Supporting information

Modulating the Selectivity of Near Infrared Fluorescent Probe Toward Various

Metal Ions by Judicious Choice of Aqueous Buffer Solutions

Tanyu Cheng, Tao Wang, Weiping Zhu, Yangyang Yang, Bubing Zeng, Yufang Xu*, and Xuhong Qian*

State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology, Shanghai 200237, China

- 1. Materials and instruments
- 2. Synthesis of probe S1
- 3. pH titration
- 4. The selectivity of S2 for Cd²⁺, Hg²⁺ and Pb²⁺
- 5. Cadmium titration
- 6. Competition experiments of cadmium
- 7. Mercury titration
- 8. Competition experiments of mercury
- 9. Determination of quantum yield
- **10. Determination of association constant**
- 11. The characterization data of probe S1
- 12. References

1. Materials and instruments

All the solvents were of analytic grade. The salts used in stock solutions of metal ions were $Hg(CIO_4)_2 \cdot 3H_2O$, $Pb(CIO_4)_2 \cdot 3H_2O$, $Zn(CIO_4)_2 \cdot 6H_2O$, $Cr(CIO_4)_3 \cdot 6H_2O$, $FeSO_4 \cdot 7H_2O$, $FeCl_3 \cdot 6H_2O$, $Ba(CIO_4)_2 \cdot 3H_2O$, $Co(CIO_4)_2 \cdot 6H_2O$, $Mn(CIO_4)_2 \cdot 6H_2O$, $Cu(CIO_4)_2 \cdot 6H_2O$, $Ca(CIO_4)_2 \cdot 4H_2O$, $Ni(CIO_4)_2 \cdot 6H_2O$, $LiCIO_4$, $NaCIO_4 \cdot H_2O$, $KCIO_4$, $CsCIO_4$, $AgCIO_4 \cdot H_2O$, $Cd(CIO_4)_2 \cdot 6H_2O$. ¹H-NMR and ¹³C-NMR were measured on a Bruker Avance-400 spectrometer with chemical shifts reported in ppm (in DMSO-*d*₆; TMS as internal standard). Mass spectra were measured on a HP 1100 LC-MS spectrometer. All pH measurements were made with a Sartorius PB-10 basic pH meter. Fluorescence spectra were determined on a Varian Cary Eclipse Fluorescence spectrophotometer. Absorption spectra were determined on a Varian Cary 100 Bio UV-Visible spectrophotometer.

2. Synthesis of probe S1

1¹ (0.05 mmol) and 4-methoxybenzaldehyde (0.5 mmol) were dissolved in toluene (15 mL) and DMF (5 mL) with piperidine (0.12 mL), glacial acetic acid (0.1 mL), and catalytic amount of Mg(ClO₄)₂. The resulting mixture was refluxed, and the water formed during the reaction was removed azeotropically by heating in a Dean-Stark apparatus for about 2 hours. The solvent was removed under vacuum, and the residue was purified by silica column chromatography (CH₂Cl₂/CH₃OH, 9/1 to 7/1, v/v). The desired product **S1** was obtained as black solid in 37% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.40 (s, 6H), 3.10-3.11 (m, 8H), 3.32-3.33 (m, 8H), 3.83 (s, 3H), 4.03 (s, 4H), 4.09 (s, 4H), 4.61-4.65 (m, 4H), 6.93-6.97 (m, 3H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.12 (s, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 16.4 Hz, 1H), 7.43-7.46 (m, 2H), 7.55 (d, *J* = 16.4 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ: 14.9, 14.9, 41.8, 41.8, 54.7, 55.0, 55.8, 60.1, 60.2, 112.6, 115.1, 116.0, 116.4, 118.8, 119.0, 119.0, 121.0, 121.4, 121.5, 129.3, 129.5, 130.0, 130.5, 132.3, 132.5, 133.6, 135.8, 137.3, 138.5, 139.8, 141.2, 141.6, 143.6, 152.7, 153.4, 160.9, 170.3, 170.3; HRMS (ES+, [M + H]⁺): Calcd for C₅₁H₅₈BF₂N₉O₉ 990.4497; found, 990.4487.

3. pH titration

Fig. S1. The fluorescence Intensity of **S1** (5 μ M) at 658 nm as a function of pH in water solution (10% DMSO) (pH was adjusted by 75% HClO₄ and NaOH). The samples were excited at 620 nm. Excitation and emission slit widths were both 5 nm.

4. The selectivity of S2 for Cd²⁺, Hg²⁺ and Pb²⁺

Fig. S2 The fluorescent intensity of **S2** (4 μ M) in the absence and presence of Cd²⁺, Hg²⁺ or Pb²⁺ (20 μ M) emitted at 567 nm. (a) in 3-Morpholinopropanesulfonic Acid (MOPS) buffer solution (50 mM, 10% DMSO, pH = 7.0); (b) in HEPES buffer solution (10 mM, 10% DMSO, pH= 7.2, 10 mM NaCl); (c) in Tris-HCl (20 mM) buffer solution (containing 10% DMSO, 0.1 mM sodium phosphate, pH = 7.5); (d) in 50 mM citrate-phosphate buffer solution (pH = 7.0, 10% DMSO). The samples were excited at 555 nm. Excitation and emission slit widths were 2.5 nm and 5 nm.

5. Cadmium titration

Fig. S3. The absorption (top) and emission (bottom) spectra of **S1** (5 μ M) upon addition of Cd²⁺ from 0 to 3 mM in Tris-HCl (0.02 M) solution (containing 10% DMSO, 0.1 mM sodium phosphate, pH=7.5). The samples were excited at 620 nm. Excitation and emission slit widths were both 5 nm. Inset: Curve of fluorescence intensity of **S1** at 658 nm versus the concentration of Cd²⁺.

6. Competition experiments of cadmium

Fig. S4. The fluorescent intensity of **S1** (5 μ M) at 658 nm with 5 equiv Mⁿ⁺, followed by 3 equiv Cd²⁺ in Tris-HCl (0.02 M) solution (containing 10% DMSO, 0.1 mM sodium phosphate, pH=7.5). The samples were excited at 620 nm. Excitation and emission slit widths were both 5 nm.

7. Mercury titration

Fig. S5. The absorption (top) and emission (bottom) spectra of **S1** (2 μ M) upon addition of Hg²⁺ from 0 to 0.3 mM in citrate-phosphate buffer (0.05 M, 10% DMSO, pH= 7.0). The samples were excited at 620 nm. Excitation and emission slit widths were both 5 nm. Inset: Curve of fluorescence intensity of **S1** at 658 nm versus the concentration of Hg²⁺.

8. Competition experiments of mercury

Fig. S6. The fluorescent intensity of **S1** (2 μ M) at 658 nm with 5 equiv Mⁿ⁺, followed by 2.5 equiv Cd²⁺ in citrate-phosphate buffer (0.05 M, 10% DMSO, pH= 7.0). The samples were excited at 620 nm. Excitation and emission slit widths were both 5 nm.

9. Determination of quantum yield

The quantum yield of S1 and S1-Cd²⁺ were determined according to the literature².

$$\Phi_{S} = \frac{\Phi_{B}I_{S}A_{B}\lambda_{exB}\eta_{S}}{I_{B}A_{S}\lambda_{exS}\eta_{B}}$$

Where Φ is quantum yield; I is integrated area under the corrected emission spectra; A is absorbance at the excitation wavelength; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the S and B refer to the sample and the standard, respectively. We chose Rhodamine B with trifluoroacetic acid in absolute ethanol as standard, which has the quantum yield of 0.49.

10. Determination of association constant

 K_s was determined by a nonlinear least-squares analysis of Y versus c_M using the following equation³:

$$Y = \frac{Y_0 + c_M \Phi K_{11}[M] + Y_{\text{lim}} \beta_{21}[M]^2}{1 + K_{11}[M] + \beta_{21}[M]^2}$$

Where $\beta_{21} = K_{11}K_{21}$, [M] $\approx c_M$ is Cd²⁺ ion concentration, Y₀ or Y is integrated emission in the absence or presence of Cd²⁺ ion, Φ is the quantum yield of the sensor-Cd²⁺ complex in 1:1 stoichiometry.

11. The characterization data of probe S1

¹H NMR of **S1**

¹³C NMR of **S1**

HRMS spectrum of S1

12. References

- 1. Cheng, T.; Xu, Y.; Zhang, S.; Zhu, W.; Qian, X.; Duan, L., J. Am. Chem. Soc. **2008**, 130, 16160–16161.
- 2. Casey, K. G.; Quitevis, E. L., J. Phys. Chem. **1988**, *92*, 6590-6594.
- 3. Valeur, B., *Molecular Fluorescence: Principles and Applications*. Wiley-VCH: Wenheim, 2002.