4

Table S3. Analytical results of F⁻ in tap water samples (HEPES buffer).

	Measured ^a	Added	Recovered ^a	RSD	Recovery	Measured ^b
	(µM)	(µM)	(µM)	(%)	(%)	(µM)
Tap water	20.92	10.00	31.17	1.2	102	20.85

^a Mean value of six determinations by the proposed method.

^bMean value of six determinations by using electrodes prepared from LaF₃.

7 8 9

3. Theoretical Calculations

Calculated geometries were initially optimized with the Gaussian 03¹ package at the DFT level 10 of theory by using the B3LYP functional ²(Becke's three parameters hybrid functional ³ with the 11 Lee-Yang-Parr correlation functional 4) and the 6-31+G(d,p) basis set. The resulting stationary 12 13 points were confirmed by frequency calculations. Reported total electronic energies are uncorrected for the ZPVE (zero point vibrational energy) and computed in the gas-phase. Bond 14 orders were characterized by the Wiberg's bond index ⁵ (WBI) and calculated at the 15 B3LYP/6-311G** level with the natural bond orbital (NBO) method ⁶ as the sum of squares of the 16 off-diagonaldensity matrix elements between atoms, as formulated in terms of the natural atomic 17 18 orbital (NAO) basis set.

19

20 references

21 1 M. J. Frisch, G.W.Trucks, H. B. Schlegel, G.E.Scuseria, M.A.Robb, J. R.Cheeseman, J.A.Jr.Montgomery,

22 T.Vreven, K.N.Kudin, J.C.Burant, J. M.Millam, S.S.Iyengar, J.Tomasi, V.Barone, B.Mennucci, M.Cossi, G.

23 Scalmani, N.Rega, G. A.Petersson, H. Nakatsuji, M.Hada, M. Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida,

24 T.Nakajima, Y.Honda, O.Kitao, H.Nakai, M.Klene, X.Li, J. E.Knox, H. P.Hratchian, J. B.Cross, V.Bakken,

25 C.Adamo, J.Jaramillo, R.Gomperts, R.E.Stratmann, O.Yazyev, A. J.Austin, R.Cammi, C.Pomelli, J.

⁵ 6

- 1 W.Ochterski, P. Y.Ayala, K.Morokuma, G. A.Voth, P.Salvador, J. J.Dannenberg, V. G.Zakrzewski, S.Dapprich, A.
- 2 D.Daniels, M. C.Strain, O.Farkas, D. K.Malick, A.D.Rabuck, K.Raghavachari, J. B.Foresman, J. V.Ortiz, Q.Cui,
- 3 A.G.Baboul, S.Clifford, J.Cioslowski, B. B. Stefanov, G. Liu, A.Liashenko, P. Piskorz, I. Komaromi, R. L.Martin,
- 4 D. J.Fox, T.Keith, M. A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P. M. W.Gill, B.Johnson,
- 5 W.Chen, M. W.Wong, C.Gonzalez, J. A.Pople, *Gaussian03*, revision B.03, Gaussian, Inc., Wallingford, CT, 2004.
- 6 2 L.J.Bartolottiand, K.Fluchick, In *Reviews in Computational Chemistry*; K. B.Lipkowitz, B. D.Boyd, Eds., VCH:
 7 New York, 1996, Vol. 7, pp 187-216.
- 8 3 A.D.Becke, J. Chem. Phys., 1993, 98, 5648.
- 9 4 C.Lee, W.Yang and R.G.Parr, *Phys. Rev. B*, 1988, **37**, 785.
- 10 5 K.Wiberg, *Tetrahedron*, 1968, **24**, 1083.
- 11 6 J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211.
- 12

13 Calculated structures, energies and cartesian coordinates (B3LYP/6-31+G**) for model

14 compounds and relevant complexes.

2	5
7	J

26	E = -6	27.283884 au			
27	С	-0.96037300	0.10671300	0.00040400	
28	0	-0.92755900	1.31567500	0.00000100	
29	0	-2.11635600	-0.60309600	-0.00020400	
30	Н	-2.84786000	0.03789000	-0.00050700	
31	С	0.23344100	-0.82270500	0.00016400	
32	S	1.78996300	0.15139200	-0.00008100	
33	Н	2.58963400	-0.93558100	-0.00030200	
34	Н	0.16601000	-1.46464900	0.88369700	
35	Н	0.16571200	-1.46461800	-0.88336900	

45				
46				
47	E=-626.7377697	au		
48	С	1.10947100	0.08806300	0.00002200
49	0	0.90871700	1.32597300	0.00001300
50	0	2.18741400	-0.56204800	-0.00002200

1	С	-0.15461100	-0.83669800	0.00001300
2	S	-1.73048000	0.14146400	-0.00001700
3	Н	-2.56434100	-0.93084600	0.00012000
4	Н	-0.12308700	-1.47607900	-0.88696500
5	Н	-0.12310300	-1.47608400	0.88698500

16 E= -759.5891344 au

17	С	-0.01439800	-0.22275900	-0.11678800
18	С	1.23029200	-0.73284700	-0.88679200
19	Н	1.10098100	-1.79544000	-1.09661400
20	Н	1.31879400	-0.18704400	-1.83305900
21	С	-1.30723300	-0.68064100	-0.85872200
22	Н	-1.18793100	-1.74924100	-1.08133900
23	Н	-1.41988900	-0.14978800	-1.80699200
24	С	-2.62860300	-0.55259300	-0.03035400
25	С	2.53275400	-0.60036700	-0.13449800
26	0	-2.49879500	-0.69576600	1.23293900
27	0	3.34239700	-1.49195700	0.04016900
28	0	2.76640200	0.66049600	0.31404100
29	Н	3.59405100	0.62080700	0.82047500
30	0	0.03054500	-0.74329000	1.18075300
31	Н	-0.95372300	-0.77741600	1.45567100
32	С	-0.00404900	1.32607900	-0.14972100
33	0	0.17215800	1.98577400	-1.16114600
34	0	-0.26077700	1.90627600	1.03847000
35	Н	-0.29709100	2.86087500	0.86062500
36	0	-3.67790100	-0.37703100	-0.67741600

47

48 E=-760.1174145 au

1	С	0.02380600	-0.28992900	-0.00022600
2	С	1.23164300	-0.95556800	-0.69959300
3	Н	1.12395600	-2.03911700	-0.62880000
4	Н	1.23519300	-0.66469800	-1.75537800
5	С	-1.26793400	-0.90825600	-0.59387100
6	Н	-1.22379700	-1.99704100	-0.47454600
7	Н	-1.34536200	-0.69693900	-1.66416100
8	С	-2.52911300	-0.43059000	0.08805800
9	С	2.58199400	-0.61613700	-0.09981800
10	0	-2.57361200	0.24274200	1.10123400
11	0	3.38670100	-1.42907500	0.29619500
12	0	2.82423200	0.71700000	-0.09821800
13	Н	3.69495600	0.85222500	0.31266000
14	О	0.14824300	-0.57183300	1.37549700
15	Н	-0.57768300	-0.12321300	1.83968500
16	С	0.00683600	1.22600400	-0.31380500
17	О	-0.14531900	1.65816200	-1.43840300
18	О	0.13825800	2.00461100	0.77056200
19	Н	0.09859300	2.92764900	0.46674300
20	О	-3.63869300	-0.85634600	-0.54859500
21	Н	-4.40772500	-0.53410700	-0.04684900

32 E=-1386.9093501 au

33	С	-2.52344000	-0.21249700	0.08305100
34	С	-3.70352000	-0.98027500	0.72497200
35	Н	-3.43511700	-2.03425700	0.80825900
36	Н	-3.89162500	-0.57749200	1.72645300
37	С	-1.20768900	-0.58403600	0.82623100
38	Н	-1.15454900	-1.67918700	0.87022700
39	Н	-1.22045600	-0.20644300	1.85091300
40	С	0.08524100	-0.11511600	0.11836500
41	С	-4.99283800	-0.92546300	-0.06149900
42	0	0.07452900	-0.02513700	-1.13549600
43	0	-5.66702400	-1.88704500	-0.37489100
44	0	-5.37933900	0.34099400	-0.36088300
45	Н	-6.18515300	0.26437100	-0.89771000
46	0	-2.46267300	-0.57508000	-1.27116000
47	Н	-1.51900900	-0.38072500	-1.53806300

1	С	-2.74919300	1.30595300	0.29281600
2	0	-3.01244600	1.80597800	1.37243500
3	0	-2.57862900	2.04618300	-0.81789100
4	Н	-2.67728800	2.97206500	-0.53941400
5	0	1.07072500	0.09727600	0.89057400
6	Н	2.34301000	0.41454500	0.37283500
7	0	3.29266800	0.78727800	0.03173900
8	С	4.31505300	-0.02277700	0.16251500
9	0	4.32543100	-1.13565700	0.66972200
10	С	5.57537200	0.61372500	-0.43366000
11	S	7.03674500	-0.47597400	-0.17073700
12	Н	5.40623500	0.77503100	-1.50186000
13	Н	5.73365700	1.58758900	0.03667200
14	Н	7.91252000	0.36467000	-0.76645900
16				
18			•	
20				٩
22		- <u>B</u>		-
24				
25				
26	E= -727.2	324566au		
27	С	0.00000000	0.00000000	0.00000000
28	0	0.00000000	0.00000000	1.24036380
29	0	0.98862448	0.00000000	-0.81048234
30	Н	2.36841312	0.01246771	-0.41992939
31	С	-1.35545923	0.00035299	-0.75259712
32	S	-2.77867870	0.00148495	0.42725481
33	Н	-3.73830895	0.00041239	-0.53009986
34	Н	-1.40175146	0.88599721	-1.39213873
35	Н	-1.40247176	-0.88597729	-1.39117034
36	F	3.36831961	0.02717314	-0.27724966
			38	
		_ 2	40	
	<u>)</u>			
		- <u>I</u> <u>I</u>	42	
			44	
			46	
47	E= -860.0	7928au		
48	С	0.52134400	-0.22494800	-0.10182900

1	Н	1.60358100	-1.85655400	-1.01918300
2	Н	1.84250200	-0.28446200	-1.82235000
3	С	-0.77689700	-0.68590200	-0.82649500
4	Н	-0.69517800	-1.76921600	-0.98308400
5	Н	-0.86421200	-0.21089000	-1.80615800
6	С	-2.08472600	-0.46026100	-0.02353100
7	С	3.06240600	-0.64590900	-0.11627200
8	0	-2.00870600	-0.48567700	1.23374400
9	0	3.86071000	-1.54196100	0.07945800
10	0	3.31232400	0.62648000	0.28523600
11	Н	4.14703200	0.60048000	0.78112000
12	0	0.56566800	-0.70578300	1.21505400
13	Н	-0.38793800	-0.66033800	1.52492900
14	С	0.56096000	1.32167700	-0.18318700
15	0	0.72289100	1.93945900	-1.22146200
16	0	0.34873500	1.94026500	0.99264900
17	Н	0.32586900	2.89118300	0.79337500
18	0	-3.12545400	-0.31768200	-0.72790200
19	Н	-4.49112200	-0.21111900	-0.18779900
20	F	-5.45509600	-0.13742600	0.05496700
21				

22

23